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Abstract

Motivated by the work of Burger-Mozes and Wise, we study groups in a class of co-
compact lattices in Aut(T2m)×Aut(T2n), the product of automorphism groups of two
regular trees. From a geometric viewpoint, these groups are fundamental groups of
certain finite square complexes, and therefore infinite, finitely presented and torsion-
free. We are interested in their normal subgroup structures and construct examples
of such groups without non-trivial normal subgroups of infinite index, groups which
are non-residually finite, groups without proper subgroups of finite index, and simple
groups. Moreover, we generalize a construction of quaternion cocompact lattices in
PGL2(Qp)× PGL2(Ql), where p, l are two distinct odd prime numbers. To generate
and analyze all these groups, we have written several computer programs with GAP.

Kurzfassung

Motiviert durch Arbeiten von Burger-Mozes und Wise untersuchen wir Gruppen in-
nerhalb einer Klasse von kokompakten Gittern in Aut(T2m)×Aut(T2n), dem Produkt
der Automorphismengruppen zweier regulärer Bäume. Diese Gruppen sind aus geo-
metrischer Sicht Fundamentalgruppen von gewissen endlichen Quadratkomplexen,
und deshalb unendlich, endlich präsentiert und torsionsfrei. Wir interessieren uns
für die Struktur ihrer Normalteiler und konstruieren Beispiele von solchen Gruppen
ohne nicht-triviale Normalteiler von unendlichem Index, Gruppen die nicht residuell
endlich sind, Gruppen ohne echte Untergruppen von endlichem Index, und einfache
Gruppen. Ausserdem verallgemeinern wir eine Konstruktion von quaternionischen
kokompakten Gittern in PGL2(Qp)× PGL2(Ql), wobei p, l zwei verschiedene unge-
rade Primzahlen sind. Um all diese Gruppen zu erzeugen und analysieren, haben wir
mehrere Computerprogramme mit GAP geschrieben.
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Introduction

Our main goal is to study aspects related to the structure of fundamental groups
of finite square complexes covered by a product of two regular trees of even de-
grees T2m × T2n . These groups can be seen as cocompact lattices in the product
Aut(T2m) × Aut(T2n) of automorphism groups of the trees. The original motivation
for Burger, Mozes and Zimmer to study such groups was the expected analogy to
the rich structure theory of irreducible lattices in higher rank semisimple Lie groups,
where one has for example the remarkable (super-)rigidity and arithmeticity results of
Margulis. Note that in the rank one case, a similar analogy to lattices in certain sim-
ple Lie groups led to the extensive development of the theory of tree lattices by Bass,
Lubotzky and others in the last 15 years. Besides many analogies, there are also some
fascinating new phenomena. We want to mention one of them, since it has a strong
influence on this work. It is the construction by Burger-Mozes of an infinite family of
cocompact lattices in Aut(T2m)×Aut(T2n) (for sufficiently large m and n), which are
the first infinite groups being simultaneously finitely presented, torsion-free and sim-
ple. Moreover, these groups are CAT(0) and bi-automatic, have finite cohomological
dimension, and are decomposable as amalgamated free products of finitely generated
non-abelian free groups, hence are very interesting objects from many different view-
points of infinite group theory.

We proceed now with an outline of the chapters and explain our main results and
methods. Chapter 1 serves as a preparation for the following three main chapters. Af-
ter giving some general preliminaries, we define a certain class of finite 2-dimensional
cell complexes, called (2m, 2n)–complexes. Under different names, they have al-
ready been used by Burger-Mozes and Wise for many interesting constructions. These
(2m, 2n)–complexes X have only one vertex, and the 2-cells are squares with bound-
ary consisting of alternating horizontal and vertical edges, such that the universal cover
of X is the product of two regular trees T2m × T2n . Equivalently, the link of the single
vertex in X is the complete bipartite graph K2m,2n induced by the subdivision of the
edges in the 1-skeleton into m horizontal and n vertical geometric loops. We call the
fundamental group 0 = π1(X) a (2m, 2n)–group. By construction, it is an infinite,
finitely presented, torsion-free group, and a cocompact lattice in Aut(T2m)×Aut(T2n),
where the group Aut(T ) is equipped with some natural topology. Moreover, 0 acts
freely and transitively on the vertices of T2m × T2n . Following Burger-Mozes, we
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associate to 0 certain finite permutation groups. They describe the local actions of
vertex stabilizers, if one projects 0 to a factor of Aut(T2m) × Aut(T2n). These lo-
cal groups can be easily read off from the complex X and play an important role in
constructing groups 0 with interesting properties. Having in mind some analogy to
lattices in higher rank semisimple Lie groups, it is not surprising that irreducibility is
another important notion. We recall the definition for irreducible lattices in a product
of trees and some criteria proposed by Burger-Mozes. In the remaining sections of
Chapter 1, we discuss some other useful properties of (2m, 2n)–groups, for example
the existence of amalgam decompositions, the behaviour under embeddings, or nor-
mal forms associated to a word in 0. This has some applications to the structure of
centralizers.

Groups acting on a product of trees are a rich source for examples of interest-
ing infinite groups. The highlight was certainly the construction of finitely presented
torsion-free simple groups by Burger-Mozes some years ago, thereby answering sev-
eral long-standing open questions in group theory. These groups occur as index 4
subgroups of certain (2m, 2n)–groups. Unfortunately, since m and n have to be quite
big in the given constructions, the presentations of those simple groups turn out to be
very large; any of them would require more than 360000 relators. Therefore, one aim
at the beginning of this work was to understand the construction of Burger-Mozes, and
then to construct smaller finitely presented torsion-free simple groups, refining their
methods or developing new methods. This is done in Chapter 2. Since finite index
subgroups of (2m, 2n)–groups are already finitely presented and torsion-free, the dif-
ficult part is to find simple ones. The most natural strategy to prove that an infinite
group is simple, is to show that (I) there are no non-trivial normal subgroups of infinite
index, and (II) there are no proper normal subgroups of finite index. In the context of
irreducible lattices in higher rank semisimple Lie groups, part (I) is true by a famous
result of Margulis. He proved proper quotients 0/N to be finite by showing that they
are at the same time amenable and satisfy Kazhdan’s property (T). This ingenious
proof has been successfully adapted by Burger-Mozes to a class of irreducible lattices
in products of trees, having highly transitive local groups, and we have constructed
many explicit examples where this “normal subgroup theorem” applies. A necessary
condition for part (II) is that the group is non-residually finite, i.e. the intersection
of all finite index subgroups is not the trivial group. We know of two sources for
non-residually finite (2m, 2n)–groups. One is a sufficient criterium of Burger-Mozes,
the other is a concrete example of Wise. However, Wise’s example has non-trivial
normal subgroups of infinite index, and also all non-residually finite groups coming
from the Burger-Mozes criterion have non-trivial normal subgroups of infinite index
by construction. Since subgroups of residually finite groups are again residually finite,
we follow the strategy of Burger-Mozes to inject a non-residually finite group into a
group satisfying the normal subgroup theorem. The π1-injection is obtained geomet-
rically, using an appropriate embedding of the corresponding finite square complexes.
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Now, such a non-residually finite group G without non-trivial infinite index normal
subgroups has a subgroup H of finite index satisfying condition (II), namely the inter-
section of all finite index subgroups of G. If one can moreover guarantee that H still
satisfies the normal subgroup theorem, then H is a simple group. Nevertheless, a ma-
jor problem in general is to determine explicitly this simple subgroup H , given G. We
were able to do this in some examples by taking an appropriate embedding of Wise’s
non-residually finite (8, 6)–group and using the fact that an explicit non-trivial element
is known, which belongs to any finite index subgroup. This idea of construction led to
a finitely presented torsion-free simple subgroup of index 4 of a (10, 10)–group, and to
many more simple groups. Along the way, we have constructed new small (2m, 2n)–
groups without non-trivial normal subgroups of infinite index, and new non-residually
finite examples. They can be used as building blocks to improve lower bounds on
m and n in several theorems of Burger-Mozes about infinite families of groups with
interesting normal subgroup structures. By a slight variation of the above construction
of simple groups, we also have produced a group with non-trivial normal subgroups of
infinite index, but without proper finite index subgroups. Moreover, using an idea of
Wise, we give an example of a finitely presented group which is not virtually torsion-
free. The search for all these groups has been enormously simplified, and even made
possible to some extent, by several GAP-programs we have written, in particular one
which generates all (2m, 2n)–groups for given m, n ∈ N. The same program can
also be used to generate all possible embeddings of a given (2m, 2n)–group. We have
written many more programs related to (2m, 2n)–group, for example one which com-
putes local groups. They are described in Appendix B. In the remaining sections of
Chapter 2, we study on the one hand an example which almost satisfies the normal
subgroup theorem, give ideas how to construct and how not to construct an explicit
proper infinite quotient, and on the other hand we present several other groups that
are candidates for being finitely presented torsion-free simple groups, including some
very small ones. According to several computer experiments, it seems reasonable to
hope that some of them indeed are simple, but proofs appear to be challenging.

Let p, l ≡ 1 (mod 4) be two distinct prime numbers. Using a construction based
on the multiplication of Hamilton quaternions, Mozes has associated to any such pair
(p, l) a cocompact lattice 0p,l in PGL2(Qp)× PGL2(Ql), which is moreover an irre-
ducible (p + 1, l + 1)–group, induced by the actions of PGL2(Qp) and PGL2(Ql) on
their Bruhat-Tits trees Tp+1 and Tl+1, respectively. Mozes originally used the groups
0p,l to define certain tiling systems, so-called two-dimensional subshifts of finite type,
and to study a resulting dynamical system. Later, the group 013,17 appears as a build-
ing block in the construction of a non-residually finite (196, 324)–group and in a con-
struction of an infinite family of finitely presented torsion-free virtually simple groups
by Burger-Mozes. In Chapter 3, we first recall the definition of 0 p,l . The fact that 0p,l

is a (p+1, l+1)–group can almost be deduced from an old result of Dickson about the
existence and uniqueness of the factorization of integer quaternions. Inspired by the

9



construction and properties of a certain cocompact lattice in SO3(R)× PGL2(Qp) in
Lubotzky’s book, which was used there to generate Ramanujan graphs and to solve the
Banach-Ruziewicz problem, we prove that 0 p,l is a normal subgroup of index 4 of the
group (modulo its center) of invertible elements in the Hamilton quaternion algebra
over the ring Z[1/p, 1/ l] < Q. The same idea using overrings gives explicit realiza-
tions of 0p,l as a subgroup of SO3(Q) and PGL2(C). Moreover, we explicitly define
for each odd prime number q different from p and l, a homomorphism from 0 p,l to the
finite group PGL2(Z/qZ) and determine its image. Recently, Kimberley-Robertson
have formulated a very simple conjecture for the abelianization of the groups 0 p,l ,
based on computations in many examples. We do not know how to prove this conjec-
ture, but can express it in terms of the number of commuting quaternions in certain
generating sets. This could shed some light on the hidden nature of this conjecture.
The general assumption p, l ≡ 1 (mod 4) is made to guarantee the existence of a
square root of−1 in the fieldsQp andQl , respectively, which is needed in the explicit
definition of 0p,l . However, by adapting several parts in the definition of 0 p,l , we
are able to generalize it to the case of prime numbers p, l ≡ 3 (mod 4) and to the
mixed case p ≡ 3 (mod 4), l ≡ 1 (mod 4). Those new groups, also called 0 p,l , are
subgroups of PGL2(Qp)×PGL2(Ql), and we prove that they are (p+1, l+1)–group,
too. In some subcases for p and l, there is a second possible definition of 0 p,l , which
leads to a different but similar group. The Kimberley-Robertson conjecture can be
extended to all these generalized groups. They have a certain normal subgroup of in-
dex 4, a cocompact lattice in PSL2(Qp)× PSL2(Ql). It seems that the abelianization
of this subgroup does not depend on p and l, provided that p, l ≥ 5. Let now 0 be any
(2m, 2n)–group. We say that the horizontal element a ∈ 0 and the vertical element
b ∈ 0 generate the anti-torus 〈a, b〉 in 0, if a and b have no commuting non-trivial
powers. This notion was introduced by Wise, and essentially used in his constructions
of the first examples of non-residually finite groups in the following three important
classes: finitely presented small cancellation groups, automatic groups, and groups
acting properly discontinuously and cocompactly on CAT(0)-spaces. Only few exam-
ples and no general criterion for the existence of anti-tori are known. We observe that
in a commutative transitive (2m, 2n)–group, a and b generate an anti-torus if and only
if they do not commute, in particular either 〈a, b〉 is isomorphic to the abelian group
Z× Z, or 〈a, b〉 is an anti-torus. Then we prove that the groups 0 p,l are commutative
transitive, using a similar property for integer quaternions, and we therefore get plenty
of anti-tori. Combining this with results on centralizers for general (2m, 2n)–groups,
we get some interesting statements on commuting elements and anti-tori in 0 p,l , as
well as for integer quaternions after a transformation from 0 p,l back toH(Z). We also
discuss the existence of free anti-tori in 0p,l , related to free subgroups in the group of
invertible rational quaternions, and to free subgroups of SO3(Q). As a corollary, we
can prove that certain pairs of integer quaternions, for example 1+ 2i and 1+ 4k, do
not generate a free group. All results and constructions of groups 0 p,l in this chapter
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are illustrated by many examples and very explicit computations.
In Chapter 4, we discuss miscellaneous topics related to (2m, 2n)–groups 0. First,

we naturally associate to 0 a finite set of unit squares, so-called Wang tiles, and prove
that there always exists a doubly periodic tiling of the Euclidean plane with these
tiles. As a consequence, 0 has a subgroup isomorphic to Z × Z. This is not clear
in general for groups acting cocompactly and properly discontinuously on a CAT(0)-
space. In a second section, we illustrate a result of Burger-Mozes by constructing
certain examples of irreducible non-linear (2m, 2n)–groups. Then, we study possible
connections between irreducibility, finite abelianization, and transitivity properties of
the local groups, illustrated for small groups 0. In a further section, we recall Mozes’
definition of two infinite families of finite regular graphs associated to 0. In the case
of the groups 0p,l , these graphs are Ramanujan. Afterwards, we compute the growth
of 0. Although (2m, 2n)–groups can be algebraically very different, from a geometric
viewpoint they all look the same, and therefore this computation is easy. Finally, we
show that any (2m, 2n)–group 0 is efficient and has deficiency m + n − mn.

Appendix A is a big reservoir of supplementary examples. In addition, we de-
scribe explicit amalgam decompositions for several important examples of the pre-
ceding chapters.

Appendix B contains the ideas and the GAP-code for the main computer programs
which led to the constructions of most examples in this work.

In Appendix C, we first compile some known lists of finite (quasi-)primitive per-
mutation groups and then give classifications of (2m, 2n)–groups with respect to cer-
tain easily computable properties. It can be seen that even for small m and n there is
an enormous diversity of such groups.

Starting with the question of Kuroš in 1944 on the existence of finitely generated
infinite simple groups, we list in Appendix D in chronological order some important
developments in the area of finitely presented simple groups and amalgams of free
groups. The second part of this appendix is devoted to a review of the topology of the
group of automorphisms of a regular tree.
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Chapter 1

Preliminaries, notations, definitions

In Section 1.1, we fix some general notations and provide some basic definitions,
mainly concerning groups and graphs, for the convenience of the reader. Most terms
should be standard and well-known. In Sections 1.2 to 1.10, we introduce some termi-
nology and several concepts which will be extensively used in the subsequent chapters.
Many ideas have been taken from the work of Burger-Mozes ([16, 17]), to some ex-
tent with modified notations. Most statements in these sections are reformulations or
direct consequences of results given in [16, 17] or Wise’s Ph.D. thesis ([68]), only a
few results are new.

1.1 Basic definitions and notations

We divide this section into subsections on numbers, groups, permutation groups,
graphs, groups acting on trees and lattices.

Numbers

We denote by N, N0 := N ∪ {0}, Z, Q, R and Qp (where p is a prime number)
the positive integer, non-negative integer, integer, rational, real and p-adic numbers,
respectively.

Groups

The trivial group as well as the identity element in a group are denoted by “1”. In the
following, let G be a group, S ⊂ G a subset, H < G a subgroup, N C G a normal
subgroup, g, g1, g2, g3 ∈ G elements and k ∈ N a positive integer. Note that all the
signs ⊂, <, C do not exclude equality here, and elsewhere in this work.

We write G/N for the quotient group, Gk for the direct product G × . . .× G of k
copies of G and G∗k for the free product G ∗ . . . ∗ G of k copies of G. The finitely

13



14 CHAPTER 1. PRELIMINARIES, NOTATIONS, DEFINITIONS

generated free group isomorphic to Z∗k is denoted by Fk .
Let 〈S〉G be the subgroup of G generated by the set S, and let 〈〈S〉〉G be the normal

closure of S in G, i.e. the smallest normal subgroup of G containing S. For a finite
subset S = {g1, . . . , gk}, we usually drop the brackets and write 〈g1, . . . , gk〉G or
〈〈g1, . . . , gk〉〉G . Also the subscript “G” is often omitted if the ambient group G is
evident. We denote by [g1, g2] := g1g2g−1

1 g−1
2 the commutator of g1 and g2. A

group G is called commutative transitive, if [g1, g2] = [g2, g3] = 1, g1, g2, g3 6= 1,
always implies [g1, g3] = 1, i.e. if the relation of commutativity is transitive on the
non-trivial elements of G. The expressions [g1, g2], where g1, g2 ∈ G, generate the
commutator subgroup [G,G]. We write Gab := G/[G,G] for the abelianization
of G. A group G is perfect if G = [G,G], it is simple if 1 and G are the only normal
subgroups of G and it is residually finite if the intersection of all normal subgroups of
finite index of G is the trivial group 1. We denote by Z(G) or Z G the center of G,
i.e. the normal subgroup {x ∈ G : xg = gx for all g ∈ G}, by ZG(g) the centralizer
{x ∈ G : xg = gx} of g and by NG(H) the normalizer {x ∈ G : x H x−1 = H}
of H . A subgroup H is called proper, if H 6= G, the quotient G/N is called proper if
G/N 6= G. We write [G : H ] for the index of H in G, and |G| for the order (if it is
finite). A group is torsion-free if any non-trivial element has infinite order. We say that
G has virtually some property (P), or is virtually (P), if G has a subgroup of finite index
with this property (P). The groups of automorphisms, inner automorphisms and outer
automorphisms of G are denoted by Aut(G), Inn(G) and Out(G) = Aut(G)/Inn(G),
respectively. For a finitely generated group G, let d(G) be the minimal number of
generators of G. If we write

G = 〈x1, . . . , xk | r1, . . . , rl〉 , G = 〈x1, . . . , xk | r1 = 1, . . . , rl = 1〉
or G = 〈x1, . . . , xk | S 〉, where S = {r1, . . . , rl} is a finite set of freely reduced words
in Fk

∼= 〈x1, . . . , xk〉, then the three expressions are finite presentations of G, and we
have G ∼= Fk/〈〈S〉〉Fk .

Let Zn := Z/nZ = {0 + nZ, 1 + nZ, . . . , (n − 1) + nZ} be the cyclic group of
order n (not to confuse with “n-adic integers” which will never appear in this work).
We write Dn for the dihedral group of order 2n.

Permutation groups

A very good introduction to permutation groups is the book of Dixon-Mortimer [25].
Let � be a non-empty set. The group of all bijections of � under composition of
mappings is denoted by Sym(�). If n ∈ N, we write Sn := Sym({1, . . . , n}) for the
symmetric group on n letters and An for the alternating group, the index 2 subgroup
of Sn consisting of even permutations. Let G be a permutation group, i.e. a subgroup
G < Sym(�). The degree of G < Sym(�) is the cardinality of the set �. For
k ∈ N, the permutation group G is said to be k-transitive if for every pair (ω1, . . . , ωk),
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(ξ1, . . . , ξk) of k-tuples of distinct points in �, there exists an element g ∈ G such
that g(ω1) = ξ1, . . . , g(ωk) = ξk . Let G < Sym(�) be a transitive (i.e. 1-transitive,
according to the definition above) permutation group. A non-empty subset 1 ⊂ � is
called a block for G, if for each g ∈ G either g(1) = 1, or g(1) ∩ 1 is the empty
set ∅. We say that G is primitive if it has no non-trivial blocks on �, i.e. no blocks
except� itself and the one-element subsets {ω} of�. See Appendix C.1 for a list of all
finite primitive permutation groups of even degree up to 14. A non-trivial permutation
group G < Sym(�) of a set � is called quasi-primitive, if every non-trivial normal
subgroup of G (in particular G itself) acts transitively on �. See Appendix C.2 for a
list of all quasi-primitive subgroups of S2n , which are not 2-transitive, n ≤ 8. Observe
that primitive groups are quasi-primitive, and that quasi-primitive groups are transitive
by definition.

Two permutation groups G < Sym(�) and H < Sym(�′) are called permutation
isomorphic if there exists a bijection f : � → �′ and an isomorphism of groups
ψ : G → H such that the following diagram commutes for each g ∈ G

�

f
��

g // �

f
��

�′
ψ(g) // �′

Graphs

For the definition of a graph, we follow the viewpoint of Serre ([64, Section 2.1]): A
graph X is a pair of sets (V (X), E(X)), consisting of the vertex set V (X) 6= ∅ and
the edge set E(X), equipped with origin and terminus maps o, t : E(X) → V (X)
and an inverse map : E(X) → E(X) such that for each edge e ∈ E(X) we have
e 6= e, e = e and o(e) = t (e). An edge e ∈ E(X) is called a loop if o(e) = t (e). A
geometric edge is a set {e, e}, consisting of an edge e ∈ E(X) and its inverse edge e.
Let x1, x2 ∈ V (X) be two vertices and let k ∈ N be a number. A path (of length k
from x1 to x2) in the graph X is a sequence (e1, . . . , ek) of edges such that o(e1) = x1,
t (ek) = x2 and t (ei ) = o(ei+1) for each 1 ≤ i < k. The path is without backtracking
or reduced if always ei+1 6= ei . The graph X is said to be connected if given any two
vertices x1, x2 ∈ V (X), there is a path from x1 to x2. Two distinct vertices x1 and x2

are neighbours, if there is a path of length 1 from x1 to x2. A circuit (of length k) is a
path (e1, . . . , ek) without backtracking such that t (e1), . . . , t (ek) are distinct vertices
and t (ek) = o(e1). Note that a circuit of length 1 is a loop. A tree is a connected graph
without circuits. The valency of a vertex x ∈ V (X) is the number of edges e ∈ E(X)
such that o(e) = x . A graph is called k-regular if each vertex has valency k. We
denote by T` the `-regular tree. It has infinitely many vertices if ` ≥ 2. There is an
obvious distance function (the combinatorial distance) on the set of vertices V (T`),
such that neighbours have distance 1. For a vertex x ∈ T` and a number k ∈ N,
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let S(x, k) be the k-sphere, i.e. the set of vertices in T` of combinatorial distance k
from x . A geodesic ray in T` is an infinite sequence (e1, e2, . . .) of edges ei ∈ E(T`)
such that for each i ∈ N we have t (ei ) = o(ei+1) and ei+1 6= ei . Two geodesic rays
are said to be equivalent if their intersection (as set of edges) is infinite. The boundary
at infinity ∂∞T` is defined as the set of equivalence classes of geodesic rays.

Let m, n ∈ N. The complete bipartite graph X = Km,n is a graph where V (X) is
divided into two disjoint subsets V1(X) and V2(X) of cardinality m and n respectively,
such that for each e ∈ E(X) the origin o(e) and the terminus t (e) are in different sets
Vi (X) and such that given any two vertices x1 ∈ V1(X), x2 ∈ V2(X), there is a unique
edge e ∈ E(X) from x1 to x2.

Groups acting on trees

An automorphism φ of a graph X is a pair of bijective maps φ1 : V (X) → V (X),
φ2 : E(X)→ E(X) such that for each edge e ∈ E(X) we have φ1(o(e)) = o(φ2(e)),
φ1(t (e)) = t (φ2(e)) and φ2(e) = φ2(e). The group of automorphism of X is denoted
by Aut(X). Note that an element φ of Aut(T`) is already determined by the bijection
φ1 : V (T`) → V (T`), so we usually understand an element in Aut(T`) as a bijective
map on the vertices V (T`) which respects the edges. We endow the set Aut(T`) with
the topology of pointwise convergence. See Appendix D.2 for a precise definition.
Informally, two elements in Aut(T`) are close with respect to this topology, if they do
the same on a large set of vertices of T`. It is well-known that Aut(T`) is a locally
compact, totally disconnected, second countable, metrizable Hausdorff space and a
topological group (see Proposition D.1 for elementary proofs of these facts).

A group G acts on the regular tree T` if there is a homomorphism G → Aut(T`).
Let H < Aut(T`) be a subgroup, x ∈ V (T`) a vertex and S a subset of vertices of T`.
We write H(S) to denote the pointwise stabilizer

H(S) := StabH (S) = {h ∈ H : h(x) = x for each x ∈ S} ,
and use the notation H(x) := H({x}). We say that H is locally transitive, locally
quasi-primitive, locally primitive, or locally 2-transitive, if for each vertex x ∈ V (T`)
the stabilizer H(x) induces a transitive, quasi-primitive, primitive, or 2-transitive per-
mutation group, respectively, on the 1-sphere S(x, 1) (equivalently, on the set of edges
with origin x). Moreover, we call H locally∞-transitive, if H(x) acts transitively on
S(x, k) for each k ∈ N and each vertex x of T`.

We recall now the definition of the universal group U(F) from [16, Section 3.2]
or [17, Chapter 5]. Let ` ≥ 3 and write here Ex for the set of edges in T` with
origin x ∈ V (T`). A legal edge coloring is a map i : E(T`) → {1, . . . , `} such that
i(e) = i(e) for each e ∈ E(T`), and such that the restriction i |Ex : Ex → {1, . . . , `}
is bijective for each x ∈ V (T`). Given a permutation group F < S`, the group

U(F) := {g ∈ Aut(T`) : i ◦ g ◦ (i |Ex )
−1 ∈ F for each x ∈ V (T`)}
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is up to conjugation in Aut(T`) independent of the legal edge coloring i , and is called
the universal group. See [16, Section 3.2] for some properties of U(F).

Lattices

Let G be any locally compact group. A subgroup 0 < G is called a lattice if it is
discrete and G/0 carries a finite G-invariant measure. If moreover G/0 is compact
then 0 is a cocompact lattice. Our main examples for G will be G = Aut(T`) with the
topology mentioned above and G = Aut(T2m)× Aut(T2n) with the product topology.
Note that a subgroup H < Aut(T`) is discrete if and only if the stabilizer H(x) is
finite for each vertex x ∈ V (T`), see Proposition D.2 for a proof.

1.2 Square complexes and (2m, 2n)–groups

On an intuitive level, a square complex is a 2-dimensional cell complex, such that
the 2-cells are “squares”. We want to study square complexes which have additional
quite restrictive properties. They are called 1-vertex VH-T-square complexes in [17]
or complete squared VH-complexes with one vertex in [68]. We will just call them
(2m, 2n)–complexes to emphasize the parameters m and n. Before giving the precise
definition, we need some preparation. Fix two numbers m, n ∈ N and let ({x}, E) be
the graph with one vertex x and m+n geometric loops. We use the following notation
for the edges: E = Eh t Ev, where

Eh := {a1, . . . , am, a−1
m , . . . , a−1

1 } , Ev := {b1, . . . , bn, b−1
n , . . . , b−1

1 }

and −1 stands here for the inverse map in a graph. The advantage of this notation
will become clear when we define corresponding groups and −1 will be the inversion
in the group. We call any set {ai , a−1

i }, i = 1, . . . ,m, a horizontal geometric loop and
{b j , b−1

j }, j = 1, . . . , n, a vertical geometric loop. A square is an expression aba ′b′
such that {a, a′} ⊂ Eh , {b, b′} ⊂ Ev . We visualize it as a 2-dimensional cell with
oriented boundary as in Figure 1.1 (left hand side).

x x

a xx x x

xx

a1

a′ a1

b′ b b1 b2

Figure 1.1: The squares aba′b′ and a1b−1
2 a1b1
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See the right hand side of Figure 1.1 for an explicit example of a square. If it does not
matter where to start to read off the edges of the boundary, or if we identify squares that
are reflected along an edge, then we are automatically led to the following definition.
A geometric square is a set

{aba′b′, a′b′ab, a−1b′−1a′−1b−1, a′−1b−1a−1b′−1} =: [aba′b′] ,
where {a, a′} ⊂ Eh , {b, b′} ⊂ Ev . Note that

[aba′b′] = [a′b′ab] = [a−1b′−1a′−1b−1] = [a′−1b−1a−1b′−1] .
Any of the four squares in the set {aba′b′, a′b′ab, a−1b′−1a′−1b−1, a′−1b−1a−1b′−1}
represents the geometric square [aba′b′]. Given a non-empty set S of geometric
squares, the link Lk(S) is defined as the graph with vertex set E = Eh t Ev and
an edge set, where each square aba′b′ represented in S contributes an edge s such that
o(s) = a, t (s) = b′−1, and its inverse s to this edge set of Lk(S). In other words,
each geometric square [aba′b′] in S contributes four geometric edges to Lk(S), cor-
responding to the four “corners” in any of the four squares representing [aba ′b′]. A
(2m, 2n)–complex is a set X consisting of exactly mn geometric squares such that the
link Lk(X) is the complete bipartite graph K2m,2n (where the bipartite structure is in-
duced by the decomposition E = Eh t Ev). This link condition means that given any
a ∈ Eh and b ∈ Ev, there are unique a′ ∈ Eh and b′ ∈ Ev such that [aba′b′] ∈ X .
Note that this definition automatically excludes geometric squares of the form [abab]
(so-called projective planes) in a (2m, 2n)–complex X .

We usually think of X as a finite 2-dimensional cell complex which is built by
attaching mn squares of the form aba′b′ to the 1-skeleton ({x}, E), according to the
labels a, b, a′, b′ in the squares. By the link condition, the universal covering space
X̃ of X is the product of two regular trees T2m × T2n . In fact, both conditions are
equivalent, see [17, Proposition 1.1] or [68, Theorem II.1.10]. By construction, the
fundamental group 0 := π1(X, x) < Aut(T2m × T2n) of a (2m, 2n)–complex X is
a finitely presented torsion-free cocompact lattice, acting freely and transitively on
the vertices of T2m × T2n . The decomposition Eh t Ev of E guarantees that 0 does
not interchange the factors of T2m × T2n , i.e. 0 is in fact a subgroup of the direct
product Aut(T2m) × Aut(T2n) < Aut(T2m × T2n). Such a group 0 will be called a
(2m, 2n)–group. A finite presentation of 0 can be directly read off from X :

0 = 〈a1, . . . , am, b1, . . . , bn | aba′b′ = 1, if [aba′b′] ∈ X〉 .
Note that all four representatives of a geometric square [aba ′b′] ∈ X give the same
relation in 0, in particular we get a presentation of 0 with m + n generators and only
mn relators. We write Rm·n for such a set of mn relators. This presentation is optimal
in some sense, see Section 4.6. If we give explicit examples of (2m, 2n)–groups 0,
we usually specify only the set Rm·n , since it completely determines 0. Observe that
〈a1, . . . , am〉0 and 〈b1, . . . , bn〉0 are free subgroups of 0, see Corollary 1.11(1).
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Given a (2m, 2n)–group 0 by its presentation 〈a1, . . . , am, b1, . . . , bn | Rm·n〉, we
can always define the surjective homomorphism of groups

0→ Z2
2

ai 7→ (1+ 2Z, 0+ 2Z), i = 1, . . . ,m

b j 7→ (0+ 2Z, 1+ 2Z), j = 1, . . . , n .

Obviously, the kernel of this homomorphism is a normal subgroup of 0 of index 4. We
always denote this subgroup by 00. Geometrically, it can be seen as the fundamental
group of a corresponding finite square complex X0 with 4 vertices, a 4-fold regular
covering space of X .

We define an automorphism of a (2m, 2n)–complex X as a graph automorphism
of the 1-skeleton ({x}, E)which induces a permutation on the set of geometric squares
of X . The group of all such maps is denoted by Aut(X).

1.3 Projections and quasi-center

Let 0 be a (2m, 2n)–group. Since 0 is a subgroup of Aut(T2m)× Aut(T2n), we have
two canonical projections, the homomorphisms of groups

pr1 : 0→ Aut(T2m) and pr2 : 0→ Aut(T2n) .

We define the two groups Hi := pri(0), i = 1, 2, where the closure of pri (0) is taken
with respect to the topology of Aut(T`) described in Section 1.1 or Appendix D.2. Let

QZ(Hi ) := {h ∈ Hi : Z Hi (h) is open in Hi }
be the quasi-center of Hi . See [16] for some properties and examples of this group.

Recall that 0 acts freely on the vertices of T2m × T2n , but in general, it is possi-
ble that non-trivial elements of 0 act trivially on (exactly) one factor of T2m × T2n .
Therefore, we define the group

31 := pr1(0 ∩ (H1 × {1})) = pr1(0 ∩ (Aut(T2m)× {1})) < Aut(T2m)

and similarly

32 := pr2(0 ∩ ({1} × H2)) = pr2(0 ∩ ({1} × Aut(T2n))) < Aut(T2n) .

Observe that
3i = pri (ker(pr3−i ))

∼= ker(pr3−i )C 0
and note that 3i C QZ(Hi ), since every discrete normal subgroup of Hi is contained
in QZ(Hi ), as explained in [16]. In particular, we conclude that QZ(Hi ) = 1 implies
an isomorphism 0 ∼= pr3−i (0) and in this case we can naturally see 0 as a subgroup
of Aut(T2m), if i = 2, or as a subgroup of Aut(T2n), if i = 1.
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1.4 Local groups

Let X be a (2m, 2n)–complex and 0 its fundamental group. We turn now to the def-
inition of their finite “local groups” Ph and Pv, which will play a major role in the
construction of interesting examples. Let E (k)v be the set of reduced paths of combi-
natorial length k ∈ N in the vertical 1-skeleton X (1)

v := ({x}, Ev) of X . We identify
elements in E (k)v with freely reduced words of length k in the fundamental group
π1(X

(1)
v , x) = 〈b1, . . . , bn〉 = Fn . The set E (k)h is defined analogously and identified

with the set of reduced words of length k in the free group 〈a1, . . . , am〉 = Fm . Note
that E (1)v = Ev and E (1)h = Eh .

There is a family of homomorphisms

ρ
(k)
h : Fm = 〈a1, . . . , am〉 → Sym(E (k)v ) ∼= S2n·(2n−1)k−1

and a family of homomorphisms

ρ(k)v : Fn = 〈b1, . . . , bn〉 → Sym(E (k)h ) ∼= S2m·(2m−1)k−1 .

We denote their images by

P(k)v := im(ρ(k)h ) = 〈ρ(k)h (a1), . . . , ρ
(k)
h (am)〉

P(k)h := im(ρ(k)v ) = 〈ρ(k)v (b1), . . . , ρ
(k)
v (bn)〉 .

If k = 1, we omit the superscript “(1)” and simply write

ρh : 〈a1, . . . , am〉� 〈ρh(a1), . . . , ρh(am)〉 = Pv < Sym(Ev) ∼= S2n ,

where for the isomorphism Sym(Ev) ∼= S2n we always use the explicit identification

Ev ∼= {1, . . . , 2n}
b j ↔ j

b−1
j ↔ 2n + 1− j ,

j = 1, . . . , n, and

ρv : 〈b1, . . . , bn〉� 〈ρv(b1), . . . , ρv(bn)〉 = Ph < Sym(Eh) ∼= S2m ,

via the identification (for i = 1, . . . ,m)

Eh
∼= {1, . . . , 2m}

ai ↔ i

a−1
i ↔ 2m + 1− i .
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Now, it is time to give the definition of ρ(k)h and ρ(k)v . First, we take k = 1. The
two homomorphisms ρh and ρv are explicitly constructed as follows: each geometric
square [aba′b′] of X defines

ρh(a)(b
′−1
) := b

ρh(a
′)(b−1) := b′

ρv(b)(a
−1) := a′

ρv(b
′)(a′−1

) := a ,

as visualized in Figure 1.2.

b b b bρh(a
′)ρh(a)

a′ a′ a′ a′

aaaa

b′ b′ b′ b′ ρv(b′)ρv(b)

Figure 1.2: Visualizing the definition of ρh , ρv

By the link condition in X , these 4mn expressions (going through all mn geometric
squares of X ) indeed uniquely determine ρh and ρv . If k ≥ 2, the homomorphisms
ρ
(k)
h and ρ(k)v are defined in a similar way, see [17, Chapter 1]. We give an inductive

definition of ρ(k)h , the homomorphism ρ
(k)
v can be defined analogously: Let a ∈ Eh

and b = b′ · b′′ ∈ E (k)v , where we write a dot for the concatenation of paths and where
b′ ∈ Ev , b′′ ∈ E (k−1)

v . Then

ρ
(k)
h (a)(b) := ρh(a)(b

′) · ρ(k−1)
h

(
ρv(b

′)(a)
)
(b′′) ,

see Figure 1.3 for an illustration.
Starting with a (2m, 2n)–complex X , the finite permutation groups P (k)v and P(k)h

can be effectively computed, see Appendix B.4 for an implementation in GAP ([29])
for k = 1 and k = 2. These groups describe the local actions of the projections of 0
on k-spheres in T2n and T2m , respectively. More precisely, let xv be any vertex in T2n

and let S(xv, k) be the k-sphere around xv, then the two groups

P(k)v < Sym(E (k)v ) and H2(xv)/H2(S(xv, k)) < Sym(S(xv, k))

are permutation isomorphic (see [17, Chapter 1]). The analogous statement holds for
P(k)h and H1(xh)/H1(S(xh, k)), where xh is any vertex in T2m .



22 CHAPTER 1. PRELIMINARIES, NOTATIONS, DEFINITIONS

ρv(b′)(a)

ρ
(k−1)
h

(
ρv(b′)(a)

)
(b′′)

ρh(a)(b′)

b′′

b′

a

Figure 1.3: Inductive definition of ρ(k)h , k ≥ 2

Taking this identification for k = 2

P(2)h
∼= H1(xh)/H1(S(xh, 2)) < Sym(S(xh , 2)) ,

we define the subgroup

Kh := StabP(2)h
(S(xh, 1) ∪ S(yh, 1)) < P(2)h ,

where yh is any neighbouring vertex of xh in T2m . In our applications, the definition
of Kh will be independent of the choice of yh (up to permutation isomorphism). See
Appendix B.4 for the GAP-program ([29]) computing Kh if m = 3. Analogously, one
defines the group Kv < P(2)v .

For each k ∈ N, there is a commutative diagram

〈a1, . . . , am〉
ρ
(k+1)
h // //

ρ
(k)
h $$ $$IIIIIIIIIIIIII P(k+1)

v < Sym(E (k+1)
v )

pk
����

P(k)v < Sym(E (k)v )

where pk is the homomorphism restricting the action of P (k+1)
v on the (k + 1)–sphere

S(xv, k + 1) to the k-sphere S(xv, k). In particular, the order
∣∣P(k)v

∣∣ divides
∣∣P(k+1)
v

∣∣.
Note that ⋂

k∈N
kerρ(k)h

∼= 31 and
⋂

k∈N
kerρ(k)v ∼= 32 .
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Lemma 1.1. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group.

(1a) Let A ⊂ 〈a1, . . . , am〉. If for each a ∈ A and b ∈ Ev we have ρh(a)(b) = b and
ρv(b)(a) ∈ A, then A ⊂ 31.

(1b) Let B ⊂ 〈b1, . . . , bn〉. If for each b ∈ B and a ∈ Eh we have ρv(b)(a) = a and
ρh(a)(b) ∈ B, then B ⊂ 32.

Proof. The assumptions made in (1a) directly imply

A ⊂
⋂

k∈N
kerρ(k)h

∼= 31 .

(1b) follows similarly.

Because of the importance of the local groups Ph and Pv in our study of X , we will
sometimes call X a (Ph, Pv)–complex and the corresponding fundamental group 0 a
(Ph, Pv)–group.

1.5 Irreducibility

An important notion in the theory of lattices in higher rank semisimple Lie groups is
“irreducibility”. In our situation, we adopt the generalized definition given in [17]. A
(2m, 2n)–group 0 is called reducible if pr1(0) < Aut(T2m) is discrete. Otherwise, 0
is called irreducible. A (2m, 2n)–complex X is said to be reducible (irreducible) if
and only if 0 = π1(X, x) is reducible (irreducible).

Remarks. (1) Recall that a subgroup of Aut(T`) is discrete if and only if its vertex
stabilizers are all finite, see Proposition D.2 for a proof.

(2) It is shown in [17, Proposition 1.2] that pr1(0) < Aut(T2m) is discrete if and
only if pr2(0) < Aut(T2n) is discrete.

(3) Note that pr1(0) is never dense in Aut(T2m), i.e. H1 � Aut(T2m), in contrast to
the behaviour of “irreducible” lattices in higher rank semisimple Lie groups.

(4) In terms of orders of the local groups P (k)h and P(k)v , the group 0 is reducible if

and only if the set {|P (k)h |}k∈N is bounded, if and only if {|P (k)v |}k∈N is bounded.

In geometric terms, the (2m, 2n)–complex X is reducible if and only if X admits
a finite covering which is a product of two graphs (see [17, Chapter 1]). Therefore, a
reducible (2m, 2n)–group 0 is virtually a direct product of two finitely generated free
groups, in particular 0 is residually finite. As a consequence, a non-residually finite
(2m, 2n)–group 0 has to be irreducible. In general, no algorithm is known to deter-
mine whether a given 0 is reducible or not. However, a useful sufficient criterion for
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irreducibility, based on the Thompson-Wielandt theorem (see e.g. [16, Theorem 2.1.1]
for a formulation of this theorem), is presented in [17, Proposition 1.3].

We will strongly use the criteria (1) and (2), divided into (1a), (1b), (2a) and (2b),
of the following proposition which is based on results in [16, 17]. The third criterion,
i.e. part (3a) and (3b), will only be used in Theorem 2.27, where (1) does not apply.

Proposition 1.2. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group.

(1a) Suppose that m ≥ 3 and Ph = A2m . Then 0 is irreducible if and only if

∣∣P(2)h

∣∣ = |A2m |
( |A2m|

2m

)2m

= (2m)!
2

(
(2m − 1)!

2

)2m

.

(1b) Suppose that Pv = A2n , n ≥ 3. Then 0 is irreducible if and only if

∣∣P(2)v

∣∣ = |A2n|
( |A2n|

2n

)2n

= (2n)!
2

(
(2n − 1)!

2

)2n

.

(2a) The group 0 is reducible if and only if |P (k+1)
h | = |P(k)h | for some k ∈ N.

(2b) The group 0 is reducible if and only if |P (k+1)
v | = |P(k)v | for some k ∈ N.

(3a) Let Ph < S2m be transitive and suppose that for each k ∈ N there exist
freely reduced words b ∈ 〈b1, . . . , bn〉 and a ∈ 〈a1, . . . , am〉 with |a| = k
such that ρ(k)v (b)(a) = a, and ρv(b̃) acts transitively on Eh \ {a′′−1}, where
b̃ := ρ

(|b|)
h (a)(b) and a = a′ · a′′ is the decomposition of a with a′ ∈ E (k−1)

h ,
a′′ ∈ Eh (see Figure 1.4). Then pr1(0) is locally∞-transitive, in particular 0
is irreducible.

a′ a′′

a′ a′′

b̃b

Figure 1.4: Notations in Proposition 1.2(3a)
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(3b) Let Pv < S2n be transitive and suppose that for each k ∈ N there exist freely
reduced words a ∈ 〈a1, . . . , am〉 and b ∈ 〈b1, . . . , bn〉 with |b| = k such that
ρ
(k)
h (a)(b) = b, and such that ρh(ã) acts transitively on Ev \ {b′′−1}, where

ã := ρ
(|a|)
v (b)(a) and b = b′ · b′′ with b′ ∈ E (k−1)

v , b′′ ∈ Ev. Then pr2(0) is
locally∞-transitive, in particular 0 is irreducible.

Proof. We only prove part a) of each statement, since part b) is completely analogous.

(1a) The statement follows directly from [16, Proposition 3.3.1].

(2a) Obviously, |P (k+1)
h | = |P(k)h | for some k ∈ N is a necessary condition, since

{|P(k)h |}k∈N is bounded for a reducible 0. We want to prove now, that it is also

sufficient for the reducibility of 0. It is enough to show |P (k+2)
h | = |P(k+1)

h |.
First observe that for all vertices xh ∈ T2m we have

H1(S(xh , k + 1)) = H1(S(xh, k)) < H1(xh) , (1.1)

since

1 = ∣∣P(k+1)
h

∣∣/∣∣P(k)h

∣∣ = ∣∣H1(S(xh , k))
/

H1(S(xh, k + 1))
∣∣ .

Assume now that
|P(k+2)

h | > |P(k+1)
h | .

It follows that there is an element g ∈ H1(S(xh , k+ 1)) \ H1(S(xh, k+ 2)). But
then, for at least one neighbouring vertex yh of xh ,

g ∈ H1(S(yh , k)) \ H1(S(yh , k + 1)) ,

contradicting equation (1.1).

(3a) We have to show that pr1(0)(xh) acts transitively on S(xh, k) for each k ∈ N.
This is done by induction on k using the identification (see [17, Chapter 1])

〈b1, . . . , bn〉 ∼= {γ ∈ 0 : pr1(γ )(xh) = xh} .
For k = 1, the statement is obvious since Ph is transitive by assumption. To
prove the induction step k → k + 1, note that pr1(0)(xh) acts by induction
hypothesis transitively on S(xh , k), hence we have at most 2m − 1 orbits in
S(xh, k+ 1). But now, the assumptions, in particular the transitivity of ρv(b̃) on
Eh \ {a′′−1}, exactly guarantee that there is in fact only one orbit.

Since P(k)h is transitive for each k ≥ 1, the set {|P (k)h |}k∈N is not bounded and
therefore 0 is irreducible.
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Remark. Observe that Proposition 1.2(1a) cannot be generalized to the case where
Ph = A4 (i.e. to m = 2), because there are for example irreducible (A4, A10)–groups
such that

|P(2)h | = 324 < |A4|
( |A4|

4

)4

= 972

(cf. Appendix C.6).

1.6 Amalgam decompositions

Let A, B, C be groups. By writing an expression of the form A ∗C B, we mean that
there is given a commutative diagram of injective group homomorphisms

C

i A
��

iB // B

jB
��

A
jA

// A ∗C B

(in particular C can be seen as a subgroup of A and B via the injections i A and iB ,
respectively), and the group A ∗C B is uniquely determined by the following universal
property: Given any group G and any homomorphisms j ′A : A → G, j ′B : B → G
such that j ′A ◦ i A = j ′B ◦ iB , there is a unique homomorphism ρ : A ∗C B → G such
that the following diagram commutes:

C

i A
��

iB // B

jB
�� j ′B

��

A
jA

//

j ′A ,,

A ∗C B
ρ

## ##
G

The group A ∗C B is called the amalgamated free product of the groups A and B
amalgamating the “subgroup” C , or simply an amalgam.

In most of our examples of amalgams, the three groups A, B,C will be finitely
generated non-abelian free groups, i.e. we will have amalgams of the form Fk ∗Fm Fl

for some k, l,m ≥ 2. Moreover, i A(Fm) and iB(Fm) will have finite index in Fk and
Fl , respectively, where i A : Fm → Fk , iB : Fm → Fl denote the given injective
homomorphisms. Note that k, l,m are then related by the index formulae (see e.g.
[49, Proposition I.3.9])

[Fk : Fm] = m − 1

k − 1
and [Fl : Fm] = m − 1

l − 1
.
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If Fk is generated by a1, . . . , ak , Fl by b1, . . . , bl and Fm by c1, . . . , cm , then Fk ∗Fm Fl

has the finite presentation

〈a1, . . . , ak, b1, . . . , bl | i A(c1) = iB(c1), . . . , i A(cm) = iB(cm)〉
and is torsion-free (this follows from [49, Theorem IV.2.7]).

A (2m, 2n)–group 0 splits by a result of Wise ([68, Theorem I.1.18]) in two ways
as a fundamental group of a finite graph of finitely generated free groups (using the
terminology of the Bass-Serre theory). We are mainly interested in amalgamated free
products of free groups, i.e. fundamental groups of edges of free groups. This case
happens if the local groups are transitive:

Proposition 1.3. Let 0 be a (2m, 2n)–group.

(1a) If Ph < S2m is a transitive permutation group, then 0 can be written as an
amalgamated free product of finitely generated free groups as follows:

0 ∼= Fn ∗F1−2m+2mn F1−m+mn .

We call it the vertical decomposition of 0.

(1b) If Pv < S2n is transitive, then we have a horizontal decomposition

0 ∼= Fm ∗F1−2n+2mn F1−n+mn .

Proof. The two statements follow directly from [68, Theorem I.1.18] after a vertical
subdivision of the cell complex X in (1a), and a horizontal subdivision of X in (1b).

Note that the indices in the inclusions of the splitting in Proposition 1.3(1a) are

[Fn : F1−2m+2mn ] = 2m and [F1−m+mn : F1−2m+2mn ] = 2 .

The tree on which 0 naturally acts is the first barycentric subdivision of T2m , the
“bi-regular” tree of valencies 2 and 2m. Note that Fn is identified with the free sub-
group 〈b1, . . . , bn〉 of 0. Furthermore, the second factor F1−m+mn is the fundamental
group of a graph with m vertices (one for each geometric edge {ai , a−1

i }) and mn ge-
ometric edges (one for each geometric square in X ). Finally, the amalgamated group
F1−2m+2mn is the fundamental group of a graph having 2m vertices (one for each edge
in Eh) and 2mn geometric edges (one for each geometric square in the vertically sub-
divided complex X ′). The two injections in the amalgamated free product are induced
by immersions (i.e. local injections, see [68, Definition I.1.16]) in X ′. Analogous
statements hold for the second splitting of 0.

The following proposition describes amalgam decompositions for the important
subgroup 00 < 0.
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Proposition 1.4. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group. We
denote by F (2)n the subgroup of Fn = 〈b1, . . . , bn〉 of index 2 consisting of elements
with even length. Analogously, we define F (2)m CFm = 〈a1, . . . , am〉. If ρv(F

(2)
n ) < S2m

is transitive (which holds if for example Ph is a quasi-primitive permutation group
and m ≥ 2), then there is an amalgam decomposition of 00, the so-called vertical
decomposition of 00,

00
∼= F2n−1 ∗F1−4m+4mn F2n−1 .

Similarly, if ρh(F
(2)
m ) < S2n is transitive (which holds if for example Pv is quasi-

primitive and n ≥ 2), then we get a horizontal decomposition

00
∼= F2m−1 ∗F1−4n+4mn F2m−1 .

In particular, if m = n ≥ 2 and Ph , Pv both are quasi-primitive, then we have two
decompositions of 00 as

F2n−1 ∗F
(2n−1)2

F2n−1 .

Proof. Again, this can be immediately deduced from the more general result of Wise
[68, Theorem I.1.18]. Note that the indices are

[F2n−1 : F1−4m+4mn ] = 2m and [F2m−1 : F1−4n+4mn ] = 2n .

To see why ρv(F
(2)
n ) is transitive if Ph < S2m (m ≥ 2) is quasi-primitive, first

observe that in general ρv(F
(2)
n ) is a normal subgroup of Ph = ρv(Fn) of index at

most [Fn : F (2)n ] = 2. If we assume that Ph is quasi-primitive, then ρv(F
(2)
n ) is trivial

or transitive, but ρv(F
(2)
n ) = 1 would imply |Ph | = 2 and m = 1.

We call a (2m, 2n)–group 0 horizontally directed, if ai is not in the same orbit
as a−1

i in the natural action of Ph on Eh for all i ∈ {1, . . . ,m}. The term vertically
directed can be defined analogously. These definitions are equivalent to those given
in [68, Definition I.1.10]. We formulate in Proposition 1.5 another interesting special
case of [68, Theorem I.1.18] concerning HNN-extensions. In general, if a group G is
given by a presentation 〈 S | R 〉, and A, B are isomorphic subgroups of G, then the
HNN-extension (Higman-Neumann-Neumann extension) of G with associated sub-
groups A and B via the isomorphism φ : A→ B is the group with presentation

〈S, t | R, t−1at = φ(a), if a ∈ A〉 .

Proposition 1.5. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group.

(1a) If0 is horizontally directed and Ph has exactly two orbits in its natural action on
Eh , then 0 is a HNN-extension of the free group Fn = 〈b1, . . . , bn〉 associating
subgroups F1−m+mn of index m.



1.7. DOUBLE COSETS 29

(1b) If 0 is vertically directed and Pv has exactly two orbits in its natural action on
Ev, then 0 is a HNN-extension of the free group Fm = 〈a1, . . . , am〉 associating
subgroups F1−n+mn of index n.

Remark. Horizontally (or vertically) directed (2m, 2n)–groups 0 have an infinite
abelianization 0ab, in particular they have a proper infinite quotient. To see this,
let O1 be the orbit of a1 under the natural action of Ph on Eh . Define a surjective
homomorphism 0 → Z by mapping all b1, . . . , bn to the trivial element 0 in Z, and
all elements in O1 to the generator 1 of Z. If both ai and a−1

i are not in O1, then we
map ai to 0 ∈ Z, i = 2, . . . ,m.

1.7 Double cosets

Given a group G and a subgroup H < G, the corresponding set of double cosets is
defined as

H\G/H := {HgH : g ∈ G} ,
where HgH := {h1gh2 : h1, h2 ∈ H} is as usual. The cardinalities of the two sets
of double cosets corresponding to the two amalgam decompositions of a (2m, 2n)–
group0 are related to transitivity properties of its local groups, as seen in the following
proposition (as always, similar statements can be made for Pv).

Proposition 1.6. Let 0 be a (2m, 2n)–group. Suppose that Ph < S2m is transitive.
Then there is a bijection between the set of orbits of the diagonal action of Ph on
{1, . . . , 2m} × {1, . . . , 2m} and the set F1−2m+2mn\Fn/F1−2m+2mn of double cosets,
where

0 ∼= Fn ∗F1−2m+2mn F1−m+mn

is the vertical decomposition given by Proposition 1.3(1a). In particular, the number
|F1−2m+2mn\Fn/F1−2m+2mn | is the rank of Ph (in the terminology of [25, p.67]) and
can be easily computed knowing the finite group Ph , but without knowing the explicit
amalgam decomposition, for example using the GAP-command ([29])

1 + Size(OrbitLengths(Ph,

Arrangements([1..2*m],2),OnTuples));

where Ph describes the group Ph . Another consequence is that

|F1−2m+2mn\Fn/F1−2m+2mn | = 2 ,

if and only if Ph is a 2-transitive permutation group.
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Proof. We define B := Fn and C := F1−2m+2mn . Let T ′2m be the bi-regular Bass-
Serre tree on which the amalgam 0 ∼= B ∗C F1−m+mn naturally acts and let xh be the
vertex of T ′2m such that B = Stab0(xh). Denote by � the set of edges in T ′2m with
origin xh and let ω ∈ � be the edge such that Stab0(ω) = C . Note that

|�| = [B : C] = [Fn : F1−2m+2mn ] = 2m .

By construction, the action of Ph on {1, . . . , 2m} ∼= Eh is equivalent (permutation
isomorphic) to the action of B on �. We want to define a bijection

ϕ : {Orbits of B y �×�} −→ C\B/C .

Let (ω1, ω2) ∈ �×�. We denote by [(ω1, ω2)] its B-orbit under the diagonal left ac-
tion, in particular [(ω1, ω2)] = [(bω1, bω2)] for each b ∈ B. Since B acts transitively
on �, we can choose b1, b2 ∈ B such that ω = b1ω1 = b2ω2. Now we define

ϕ ([(ω1, ω2)]) := Cb1b−1
2 C ∈ C\B/C .

We first show that ϕ is independent of the choice of b1, b2. Take b̃1, b̃2 ∈ B such that
ω = b̃1ω1 = b̃2ω2. Then bi b̃

−1
i ω = biωi = ω, (i = 1, 2), hence bi b̃

−1
i ∈ C , i.e.

Cb1 = Cb̃1 and b−1
2 C = b̃−1

2 C which implies

Cb̃1b̃−1
2 C = Cb1b−1

2 C .

Next we show that ϕ is independent of the representative of [(ω1, ω2)]. Any rep-
resentative of [(ω1, ω2)] has the form (bω1, bω2) for some b ∈ B. But then

ω = b1b−1(bω1) = b2b−1(bω2)

and
ϕ ([(bω1, bω2)]) = Cb1b−1(b2b−1)−1C = Cb1b−1

2 C .

This proves that ϕ is well-defined.
Note that ϕ([(ω, bω)]) = CbC for each b ∈ B, hence ϕ is surjective. To show the

injectivity of ϕ, assume that

ϕ ([(ω1, ω2)]) = Cb1b−1
2 C = Cb̃1b̃−1

2 C = ϕ ([(ω̃1, ω̃2)]) ,
such that ω = b1ω1 = b2ω2 = b̃1ω̃1 = b̃2ω̃2. The assumption Cb1b−1

2 C = Cb̃1b̃−1
2 C

implies that there is some c ∈ C such that

cb1b−1
2 ∈ b̃1b̃−1

2 C

b̃2b̃−1
1 cb1b−1

2 ∈ C

b̃2b̃−1
1 cb1b−1

2 ω = ω
cb1b−1

2 ω = b̃1b̃−1
2 ω ,

hence

[(ω1, ω2)] = [(ω, b1b−1
2 ω)] = [(cω, cb1b−1

2 ω)] = [(ω, b̃1b̃−1
2 ω)] = [(ω̃1, ω̃2)] .
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1.8 SQ-universal groups

A countable group G is called SQ-universal, if every countable group can be em-
bedded in a quotient of G. According to [56], this term was suggested by Graham
Higman. The following result of Ilya Rips is mentioned in the book of Bass-Lubotzky
[3, Section 9.15].

Proposition 1.7. (Rips) Let G = A ∗C B be an amalgam such that C 6= B and
|C\A/C | ≥ 3. Then G is SQ-universal.

There seems to be no published proof of this proposition, but the main idea is
explained in [3, p.149]: “Rips’ explanation uses Small Cancellation Theory, as in
[62]. Explicitly, let CaC and Ca′C be distinct non-trivial double cosets in C\A/C
and b ∈ B \ C . Consider words in G of the form

w = an1ba′n
′
1ban2ba′n

′
2ban3ba′n

′
3b · · · .

When the exponents ni , n′i are suitably large one can apply Small Cancellation Theory
to conclude that adding the relation w = 1 does not kill G, whence G is not simple.”

Corollary 1.8. Let 0 be a (2m, 2n)–group. If the local group Ph < S2m is transitive,
but not 2-transitive, or if Pv < S2n is transitive, but not 2-transitive, then the group 0
is SQ-universal, in particular it has “many” normal subgroups of infinite index.

Proof. Combine Proposition 1.3, 1.6 and 1.7.

1.9 Embeddings

The constructions of many interesting groups in the subsequent chapters will be based
on certain embedding techniques. In the following proposition, we give some ele-
mentary general consequences for the case that a (2m, 2n)–complex is embedded in a
“bigger” complex, using the following definition: Let X be a (2m, 2n)–complex and
let Y be a (2m̃, 2ñ)–complex, where m̃ ≥ m and ñ ≥ n. We say that X is embedded
in Y , if the m̃ñ geometric squares of Y contain all mn geometric squares of X .

Proposition 1.9. Let m̃ ≥ m and ñ ≥ n. Suppose that the (2m, 2n)–complex X is
embedded in the (2m̃, 2ñ)–complex Y . Then

(1) The fundamental groups inject: π1 X < π1Y .

(2) The order |P (k)h (X)| divides |P (k)h (Y )| and the order |P (k)v (X)| divides |P (k)v (Y )|
for each k ∈ N.

(3) If X is irreducible, then also Y is irreducible. The converse is not true in general.
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Proof. (1) See [9, Proposition II.4.14(1)].

(2) To take into account the two involved complexes X , Y , we write here P (k)h (X),

P(k)h (Y ), P(k)v (X), P(k)v (Y ), ρv,X , ρv,Y instead of P (k)h , P(k)v , ρv . We prove now
that |Ph(X)| divides |Ph(Y )|. The other statements are proved similarly. Let G
be the subgroup of S2m̃

G := 〈ρv,Y (b1), . . . , ρv,Y (bn)〉S2m̃

and 1 the subset of {1, . . . , 2m̃} with 2m elements

1 := {1, . . . ,m} t {2m̃ − m + 1, . . . , 2m̃} .
Because of the embedding assumption and the link conditions in X and Y , the
set 1 is G-invariant and the restriction of G to 1 is permutation isomorphic to

Ph(X) = 〈ρv,X (b1), . . . , ρv,X (bn)〉S2m

via the inclusion

{1, . . . , 2m} → {1, . . . , 2m̃}
i 7→ i

2m + 1− i 7→ 2m̃ + 1− i ,

i = 1, . . . ,m, hence |G| = |Ph(X)| · l, where l is the order of the pointwise
stabilizer of1 in G (cf. [25, p.17]). The claim follows now, since G is obviously
a subgroup of

〈ρv,Y (b1), . . . , ρv,Y (bn), . . . , ρv,Y (bñ)〉S2m̃ = Ph(Y ) .

(3) The set {|P (k)h (X)|}k∈N is unbounded since X is irreducible by assumption,

hence by part (2) also {|P (k)h (Y )|}k∈N is unbounded, i.e. Y is irreducible, too.

To see that the converse is not true in general, we can take for example any
irreducible (2m̃, 2ñ)–complex Y having a pair of commuting generators {ai , b j}
(hence having an embedded reducible (2, 2)–complex). An explicit example is
described in Example 2.2, where a1b1 = b1a1.

1.10 Normal form and applications

Due to the link condition in a (2m, 2n)–complex X , every element γ ∈ 0 = π1(X)
can be brought in a unique normal form, where “the a’s are followed by the b’s”.
The idea is to successively replace length 2 subwords of γ of the form ba by a ′b′, if
[a′b′a−1b−1] is a geometric square in X . Analogously, there is a unique normal form,
where “the b’s are followed by the a’s”. Here is the precise statement of Bridson-Wise:
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Proposition 1.10. (Bridson-Wise [10, Normal Form Lemma 4.3]) Let γ be any el-
ement in a (2m, 2n)–group 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉. Then γ can be
written as

γ = σaσb = σ ′bσ ′a
where σa, σ

′
a are freely reduced words in the subgroup 〈a1, . . . , am〉0 and σb, σ

′
b are

freely reduced words in 〈b1, . . . , bn〉0. The words σa, σ
′
a, σb, σ

′
b are uniquely deter-

mined by γ . Moreover, |σa| = |σ ′a| and |σb| = |σ ′b|, where | · | is the word length with
respect to the standard generators {a1, . . . , am, b1, . . . , bn}±1.

Proof. See [10]. For an implementation of the algorithm in GAP ([29]) to compute
the two normal forms of a given element in 0, see Appendix B.6.

If γ = σaσb = σ ′bσ ′a as in Proposition 1.10, then we call σaσb the ab-normal form
and σ ′bσ

′
a the ba-normal form of γ . The length of γ is by definition

|γ | := |σa | + |σb| = |σ ′b| + |σ ′a | .

Note that |1| = 0. It takes at most k2/4 switches to bring a word of length k from its
ba-normal form to its ab-normal form.

Proposition 1.10 has direct consequences for the structure of a (2m, 2n)–group:

Corollary 1.11. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group. Then

(1) The two groups 〈a1, . . . , am〉0 and 〈b1, . . . , bn〉0 are free subgroups of0 of rank
m and n, respectively.

(2) The group 0 is virtually abelian or contains a non-abelian free subgroup.

(3) The center Z0 is trivial if m, n ≥ 2.

(4) The group 0 is residually finite if and only if Aut(0) is residually finite.

Proof. (1) This follows directly from the uniqueness of the normal forms described
in Proposition 1.10.

(2) If m ≥ 2 or n ≥ 2, then 0 contains a non-abelian free subgroup by part (1). If
m = n = 1, then either

0 ∼= 〈a1, b1 | a1b1 = b1a1〉 ∼= Z2

is abelian, or
0 ∼= 〈a1, b1 | a1b1a1 = b1〉 ,

which has the abelian group 〈a1, b2
1〉0 ∼= Z2 as a subgroup of index 2.
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(3) Assume that there is an element γ ∈ Z0 \ {1} and let

γ = a(1) . . . a(k)b(1) . . . b(l) ,

a(1), . . . , a(k) ∈ Eh , b(1), . . . , b(l) ∈ Ev, be its ab-normal form, where we can
assume without loss of generality that k ≥ 1 and l ≥ 0. Take any element

a ∈ Eh \ {a(1), a(1)
−1} 6= ∅ .

Then, we have

aa(1) . . . a(k)b(1) . . . b(l) = a(1) . . . a(k)b(1) . . . b(l)a .

The left hand side of this equation is already in ab-normal form, hence by
uniqueness of the ab-normal form, we can conclude from the right hand side that
a = a(1), but this is a contradiction to the choice of a, and it follows Z0 = 1.

(4) By a result of Baumslag ([5], or see [49, Theorem IV.4.8]) the group Aut(0) is
residually finite, if 0 is a finitely generated residually finite group. For the other
direction, first note that if m = 1, then

P(k)h < S2m·(2m−1)k−1 = S2 ,

hence |P (k)h | ≤ 2 for each k ∈ N, and 0 is reducible. The same holds if n = 1.
In particular, 0 is residually finite, if m = 1 or n = 1. Assume now that 0 is
non-residually finite. Then m, n ≥ 2, and by part (3) we have Z0 = 1, hence
0 ∼= Inn(0) < Aut(0) and Aut(0) is non-residually finite.

Remark. The group Z × Fn is a (2, 2n)–group with a non-trivial (infinite) center
(Z× {1} if n ≥ 2, Z× Z if n = 1).

Using Proposition 1.10, we are able to compute certain centralizers of generators,
and their normalizers. The sufficient conditions in part (1) of the following proposition
can easily be checked by hand, given a (2m, 2n)–group 0. If they are satisfied, also
part (2) applies.

Proposition 1.12. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group.

(1a) Assume that there is an element ai ∈ {a1, . . . , am} such that ρh(ai)(b) 6= b for
all b ∈ Ev (i.e. Rm·n has no relator representing a geometric square of the form
[ai bab−1], where a ∈ Eh , b ∈ Ev). Then Z0(ai ) = 〈ai〉 ∼= Z.

(1b) Assume that there is an element b j ∈ {b1, . . . , bn} such that ρv(b j)(a) 6= a for
all a ∈ Eh (i.e. Rm·n has no relator representing a geometric square of the form
[a−1b j ab], where a ∈ Eh , b ∈ Ev). Then Z0(b j ) = 〈b j〉 ∼= Z.
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(2a) Assume that Z0(ai) = 〈ai〉 for some ai ∈ {a1, . . . , am}. Then the normalizer of
〈ai〉 is N0(〈ai〉) = Z0(ai ) = 〈ai〉.

(2b) Assume that Z0(b j ) = 〈b j〉 for some b j ∈ {b1, . . . , bn}. Then the normalizer of
〈b j〉 is N0(〈b j〉) = Z0(b j) = 〈b j〉.

Proof. We prove (1b) and (2b), the proofs of (1a) and (2a) are similar.

(1b) Obviously, 〈b j〉 < Z0(b j). We have to show Z0(b j ) < 〈b j〉. Let

γ = a(1) . . . a(k)b(1) . . . b(l) ∈ Z0(b j )

be in ab-normal form, a(1), . . . , a(k) ∈ Eh , b(1), . . . , b(l) ∈ Ev, k, l ≥ 0. Then

a(1) . . . a(k)b(1) . . . b(l)b j = b j a
(1) . . . a(k)b(1) . . . b(l) .

Assume first that k ≥ 1. The ab-normal form of γ b j starts with a(1) . . . a(k).
Bringing also b j a(1) . . . a(k)b(1) . . . b(l) to this normal form, we must have in a
first step b j a(1) = a(1)b for some b ∈ Ev, i.e. ρv(b j )(a(1)) = a(1), which is
impossible by assumption, hence k = 0. This means γ = b(1) . . . b(l) and

b(1) . . . b(l)b j = b j b
(1) . . . b(l) .

By uniqueness of the ab-normal form of

b j = b(l)
−1
. . . b(1)

−1
b j b

(1) . . . b(l)

we have l = 0 or b(1), . . . , b(l) ∈ {b j , b−1
j } and hence γ = b(1) . . . b(l) ∈ 〈b j〉.

(2b) Obviously, we have 〈b j〉 < N0(〈b j 〉). It remains to show that N0(〈b j〉) < 〈b j〉.
Let γ ∈ N0(〈b j〉), then in particular γ−1b jγ ∈ 〈b j〉, i.e. b j is conjugate to a
power of itself, hence by a result of Bridson-Haefliger (see Proposition 2.13)
we conclude γ−1b jγ ∈ {b j , b−1

j }. If γ−1b jγ = b j , then γ ∈ Z0(b j ) = 〈b j〉
and we are done. So from now on let us suppose that γ −1b jγ = b−1

j (we
will see in the proof that this case is in fact not possible under the assumption
Z0(b j ) = 〈b j〉), then

γ−2b jγ
2 = γ−1(γ−1b jγ )γ = γ−1b−1

j γ = (γ−1b jγ )
−1 = (b−1

j )
−1 = b j ,

i.e. γ 2 ∈ Z0(b j ) = 〈b j〉 (which however does not directly imply γ ∈ 〈b j〉 in
general). Let

γ = a(1) . . . a(k)b(1) . . . b(l),

k, l ≥ 0, be the ab-normal form of γ . We first assume that k ≥ 1, in particular
γ 6= 1. Then

γ 2 = a(1) . . . a(k)b(1) . . . b(l)a(1) . . . a(k)b(1) . . . b(l) = bs
j (1.2)
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for some s ∈ Z \ {0} (we know that s 6= 0, since γ 6= 1 and 0 is torsion-
free). Note that it follows l ≥ 1, otherwise we would have the contradiction
(a(1) . . . a(k))2 = bs

j . The expression b(1) . . . b(l)a(1) . . . a(k) is in ba-normal

form, let ã(k) . . . ã(1)b̃(1) . . . b̃(l) be its ab-normal form, i.e.

b(1) . . . b(l)a(1) . . . a(k) = ã(k) . . . ã(1)b̃(1) . . . b̃(l). (1.3)

Then, putting (1.3) into (1.2) gives

γ 2 = a(1) . . . a(k)ã(k) . . . ã(1)b̃(1) . . . b̃(l)b(1) . . . b(l) = bs
j . (1.4)

The right hand side bs
j of equation (1.4) is in ab-normal form, hence the a’s on

the left hand side have to cancel (i.e. ã(k) = a(k)
−1
, . . . , ã(1) = a(1)

−1
, because

a(1) . . . a(k) and ã(k) . . . ã(1) are freely reduced words in 〈a1, . . . , am〉), so we
have

b(1) . . . b(l)a(1) . . . a(k) = a(k)
−1
. . . a(1)

−1
b̃(1) . . . b̃(l) (1.5)

from equation (1.3) and

γ 2 = b̃(1) . . . b̃(l)b(1) . . . b(l) = bs
j (1.6)

from equation (1.4). Moreover, since b(1) . . . b(l) and b̃(1) . . . b̃(l) are freely re-
duced words in 〈b1, . . . , bn〉, we conclude from equation (1.6) that s is even,

b(1) . . . b(l) = b(1) . . . b(r)bt
j (1.7)

and
b̃(1) . . . b̃(l) = bt

j b
(r)−1

. . . b(1)
−1
, (1.8)

where t = s/2 and 0 ≤ r < l is the number of cancellations in

b̃(1) . . . b̃(l)b(1) . . . b(l),

i.e. b̃(l)b(1) = 1, . . . , b̃(l−r+1)b(r) = 1. Note that |t | = l − r ≥ 1, in particular
also the right hand sides of (1.7) and (1.8) are in normal form. First, we assume
r ≥ 1. Putting (1.7) and (1.8) into (1.5), we get

b(1) . . . b(r)bt
j a
(1) . . . a(k) = a(k)

−1
. . . a(1)

−1
bt

j b
(r)−1

. . . b(1)
−1
. (1.9)

Since both sides of equation (1.9) are in normal form, we have (looking at the
right ends)

b±1
j a(1) . . . a(k) = wk(a)b

(1)−1
(1.10)

and (looking at the left ends)

a(k)
−1
. . . a(1)

−1
b±1

j = b(1)w̃k(a) , (1.11)
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where wk(a) and w̃k(a) are freely reduced words of length k in 〈a1, . . . , am〉,
and the sign of b j in (1.10) and (1.11) is according to the sign of t , i.e. we have
b j , if t is positive, and b−1

j , if t is negative. Now, equation (1.11) gives

a(1) . . . a(k) = b±1
j w̃

−1
k (a)b(1)

−1
. (1.12)

Putting (1.12) into (1.10) gives

b±2
j w̃

−1
k (a)b(1)

−1 = wk(a)b
(1)−1

, (1.13)

i.e. the contradiction b±2
j = wk(a)w̃k(a) ∈ 〈a1, . . . , am〉. Thus, we have to

study the remaining case r = 0, i.e. |t | = l = |s|/2 and

γ = a(1) . . . a(k)bt
j .

Then equation (1.5) or (1.9) is

bt
j a
(1) . . . a(k) = a(k)

−1
. . . a(1)

−1
bt

j , (1.14)

which is equivalent to

a(k)
−1
. . . a(1)

−1
b j = bt

j a
(1) . . . a(k)b1−t

j . (1.15)

The equation γ−1b jγ = b−1
j is equivalent to

b−t
j a(k)

−1
. . . a(1)

−1
b j a

(1) . . . a(k)bt
j = b−1

j . (1.16)

Putting (1.15) into (1.16) gives

b−t
j bt

j a
(1) . . . a(k)b1−t

j a(1) . . . a(k)bt
j = b−1

j (1.17)

or equivalently

a(1) . . . a(k)b1−t
j = b−1−t

j a(k)
−1
. . . a(1)

−1
, (1.18)

which is a contradiction, since both sides of the equation are in normal form,
but t = s/2 6= 0 and hence

|b1−t
j | = |1− t | 6= |−1− t | = |b−1−t

j | .
This means that the case k ≥ 1 is impossible. It remains to consider the case
k = 0, i.e. γ = b(1) . . . b(l) for some l ≥ 0. But then, γ−1b jγ = b−1

j gives a
non-trivial relation in the free group 〈b1, . . . , bn〉.

Remark. The assumptions made in Proposition 1.12(1a),(1b) are sufficient but not
necessary, as shown in Theorem 2.3(10).
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Chapter 2

Normal subgroup structure, simplicity

The main goal of this chapter is to construct explicit examples of finitely presented
torsion-free simple groups (Section 2.5). We choose a step-by-step approach by which
we explain the main ingredients of the proof and produce other interesting groups,
e.g. a non-residually finite (non-simple) group. In a first step, we apply the important
“normal subgroup theorem” of Burger-Mozes and thus get in Section 2.1 for exam-
ple an (A6, A6)–group without non-trivial normal subgroups of infinite index. The
same holds for an (A6, M12)–group and an (A6,ASL3(2))–group constructed in that
section. We believe that these three groups are non-residually finite and have a sim-
ple subgroup of index 4, but a proof seems to be hard. Instead of that, we construct in
Section 2.2 a non-residually finite (4, 12)–group, applying another criterion of Burger-
Mozes. This group has non-trivial normal subgroups of infinite index by construction,
but we can embed it as a subgroup for example in an (A6, A16)–group where the nor-
mal subgroup theorem applies. Consequently, this (6, 16)–group is virtually simple
(Section 2.3). We think that it has a simple subgroup of index 4, but again it is not
clear how to prove it. We evade this problem by taking another non-residually finite
group (Section 2.4) constructed by Wise, using completely different ideas than those
used in the Burger-Mozes criterion. Explicitly knowing a non-trivial element in the
intersection of all finite index normal subgroups of Wise’s (8, 6)–group, we are able
to prove that this group can be embedded for example in an (A10, A10)–group which
has a simple subgroup of index 4 (Section 2.5). We give other examples of virtu-
ally simple (2m, 2n)–groups where the simple subgroup has index 4, among those an
(M12, A8)–group, or where the simple subgroup has index bigger than 4, like another
(A10, A10)–group which has a simple subgroup of index 40. A slight variation of these
techniques leads in Section 2.6 to an index 4 subgroup of a (10, 10)–group which has
non-trivial normal subgroups of infinite index but no proper finite index subgroups.
Following Wise, we construct in Section 2.7 a finitely presented group which is not
virtually torsion-free, i.e. each finite index subgroup has a non-trivial element of finite
order. In Section 2.8, we study what can happen if we replace in the normal subgroup
theorem the 2-transitivity condition for the local group Pv by the slightly weaker con-

39
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dition that Pv is primitive. Comparing an (A6, Pv)–group, where Pv is primitive but
not 2-transitive, with the (A2m, A2n)–groups constructed before, we observe that they
seem to share the properties on the finite index normal subgroups but not on the in-
finite index normal subgroups. We discuss several ideas how to construct an explicit
non-trivial normal subgroup of infinite index. Finally, we give in Section 2.9 smaller
candidates for being finitely presented torsion-free simple groups; “smaller” in the
sense that they have very short presentations. The example of Proposition 2.78 has a
presentation with two generators and only three relations.

See Table 2.1 for an overview of some properties of several irreducible examples
constructed in this chapter. The groups in Example 2.2, 2.30, 2.43 and the groups in
Example 2.26, 2.52, 2.58, respectively, seem to have the same properties in the list.
They are completely proved for Example 2.43 and Example 2.52. We have included
in the table an example of Chapter 3 which has no non-trivial normal subgroups of
infinite index, but behaves completely differently than the examples in Chapter 2, for
example it is linear, hence residually finite. The following abbreviations are used in
the table: “tr”, “prim”, “q-prim”, “Y” and “N” stand for “transitive”, “primitive”,
“quasi-primitive”, “yes” and “no”, respectively. Moreover, the (2m, 2n)–groups are
always called 0, and 0∗ denotes the normal subgroup of 0

0∗ :=
⋂

N
f.i.C0

N ,

where “f.i.” stands for “finite index”.

Example 0 2.2 2.30 2.43 2.26 2.52 2.58 3.26

Ph 2-tr 2-tr 2-tr 2-tr tr 2-tr 2-tr
Pv 2-tr 2-tr 2-tr q-prim 2-tr prim 2-tr

irreducible Y Y Y Y Y Y Y
not linear Y Y Y Y Y Y N
00 perfect Y Y Y Y Y Y N
00 = [0, 0] Y Y Y Y Y Y N

non-residually finite Y ? Y Y Y Y Y ? N
all proper quotients finite Y Y Y N N N Y

H2
b (0;R) = 0 Y Y Y N N N Y
0∗ = 00 Y ? Y ? Y Y ? Y Y ? N
00 simple Y ? Y ? Y N N N N

Table 2.1: Subgroup properties for some examples of Chapter 2
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2.1 Normal subgroup theorem

We construct examples of (2m, 2n)–groups without non-trivial normal subgroups of
infinite index, applying the crucial “normal subgroup theorem” due to Burger-Mozes
(see [15, Theorem 4], [17, Theorem 4.1, Corollary 5.1, Corollary 5.3]). Here is an
adapted special version of it:

Proposition 2.1. (Burger-Mozes, see [17, Chapter 4 and 5]) Let 0 be an irreducible
(2m, 2n)–group such that Ph , Pv are 2-transitive, and StabPh ({1}), StabPv({1}) are
non-abelian simple groups. Then any non-trivial normal subgroup of 0 has finite
index in 0.

Proof. Combine [17, Corollary 5.1, Proposition 5.2, Corollary 5.3].

Concretely, we will apply Proposition 2.1 to irreducible (2m, 2n)–groups such that
(Ph, Pv) belongs to the set

{(A2m, A2n), (A2m, M12), (A2m,ASL3(2)), (M12, A2n), (ASL3(2), A2n)} ,

where 2m ≥ 6, 2n ≥ 6, M12 < S12 and ASL3(2) < S8. In particular, we will
construct in this section two (A6, A6)–groups (Example 2.2 and Example 2.15), an
(A6, M12)–group (Example 2.18) and an (A6,ASL3(2))–group (Example 2.21) with-
out non-trivial normal subgroups of infinite index. See [16, Section 3.3] for a list of
finite permutation groups satisfying the assumptions made on the local groups Ph and
Pv in Proposition 2.1.

Note that the smallest groups without non-trivial normal subgroups of infinite in-
dex appearing in [15, 16, 17], are an (A30, A38)–group ([17, Theorem 6.3]) and a
certain (14, 18)–group (see also Example 3.26), to which Proposition 2.1 does not
apply but the more general original result [17, Theorem 4.1].

All examples of (2m, 2n)–groups will be given only in terms of the set of mn
relators Rm·n . The corresponding presentation of 0 is

〈a1, . . . , am, b1, . . . , bn | Rm·n〉 ,

and it determines the groups Ph , Pv, 00, H1, H2, 31, 32 and the complex X as
explained in Chapter 1.

Example: (A6, A6)–group

We give a first small example to which Proposition 2.1 can be applied.
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Example 2.2.

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a2b−1
2 ,

a1b−1
3 a−1

3 b2, a2b1a−1
3 b−1

2 , a2b2a−1
3 b−1

3 ,

a2b3a−1
3 b1, a2b−1

3 a3b2, a2b−1
1 a−1

3 b−1
1




.

Theorem 2.3. Let 0 be the (6, 6)–group defined by R3·3 in Example 2.2. Then

(1) Ph = A6, Pv = A6.

(2) 0 is irreducible.

(3) Any non-trivial normal subgroup of 0 has finite index.

(4) [0, 0] = 00 and 00 is perfect.

(5) 0 is not linear over any field.

(6) 0 can be decomposed in two ways as an amalgamated free product of finitely
generated free groups 0 ∼= F3 ∗F13 F7. Its subgroup 00 has two amalgam
decompositions F5 ∗F25 F5.

(7) 0 ∼= pri (0) � Hi = pri(0), i = 1, 2.

(8) H2
b (0;R) = 0, i.e. the second bounded cohomology of 0 with R-coefficients

vanishes.

(9) Aut(X) ∼= Z2 and Out(0) 6= 1.

(10) We have Z0(ai ) = N0(〈ai〉) = 〈ai〉, if ai ∈ {a2, a3} and
Z0(b j ) = N0(〈b j〉) = 〈b j〉, if b j ∈ {b2, b3}.

Proof. (1) We only list the generators of Ph and Pv. It can easily be checked for
example with GAP ([29]), that these permutations indeed generate A6.

ρv(b1) = (2, 3)(4, 5),

ρv(b2) = (1, 5, 4, 2, 3),

ρv(b3) = (2, 3, 5, 4, 6), generating Ph = A6.

ρh(a1) = (2, 3)(4, 5),

ρh(a2) = (1, 6, 3, 2)(4, 5),

ρh(a3) = (1, 4, 5, 6)(2, 3), generating Pv = A6.
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(2) We compute |P (2)h | = 360 · 606 and apply Proposition 1.2(1a).

(3) We apply Proposition 2.1 or [17, Corollary 5.3], using the facts that Ph and Pv
are 2-transitive (in fact 4-transitive), that the stabilizers

StabPh ({1}) = 〈(2, 3)(4, 5), (2, 3, 5, 4, 6)〉 ∼= A5 ,

StabPv({1}) = 〈(2, 3)(4, 5), (2, 4, 5), (4, 5, 6)〉 ∼= A5

are non-abelian simple groups and that 0 is irreducible by part (2).

(4) These are easy computations using GAP ([29]). To see by hand that 00 is
perfect, one first computes a presentation of 00 by the Reidemeister-Schreier
method (see e.g. [49, Section II.4]) and then adds commutators to the relators to
simplify the presentation.

(5) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

(6) Use Proposition 1.3 and Proposition 1.4. Explicit amalgam decompositions of 0
and 00 are described in Appendix A.2.

(7) By [16, Proposition 3.1.2, 1)], the quasi-center QZ(Hi ) is trivial for i = 1, 2,
hence the homomorphism pr3−i is injective, which shows that 0 ∼= pr3−i (0).
The group Hi is by [16, Proposition 3.3.1] isomorphic to the universal group
U(A6), which is not torsion-free, thus pri(0)

∼= 0 6= Hi .

(8) We have noticed in the proof of part (7) that Hi
∼= U(A6), i = 1, 2. Hence,

by [16, Chapter 3], H1 and H2 act transitively on the boundary at infinity ∂∞T6

of their corresponding trees T2m = T6 and T2n = T6, respectively. The claim
follows now from [14, Corollary 26]. As pointed out there, this result has some
applications to 0-actions on the circle S1 (see [14, Corollary 22]).

(9) Checking all of the 266! = 46080 candidates (using the GAP-program of Ap-
pendix B.7), we have found exactly one non-trivial automorphism given by
ai 7→ a−1

i , i = 1, 2, 3, b1 7→ b−1
1 , b2 7→ b3, b3 7→ b2. It fixes seven of

nine geometric squares. The two non-trivially permuted geometric squares of X
are [a2b1a−1

3 b−1
2 ] and [a2b3a−1

3 b1]. Note that this automorphism induces a non-
trivial element in the group of outer automorphisms Out(0) = Aut(0)/Inn(0),
since it has order 2 but Inn(0) ∼= 0 is torsion-free (the isomorphism Inn(0) ∼= 0
holds because Inn(0) ∼= 0/Z0 and Z0 = 1 by Corollary 1.11(3)).

(10) The statements Z0(a2) = N0(〈a2〉) = 〈a2〉, Z0(a3) = N0(〈a3〉) = 〈a3〉,
N0(〈b2〉) = 〈b2〉 and N0(〈b3〉) = 〈b3〉 follow from Proposition 1.12. We prove
Z0(b3) = 〈b3〉. Similarly, one can prove Z0(b2) = 〈b2〉. Let

γ = a(1) . . . a(k)b(1) . . . b(l) ∈ Z0(b3)
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be in ab-normal form, such that a(1), . . . , a(k) ∈ Eh , b(1), . . . , b(l) ∈ Ev and
k, l ≥ 0. Then

a(1) . . . a(k)b(1) . . . b(l)b3 = b3a(1) . . . a(k)b(1) . . . b(l) .

Assume first that k = 1, thus

a(1)b(1) . . . b(l)b3 = b3a(1)b(1) . . . b(l) .

The ab-normal form of a(1)b(1) . . . b(l)b3 starts with a(1). Bringing also the
right hand side b3a(1)b(1) . . . b(l) to this normal form, we must have in a first
step b3a(1) = a(1)b for some b ∈ Ev. Checking all elements in R3·3, the only
possibility is a(1) = a1, b = b2, hence

a1b(1) . . . b(l)b3 = a1b2b(1) . . . b(l)

or equivalently
b(1) . . . b(l)b3 = b2b(1) . . . b(l) ,

but this gives a non-trivial relation in the free group 〈b1, b2, b3〉.
Assume now that k ≥ 2. As in the case k = 1, we conclude a(1) = a1 and
b3a(1) = a1b2, i.e.

a1a(2) . . . a(k)b(1) . . . b(l)b3 = a1b2a(2) . . . a(k)b(1) . . . b(l)

hence
a(2) . . . a(k)b(1) . . . b(l)b3 = b2a(2) . . . a(k)b(1) . . . b(l) .

The ab-normal form of the left hand side of the last equation starts with a(2).
Bringing the right hand side to this normal form, we must have b2a(2) = a(2)b
for some b ∈ Ev. Here, the only possibility is a(2) = a−1

1 , b = b3, but this
contradicts the fact that a(1)a(2) . . . a(k) = a1a−1

1 . . . a(k) is freely reduced.

It follows that k = 0, and we conclude γ ∈ 〈b3〉 exactly as in the proof of
Proposition 1.12(1b).

Note that Z0(a1) = Z0(b1) = 〈a1, b1〉0 ∼= Z2.

The (6, 6)–group 0 of Example 2.2 can be used to simplify certain constructions
of infinite families made in [17], see also Proposition 2.29.

Proposition 2.4. (See [17, Theorem 6.3] for the same statement but with lower bounds
m ≥ 15, n ≥ 19) For every m ≥ 7 and n ≥ 7, there exists a torsion-free cocompact
lattice 3 < U(A2m) × U(A2n) with dense projections. Any non-trivial normal sub-
group N C3 is of finite index in 3.
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Proof. We follow the proof of [17, Theorem 6.3]. The only difference is that we
can replace the (PSL2(13), PSL2(17))–complex (0)X = A13,17 used there (see also
Example 3.26 and Proposition 3.27 for a description of that (14, 18)–complex) by our
(A6, A6)–complex X of Example 2.2. An illustration of this construction is given in
Appendix A.3 for the smallest values m = 7, n = 7 of Proposition 2.4.

We believe that apart from having no non-trivial normal subgroups of infinite in-
dex, the group 0 of Example 2.2 also has only very few normal subgroups of finite
index. More precisely, we think that 0 is non-residually finite, virtually simple, and
that its subgroup 00 is simple.

Conjecture 2.5. Let 0 be the (6, 6)–group defined in Example 2.2. Then 00 is a
finitely presented torsion-free simple group.

The following elementary lemmas lead to Proposition 2.10 which could be useful
in a proof of Conjecture 2.5.

Lemma 2.6. Let G be a group and H < G a subgroup of finite index. Then there is a
group N < H such that N C G and [G : N ] ≤ [G : H ]! <∞, in particular

⋂

M
f.i.
<G

M =
⋂

L
f.i.
CG

L .

Proof. (Probably due to Hall Jr. [31]) Let k be the finite index [G : H ] and write G as
a disjoint finite union of left cosets

G =
k⊔

i=1

gi H .

Left multiplication gi H 7→ ggi H induces a homomorphism φ : G → Sk such that
N := kerφ < H and [G : N ] ≤ |Sk | = [G : H ]! <∞. Note that

N =
⋂

g∈G

gHg−1.

Lemma 2.7. Let G be a group and H CG a normal subgroup of finite index. Assume
that there is an element h ∈ H such that 〈〈hk〉〉G > H for each k ∈ N. Then every
proper normal subgroup of H has infinite index.

Proof. Let N C H be a normal subgroup of finite index. By Lemma 2.6, there is a
group M < N such that M C G and [G : M] < ∞. Looking at the left cosets of the
form hk M , k ∈ N, we see that at least two of them are equal, in particular h i ∈ M for
some i ∈ N, thus 〈〈hi〉〉G < M . By assumption, we have H < 〈〈hi 〉〉G , hence H < M
and M = N = H .
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Lemma 2.8. Let G be a group and let H, M be two subgroups of G such that M has
finite index in G. Then [H : (M ∩ H)] ≤ [G : M] <∞.

Proof. Let k be the finite index [G : M] and write

G =
k⊔

i=1

Mgi .

Then, intersecting with H , we get

H = G ∩ H =
k⊔

i=1

(Mgi ∩ H) .

Fix i ∈ {1, . . . , k}. If Mgi ∩ H 6= ∅, take any element mgi = h ∈ Mgi ∩ H . Then
Mgi ∩ H = Mmgi ∩ H = Mh ∩ H = Mh ∩ Hh = (M ∩ H)h and we are done.

Lemma 2.9. Let G be a group and H < G a subgroup of finite index. Then
⋂

N
f.i.
CH

N =
⋂

N
f.i.
CG

N .

In particular, H is residually finite if and only if G is residually finite.

Proof. ⋂

N
f.i.CH

N =
⋂

M
f.i.
<H

M =
⋂

M
f.i.
<G

M =
⋂

N
f.i.CG

N ,

where the first and third equalities follow from Lemma 2.6. The inclusion “⊇” in the
second equality is obvious, whereas “⊆” in the second equality directly follows from
Lemma 2.8.

Proposition 2.10. Suppose that 0 satisfies the assumptions of the normal subgroup
theorem (Proposition 2.1). Let H C 0 be a non-trivial normal subgroup of 0 and
assume that there is an element h ∈ H such that 〈〈hk〉〉0 > H holds for each k ∈ N.
Then H is a finitely presented torsion-free simple group.

Proof. First note that by assumption H has finite index in 0. By Lemma 2.7

H =
⋂

N
f.i.CH

N

and hence by Lemma 2.9
H =

⋂

N
f.i.
C0

N .

In particular, 0 is non-residually finite and [17, Corollary 5.4] shows that H is simple.
It is obvious that H is finitely presented and torsion-free, since it is a finite index
subgroup of the finitely presented torsion-free group 0.
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Corollary 2.11. Let 0 be as in Example 2.2. Assume that there is an element γ0 ∈ 00

such that 〈〈γ k
0 〉〉0 = 00 for each k ∈ N. Then 00 is a finitely presented torsion-free

simple group.

Proof. This follows directly from Proposition 2.10 using the fact (see Theorem 2.3(3))
that any non-trivial normal subgroup of 0 has finite index.

One step towards the proof of Conjecture 2.5 (or an application of Corollary 2.11)
could be the following proposition.

Proposition 2.12. For 0 as defined in Example 2.2, we have 〈〈a6(1+2k)
1 〉〉0 = 00 for

each k ∈ N0.

Proof. We first prove two auxiliary results: The first one says that for each k ∈ N0

b−1
3 b2a6(1+2k)

1 b−1
2 b3 = a−6(1+2k)

2 .

Since a6(1+2k)
1 and a−6(1+2k)

2 are claimed to be conjugate, we only have to show it for
k = 0, i.e. b−1

3 b2a6
1b−1

2 b3 = a−6
2 . But this follows bringing the left hand side of the

equation to its ab-normal form.
The second result needed is the following: For each k ∈ N0

a2b3b2b−1
3 a6(1+2k)

1 b3b−1
2 b−1

3 a−1
2 = a6(1+2k)

2 b2b1 .

This proof is by induction on k. If k = 0,

a2b3b2b−1
3 a6

1b3b−1
2 b−1

3 a−1
2 = a6

2b2b1

again follows by computing the ab-normal form of the left hand side. For the induction
step k → k + 1, we get

a2b3b2b−1
3 a6(1+2(k+1))

1 b3b−1
2 b−1

3 a−1
2

= a2b3b2b−1
3 a12

1 a6(1+2k)
1 b3b−1

2 b−1
3 a−1

2

= a12
2 a2b3b2b−1

3 a6(1+2k)
1 b3b−1

2 b−1
3 a−1

2 (using b3b2b−1
3 a12

1 = a12
2 b3b2b−1

3 )

= a12
2 a6(1+2k)

2 b2b1 (by the induction hypothesis)

= a6(1+2(k+1))
2 b2b1

as required. Now we are ready to prove the proposition. Since a2
1 ∈ 00, one inclusion

is obvious:
〈〈a6(1+2k)

1 〉〉0 < 00 .

For the other inclusion we have by our first auxiliary result

a−6(1+2k)
2 ∈ 〈〈a6(1+2k)

1 〉〉0 ,
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and by the second one
a6(1+2k)

2 b2b1 ∈ 〈〈a6(1+2k)
1 〉〉0 ,

hence together
b2b1 ∈ 〈〈a6(1+2k)

1 〉〉0 . (2.1)

Next, we observe that b2
1 ∈ 〈〈b2b1〉〉0 since

(a1a−1
2 b2b1a2a−1

1 )(a2
1b2b1a−2

1 ) = b2
1 .

Moreover, a1a−1
3 ∈ 〈〈b2

1〉〉0 < 〈〈b2b1〉〉0, since

(a1a−1
2 b−2

1 a2a−1
1 )(a−1

1 a−1
2 b2

1a2a1) = a1a−1
3 .

It is easy to check that 00 is generated (as a subgroup of 0) by {a1a−1
3 , b2

1} and we
conclude that

00 = 〈a1a−1
3 , b2

1〉0 < 〈〈b2b1〉〉0 (2.1)
< 〈〈a6(1+2k)

1 〉〉0 .

Remark. A calculation with MAGNUS ([50]) shows, that moreover

〈〈a12
1 〉〉0 = 〈〈a24

1 〉〉0 = 00 .

See Table 2.2 for the orders of some quotients of 0, illustrating that Conjecture 2.5
could be reasonable.

∣∣0/〈〈wk〉〉0
∣∣ k = 1 2 3 4 5 6 7 8 9 10 11 12

w = a1, a2, a3 2 4 2 4 2 4 2 4 2 4 2 4
b1, b2, b3 2 4 2 4 2 4 2 4 2 4 2 4

Table 2.2: Some orders of 0/〈〈wk〉〉0 in Example 2.2

In order to prove that 00 has no proper finite index subgroups, it could be useful to
have a non-trivial element γ ∈ 0 such that γ k and γ l are conjugate for some k, l ∈ Z,
where |k| 6= |l|. As an illustration, we mention that Bhattacharjee has constructed
in [7] an amalgam without non-trivial finite quotients, essentially using in the proof
that there is a non-trivial element a such that a2 and a5 are conjugate. However, this
technique is not possible for (2m, 2n)–groups by the following proposition which is a
special case of a result of Bridson-Haefliger ([9]):

Proposition 2.13. (Bridson-Haefliger [9]) Let 0 be a (2m, 2n)–group and let γ ∈ 0
be a non-trivial element. Then γ k can only be conjugate to γ l if |k| = |l|.
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Proof. (Sketch, following Bridson-Haefliger [9]) Assume that γ k and γ l are conjugate
for some k, l ∈ Z. Then by [9, Proposition II.6.2(2)], γ k and γ l have the same
translation length, and by [9, Theorem II.6.8(1)] we have |k| = |l|, using the fact that
the element γ acts as a hyperbolic isometry on the CAT(0)-space T2m × T2n .

By results of Wiegold-Wilson given in [67], the observation that 00 has no proper
subgroups of small index is somehow reflected in the next proposition on the slow
growth of the number of generators of direct powers. Recall that we denote by d(G)
the minimal number of elements needed to generate the group G and by Gk the direct
product of k copies of G.

Proposition 2.14. Let 0 be the group of Example 2.2 and l a positive even integer.
Suppose that 〈〈w〉〉00 = 00 for all words w ∈ 00 of even length 2, 4, . . . , 2l. Let

b(l) := 1

2
|{w ∈ 00 : 2 ≤ |w| ≤ l}| .

Then d(0k
0) ≤ 3 for each k ≤ b(l).

Proof. (Adapted from [67, Proof of Theorem 4.2]) Since w 6= w−1 and |w| = |w−1|
for any non-trivial element w ∈ 0, we can choose a subset

S = {γ1, . . . , γb(l)} ⊂ 00

of cardinality b(l) such that S ∩ S−1 = ∅, and 2 ≤ |γi | ≤ l for all γi ∈ S. It
follows that |γi1γ

−1
i2
| ∈ {2, 4, . . . , 2l} whenever γi1, γi2 are different elements of S.

By assumption 〈〈γi1γ
−1
i2
〉〉00 = 00. Note that 00 is generated by two elements, for

example by {a2
1, b2b−1

1 }. We want to show by induction that 0k
0 is for each k ≤ b(l)

generated by the element (γ1, . . . , γk) and the diagonal subgroup of 0k
0 (which is for

example generated by the two diagonal elements (a2
1, . . . , a2

1) and (b2b−1
1 , . . . , b2b−1

1 )

in 0k
0). For k = 1, this is obviously true. We assume that 2 ≤ k ≤ b(l) is fixed

and that 0k−1
0 is generated by its diagonal subgroup and (γ1, . . . , γk−1). Let H be

the subgroup of 0k
0 generated by the diagonal subgroup of 0k

0 and (γ1, . . . , γk). Our
goal is to show that H = 0k

0 . If we think 0k−1
0 embedded in 0k

0 as a subgroup
0k−1

0 × {1} < 0k−1
0 × 00 = 0k

0 , then for any γ ∈ 00 the group H contains by
assumption k − 1 elements of the form

(γ, 1, . . . , 1, ∗), . . . , (1, . . . , 1, γ, ∗) ,
where “∗” are certain elements in 00 we do not have to care about. By construction,
H also contains the element

(γ1γ
−1
k , . . . , γk−1γ

−1
k , 1) = (γ1, . . . , γk) · (γ−1

k , . . . , γ−1
k ) .
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Computing the k − 1 commutators

[(γ, 1, . . . , 1, ∗), (γ1γ
−1
k , . . . , γk−1γ

−1
k , 1)] ,

...

[(1, . . . , 1, γ, ∗), (γ1γ
−1
k , . . . , γk−1γ

−1
k , 1)] ,

we see that H contains the k − 1 elements

([γ, γ1γ
−1
k ], 1, . . . , 1), . . . , (1, . . . , 1, [γ, γk−1γ

−1
k ], 1) .

For j = 1, . . . , k − 1, let N j be the subgroup of 00

N j := 〈[γ, γ jγ
−1
k ] : γ ∈ 00〉 < 00 .

Then N j is a normal subgroup of 00, since for each g ∈ 00

g[γ, γ jγ
−1
k ]g−1 = [gγ, γ jγ

−1
k ] · [g, γ jγ

−1
k ]−1 ∈ N j .

Note that γ jγ
−1
k N j ∈ Z(00/N j), by definition of N j . Since 〈〈γ jγ

−1
k 〉〉00 = 00, we

have 〈〈γ jγ
−1
k N j 〉〉00/N j = 00/N j and Z(00/N j) = 00/N j , i.e. 00/N j is abelian. But

then N j = 00, because 00 is perfect. In particular, 00 is generated by the elements
[γ, γ jγ

−1
k ] and H contains therefore the j -th direct factor of 0k

0 . Since

(1, . . . , 1, γ ) = (γ, . . . , γ ) · (γ−1, 1, . . . , 1) · . . . · (1, . . . , 1, γ−1, 1) ,

H also contains the k-th direct factor of 0k
0 , therefore H = 0k

0 and 0k
0 is generated by

three elements.

Remark. We have used GAP ([29]) to check that 〈〈w〉〉00 = 00, wheneverw ∈ 00 has
length 2, 4, or 6. Note that b(2) = 30, b(4) = 1230, b(6) = 42480, b(8) = 1354980.

Another example of an (A6, A6)–group

In most of our main examples (e.g. Example 2.2, 2.18, 2.21, 2.26, 2.30, 2.33, 2.43,
2.46, 2.52 and 2.58) of this chapter, we always have [0, 0] = 00, where in addition
00 is perfect. The next example is different in this regard (see also Appendix C.6 for
more such groups), but it shares many other properties with Example 2.2.

Example 2.15.

R3·3 :=





a1b1a−1
1 b−1

2 , a1b2a−1
2 b1, a1b3a−1

1 b3,

a1b−1
2 a2b−1

1 , a2b1a−1
3 b−1

3 , a2b2a−1
3 b3,

a2b3a−1
3 b2, a2b−1

3 a−1
3 b1, a3b1a3b2




.
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Theorem 2.16. Let 0 be the (6, 6)–group defined in Example 2.15.

(1) The statements of Theorem 2.3(1)-(3) and (5)-(8) also hold for this 0.

(2) [0, 0] is not perfect, of index 32 in 0, and 00 is not perfect either.

Proof. (1) We can use the same arguments as in the proof of Theorem 2.3, of course
with different generators of Ph and Pv:

ρv(b1) = (1, 5, 4, 3, 2),

ρv(b2) = (2, 6, 5, 4, 3),

ρv(b3) = (2, 3)(4, 5),

ρh(a1) = (1, 5, 6, 2)(3, 4),

ρh(a2) = (1, 5, 3)(2, 6, 4),

ρh(a3) = (1, 3, 5)(2, 4, 6).

(2) It is easy to check that [0, 0] is the kernel of the surjective homomorphism

0→ Z2
2 × Z8

a1 7→ (1+ 2Z, 0+ 2Z, 0+ 8Z)
a2 7→ (1+ 2Z, 0+ 2Z, 6+ 8Z)
a3 7→ (0+ 2Z, 0+ 2Z, 1+ 8Z)
b1 7→ (0+ 2Z, 1+ 2Z, 3+ 8Z)
b2 7→ (0+ 2Z, 1+ 2Z, 3+ 8Z)
b3 7→ (1+ 2Z, 1+ 2Z, 0+ 8Z) .

Note that the commutator subgroup of [0, 0] has index 6 in [0, 0] and that
〈〈a2

1〉〉0 is a perfect normal subgroup of 0 of index 192. See Table 2.3 for the
orders of some other quotients. Moreover, [00, 00] has index 64 = 4 · 16 in 0,
more precisely 0ab

0
∼= Z16.

Conjecture 2.17. Let 0 be the (A6, A6)–group defined in Example 2.15. Then 0 is
non-residually finite such that

⋂

N
f.i.
C0

N = [[0, 0], [0, 0]] = 〈〈a2k
1 〉〉0

for each k ∈ N, and this subgroup of index 192 is simple.
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∣∣0/〈〈wk〉〉0
∣∣ k = 1 2 3 4 5 6 7 8 9 10 11 12

w = a1 48 192 48 192 48 192 48 192 48 192 48 192
a2 8 16 24 32 8 48 8 64 24 16 8 96
a3 4 24 4 48 4 24 4 96 4 24 4 48

b1, b2 4 8 12 16 4 24 4 32 12 8 4 48
b3 16 96 16 192 16 96 16 192 16 96 16 192

Table 2.3: Some orders of 0/〈〈wk〉〉0 in Example 2.15

Example: (A6,M12)–group

The famous group M12 was discovered by Emile Mathieu in 1861. It can be de-
scribed as a 5-transitive subgroup of A12 of order 95040 and belongs together with the
other Mathieu groups M11, M22, M23 and M24 to the list of 26 sporadic finite simple
groups. With the exception of symmetric and alternating groups, M12 and M24 are the
only finite 5-transitive groups. See [25] for the relation to Steiner systems and more
background information on Mathieu groups.

Example 2.18.

R3·6 :=





a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
1 b−1

3 ,

a1b4a−1
1 b−1

4 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

5 ,

a1b−1
1 a2b2, a2b1a2b−1

3 , a2b3a2b−1
4 ,

a2b4a−1
3 b−1

5 , a2b5a2b6, a2b−1
6 a2b−1

2 ,

a2b−1
5 a3b4, a3b1a−1

3 b−1
2 , a3b2a−1

3 b−1
1 ,

a3b3a3b−1
6 , a3b5a−1

3 b−1
4 , a3b6a3b−1

3





.

Theorem 2.19. Let 0 be the (6, 12)–group of Example 2.18. Then

(1) Ph = A6, Pv ∼= M12.

(2) Any non-trivial normal subgroup of 0 has finite index.

(3) 0 is not linear over any field, in particular irreducible.

(4) [0, 0] = 00 and 00 is perfect.
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Proof. (1) We compute

ρv(b1) = (2, 6, 5),

ρv(b2) = (1, 2, 5),

ρv(b3) = (2, 5)(3, 4),

ρv(b4) = (2, 5, 4),

ρv(b5) = (2, 3, 5),

ρv(b6) = (2, 5)(3, 4),

ρh(a1) = (1, 2)(5, 6)(7, 8)(11, 12),

ρh(a2) = (1, 2, 7, 5, 4, 3)(6, 11, 12, 10, 9, 8),

ρh(a3) = (1, 2)(3, 6)(4, 5)(7, 10)(8, 9)(11, 12).

Observe that Pv ∼= M12 is already generated by ρh(a1) =: σ and ρh(a2) =: τ ,
since

ρh(a3) = στ 3στστ 2στ 2στστ 3σ .

As a by-product, we get the following short finite presentation of M12 with two
generators and six relators:

M12
∼= 〈σ, τ | σ 2, τ 6, (στ)5, (στστ 5)4, (στ 2)6, (στστ 4)5〉 .

(2) We apply Proposition 2.1 or [17, Corollary 5.3], using the fact that the stabilizer
StabPv({1}) is the group generated by the three permutations

(2, 8, 10, 12, 5)(3, 4, 7, 6, 9),

(2, 3, 6, 9)(5, 10, 7, 12),

(5, 8)(6, 7)(9, 10)(11, 12),

which is isomorphic to the non-abelian simple group M11 of order 7920.

(3) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

(4) This is a short computation.

Conjecture 2.20. Let 0 be the group defined in Example 2.18. Then its subgroup 00

is simple.

Remark. By analyzing many (4, 12)–groups, we have observed that Pv ∼= M12 can
be generated in several ways by {ρh(a1), ρh(a2)}. We have found seven different cycle
structures for {ρh(a1), ρh(a2)} generating M12. They are listed in Table 2.4:
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ρh(a1) ρh(a2)

(3, 4)(5, 6)(7, 8)(9, 10) (1, 7, 5, 3, 2)(6, 12, 11, 10, 8)
(3, 4)(5, 6)(7, 8)(9, 10) (1, 6, 5, 9, 3, 2)(4, 8, 7, 12, 11, 10)
(3, 6, 5, 4)(7, 8, 9, 10) (1, 4, 2)(3, 8, 6)(5, 10, 7)(9, 11, 12)
(3, 6, 5, 4)(7, 8, 9, 10) (1, 6, 3, 2)(4, 8)(5, 9)(7, 12, 11, 10)
(3, 6, 5, 4)(7, 8, 9, 10) (1, 7, 3, 2)(6, 12, 11, 10)
(3, 6, 5, 4)(7, 8, 9, 10) (1, 9, 6, 3, 2)(4, 12, 11, 10, 7)
(3, 6, 5, 4)(7, 8, 9, 10) (1, 5, 9, 6, 3, 2)(4, 8, 12, 11, 10, 7)

Table 2.4: Several pairs which generate M12

Example: (A6,ASL3(2))–group

See [25, p.55] for the definition of the affine special linear group ASL3(2). It can be
realized as a non-simple 3-transitive subgroup of A8 of order 1344.

Example 2.21.

R3·4 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

2 , a1b3a−1
1 b−1

4 ,

a1b4a−1
2 b−1

3 , a1b−1
4 a−1

2 b3, a2b1a−1
2 b−1

2 ,

a2b2a−1
3 b1, a2b3a−1

2 b4, a2b−1
2 a3b−1

1 ,

a3b1a3b−1
3 , a3b2a3b−1

4 , a3b3a3b4





.

Theorem 2.22. Let 0 be the (6, 8)–group defined in Example 2.21. Then

(1) Ph = A6, Pv ∼= ASL3(2) < S8.

(2) Any non-trivial normal subgroup of 0 has finite index.

(3) 0 is not linear over any field, in particular irreducible.

(4) [0, 0] = 00 and 00 is perfect.

Proof. (1) We compute

ρv(b1) = (2, 4, 3),

ρv(b2) = (3, 5, 4),

ρv(b3) = (1, 2)(3, 4),

ρv(b4) = (3, 4)(5, 6),
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ρh(a1) = (3, 4)(5, 6),

ρh(a2) = (1, 7, 8, 2)(3, 4, 6, 5),

ρh(a3) = (1, 7, 5, 3)(2, 8, 6, 4).

(2) Note that

StabPv({1}) = 〈(3, 4)(5, 6), (3, 5, 7)(4, 6, 8), (2, 7, 6, 3)(4, 8)〉 ∼= PSL3(2)

is a non-abelian simple group. The statement follows now either from Propo-
sition 2.1, or from [16, Proposition 3.3.3] together with [17, Theorem 4.1], or
directly from [17, Corollary 5.3].

(3) The claim is a consequence of [17, Theorem 1.4], see also Proposition 4.4 in
Section 4.2.

(4) This is a short computation.

Conjecture 2.23. Let 0 be the group defined in Example 2.21. Then its subgroup 00

is simple.

Question 2.24. Let 0 be a (2m, 2n)–group such that any non-trivial normal subgroup
of 0 has finite index. Assume that 3C 0 is a non-trivial perfect normal subgroup (of
finite index). Is 3 simple?

2.2 A non-residually finite group

Non-residually finite (2m, 2n)–groups have been constructed by Burger-Mozes in [15,
16, 17] for 2m = 196 = 142, 2n = 324 = 182 and independently by Wise in [68]
for 2m = 8, 2n = 6 using completely different techniques. See Example 2.39 in
Section 2.4 for the non-residually finite example of Wise. We present in this section
an irreducible (A4, Pv)–group 0 with Pv < S12 quasi-primitive but such that the
quasi-center QZ(H2) is not trivial. Applying a result of Burger-Mozes ([17]), this
shows that 0 is non-residually finite (Example 2.26).

We first restate a special case of the criterium for non-residual finiteness taken
from [17, Section 2.1] and adapted to our situation:

Proposition 2.25. (Burger-Mozes, [17, Proposition 2.1, Corollary 2.3]) Let 0 be an
irreducible (2m, 2n)–group. If Pv < S2n is a quasi-primitive permutation group and
32 6= 1, then 0 is non-residually finite. (Similarly, if Ph < S2m is a quasi-primitive
permutation group and 31 6= 1, then 0 is non-residually finite.)
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Example 2.26.

R2·6 :=





a1b1a−1
1 b−1

1 , a1b2a−1
2 b−1

3 ,

a1b3a−1
1 b−1

4 , a1b4a−1
1 b−1

5 ,

a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

2 ,

a1b−1
2 a2b3, a2b1a−1

2 b−1
5 ,

a2b2a2b−1
3 , a2b4a−1

2 b4,

a2b5a−1
2 b−1

1 , a2b6a−1
2 b6





.

Theorem 2.27. Let 0 be the (4, 12)–group defined in Example 2.26. Then

(1) Ph = A4, Pv ∼= PSL2(5) < S12, |Pv| = 60.

(2) 0 is irreducible.

(3) Pv is quasi-primitive, but not primitive.

(4) 32 6= 1, in particular QZ(H2) 6= 1.

(5) 0 is non-residually finite.

(6) [0, 0] = 00 is perfect, but not simple.

Proof. (1) We compute

ρv(b1) = (),
ρv(b2) = (2, 4, 3),

ρv(b3) = (1, 2, 3),

ρv(b4) = (),
ρv(b5) = (),
ρv(b6) = (),

ρh(a1) = (2, 6, 5, 4, 3)(7, 8, 9, 10, 11),

ρh(a2) = (1, 5)(2, 3)(4, 9)(6, 7)(8, 12)(10, 11).

(2) Figure 2.1 shows that we can apply Proposition 1.2(3a) using the fact that
a1b1 = b1a1 and that ρv(b3) = (1, 2, 3) acts transitively on the set

{1, 2, 3} ∼= Eh \ {a−1
1 } = {a1, a2, a−1

2 } .



2.2. A NON-RESIDUALLY FINITE GROUP 57

b1 b5 b4 b3b1

a2 a1 a1

a1a1a2

ak−3
1

ak−3
1

Figure 2.1: Illustration to the proof of Theorem 2.27(2)

Note that the irreducibility criterion [17, Proposition 1.3] cannot be applied here,
since Pv is not primitive and Kh is a 3-group (|Kh | = 27).

(3) The group Pv is quasi-primitive, since it is simple and transitive. It has the non-
trivial blocks {1, 12}, {5, 8}, {4, 9}, {3, 10}, {2, 11}, {6, 7}, and is therefore not
primitive.

(4) The set B := {b3
1, b3

2, b3
3, b3

4, b3
5, b3

6}±1 is a subset of 32 by Lemma 1.1(1b),
since for each b ∈ B and a ∈ Eh we have ρv(b)(a) = a and ρh(a)(b) ∈ B.

(5) We can apply Proposition 2.25.

(6) The first part of the statement is an easy computation. The group 00 is not
simple, since 00 ∩ QZ(H2) is a non-trivial normal subgroup of 00 of infinite
index, using part (4).

See Table 2.5 for the orders of some quotients of 0. The infinite quotients in this
list, denoted by “∞”, correspond to elements in 32.

∣∣0/〈〈wk〉〉0
∣∣ k = 1 2 3 4 5 6 7 8 9 10 11 12

w = a1, a2 2 4 2 4 2 4 2 4 2 4 2 4
b1, . . . , b6 2 4 ∞ 4 2 ∞ 2 4 ∞ 4 2 ∞

Table 2.5: Some orders of 0/〈〈wk〉〉0 in Example 2.26

Conjecture 2.28. Let 0 be the group defined in Example 2.26. Then

⋂

N
f.i.
C0

N = 00 .
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Note that by [17, Proposition 2.1], we have

⋂

N
f.i.C0

N > ({1} × [H (∞)
2 , 32]) 6= 1 ,

where H (∞)
2 is the intersection of all closed finite index subgroups of H2 < Aut(T12),

but we do not know how to determine explicitly a non-trivial element in H (∞)
2 .

Substituting the non-residually finite (196, 324)–group π1(A13,17 � A13,17) of
Burger-Mozes ([17]) by the non-residually finite (4, 12)–group of Example 2.26, we
can simplify some constructions made in [17]:

Proposition 2.29. (1) (See [17, Theorem 6.4] for the same statement but with lower
bounds m ≥ 109, n ≥ 175. Note that the number 150 in [17, Theorem 6.4] is
a misprint and has to be replaced by 175) For every m ≥ 9 and n ≥ 13, there
exists a torsion-free cocompact lattice3 < U(A2m)×U(A2n) which is virtually
simple and has dense projections.

(2) (cf. [17, Theorem 6.5]) Any (2m, 2n)–group injects for any even natural num-
bers k ≥ 4, l ≥ 4 in a virtually simple (A4m+14+k , A4n+22+l)–group.

(3) (cf. [17, Theorem 6.5]) Any (2m, 2n)–group such that Ph < A2m and Pv < A2n

are even permutation groups, injects for any even natural numbers k ≥ 4, l ≥ 4
in a virtually simple (A2m+14+k , A2n+22+l )–group.

Proof. (1) We essentially imitate the proof of [17, Theorem 6.4], but replace the
(14, 18)–complex (0)X = A13,17 (which is also described in Example 3.26)
by the (A6, A6)–complex of Example 2.2, and replace the (196, 324)–complex
(1)X = A13,17 � A13,17 by the non-residually finite (4, 12)–complex of Ex-
ample 2.26. Note that we use in the proof that PSL2(5) < S12 is even, i.e. a
subgroup of A12.

(2) We embed the given corresponding (2m, 2n)–complex by [17, Proposition 6.2]
in a (4m, 4n)–complex Y with even local permutation groups. Then we apply
[17, Proposition 6.1] to the case where (0)X is the (A6, A6)–complex of Exam-
ple 2.2, (1)X is the non-residually finite (4, 12)–complex of Example 2.26 and
(2)X = Y .

(3) Same proof as in part (2), but without embedding the given (2m, 2n)–complex
in a (4m, 4n)–complex, since the local groups are already even by assumption.
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2.3 Virtually simple groups

We embed in this section the non-residually finite (4, 12)–group 0 of Example 2.26
into an (A6, A16)–group (Example 2.30), into an (A8, A14)–group (described in Ex-
ample A.26), and into an (ASL3(2), A14)–group (Example 2.33). All three examples
turn out to be virtually simple by results of Burger-Mozes. Therefore, their minimal
normal subgroup of finite index (in other words, the normal subgroup of maximal fi-
nite index) is a finitely presented torsion-free simple group. We believe that this index
is 4 in our three given examples.

A virtually simple (A6, A16)–group

Example 2.30.

R3·8 :=





a1b1a−1
1 b−1

1 , a1b2a−1
2 b−1

3 , a1b3a−1
1 b−1

4 ,

a1b4a−1
1 b−1

5 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

2 ,

a1b7a2b−1
8 , a1b8a2b8, a1b−1

8 a2b−1
7 ,

a1b−1
7 a−1

3 b7, a1b−1
2 a2b3, a2b1a−1

2 b−1
5 ,

a2b2a2b−1
3 , a2b4a−1

2 b4, a2b5a−1
2 b−1

1 ,

a2b6a−1
2 b6, a2b7a3b−1

7 , a3b1a−1
3 b8,

a3b2a−1
3 b2, a3b3a−1

3 b−1
4 , a3b4a−1

3 b1,

a3b5a−1
3 b3, a3b6a−1

3 b6, a3b8a−1
3 b5





.

Theorem 2.31. Let 0 be the (6, 16)–group of Example 2.30. Then

(1) Ph = A6, Pv = A16.

(2) 0 is non-residually finite.

(3) 0 is a finitely presented torsion-free virtually simple group, in particular the
minimal normal subgroup of finite index in 0

⋂

N
f.i.
C0

N

is a finitely presented torsion-free simple group.
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(4) We have amalgam decompositions

F8 ∗F43 F22
∼= 0 ∼= F3 ∗F33 F17

and

Aut(T6) > F15 ∗F85 F15
∼= 00

∼= F5 ∗F65 F5 < Aut(T16) .

(5) [0, 0] = 00 and 00 is perfect.

Proof. (1) We compute

ρv(b1) = ρv(b4) = ρv(b5) = ρv(b6) = (),
ρv(b2) = (2, 6, 5),

ρv(b3) = (1, 2, 5),

ρv(b7) = (1, 5, 3)(2, 4, 6),

ρv(b8) = (1, 5)(2, 6),

ρh(a1) = (2, 6, 5, 4, 3)(7, 9, 8)(11, 12, 13, 14, 15),

ρh(a2) = (1, 5)(2, 3)(4, 13)(6, 11)(8, 10, 9)(12, 16)(14, 15),

ρh(a3) = (1, 13, 14, 5, 9)(2, 15)(3, 12, 8, 16, 4)(6, 11).

(2) The embedding of the (A4, PSL2(5) < S12)–complex of Example 2.26 into X
(indicated by the twelve underlined relators in R3·8) induces a π1-injection by
Proposition 1.9(1). Since the (4, 12)–group of Example 2.26 is non-residually
finite, 0 is also non-residually finite.

(3) Apply [17, Corollary 5.4].

(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.

Conjecture 2.32. Let 0 be the (6, 16)–group of Example 2.30. Then 00 is a finitely
presented torsion-free simple group. Equivalently,

⋂

N
f.i.
C0

N = 00 .
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A virtually simple (A8, A14)–group

See Appendix A.4 for the definition of a finitely presented, non-residually finite,
torsion-free, virtually simple (A8, A14)–group. It behaves as the (A6, A16)–group of
Example 2.30.

Remark. It seems to be impossible to embed the (4, 12)–complex X of Example 2.26
into a virtually simple (A6, A14)–complex. However, it seems to be easy to embed X
into a virtually simple (A2m, A2n)–complex, if m ≥ 3, n ≥ 8 or if m ≥ 4, n ≥ 7.

A virtually simple (ASL3(2), A14)–group

Example 2.33.

R4·7 :=





a1b1a−1
1 b−1

1 , a1b2a−1
2 b−1

3 , a1b3a−1
1 b−1

4 , a1b4a−1
1 b−1

5 ,

a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

2 , a1b7a−1
2 b−1

7 , a1b−1
7 a3b7,

a1b−1
2 a2b3, a2b1a−1

2 b−1
5 , a2b2a2b−1

3 , a2b4a−1
2 b4,

a2b5a−1
2 b−1

1 , a2b6a−1
2 b6, a2b7a−1

4 b−1
7 , a3b1a4b4,

a3b2a−1
3 b−1

3 , a3b3a−1
4 b−1

2 , a3b4a4b7, a3b5a4b−1
6 ,

a3b6a4b−1
1 , a3b−1

7 a4b1, a3b−1
6 a4b5, a3b−1

5 a4b6,

a3b−1
4 a4b−1

5 , a3b−1
3 a4b2, a3b−1

1 a4b−1
4 , a4b3a4b−1

2





.

Theorem 2.34. Let 0 be the (8, 14)–group defined in Example 2.33. Then

(1) Ph
∼= ASL3(2) < S8, Pv = A14.

(2) 0 is non-residually finite.

(3) 0 is a finitely presented torsion-free virtually simple group.

(4) There are amalgam decompositions

F7 ∗F49 F25
∼= 0 ∼= F4 ∗F43 F22

and
Aut(T8) > F13 ∗F97 F13

∼= 00
∼= F7 ∗F85 F7 < Aut(T14) .

(5) [0, 0] = 00 and 00 is perfect.
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Proof. (1) We compute

ρv(b1) = ρv(b4) = ρv(b5) = ρv(b6) = (3, 5)(4, 6),

ρv(b2) = (2, 8, 7)(3, 4, 5),

ρv(b3) = (1, 2, 7)(4, 6, 5),

ρv(b7) = (1, 2, 4, 6)(3, 8, 7, 5),

ρh(a1) = (2, 6, 5, 4, 3)(9, 10, 11, 12, 13),

ρh(a2) = (1, 5)(2, 3)(4, 11)(6, 9)(10, 14)(12, 13),

ρh(a3) = (1, 6, 5, 11)(2, 3)(4, 14, 8)(9, 10)(12, 13),

ρh(a4) = (1, 11, 7)(2, 3)(4, 10, 9, 14)(5, 6)(12, 13).

(2) The embedding of the (A4, PSL2(5) < S12)–complex of Example 2.26 into the
(8, 14)–complex X (indicated by the twelve underlined relators in R4·7) induces
a π1-injection by Proposition 1.9(1).

(3) Apply [17, Corollary 5.3] (cf. Example 2.21 for the role of ASL3(2)).

(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.

Conjecture 2.35. Let 0 be the (8, 14)–group defined in Example 2.33. Then the sub-
group 00 is a finitely presented torsion-free simple group.

2.4 Two examples of Wise

We recall in this section two interesting groups of Wise ([68]).

Example 2.36. (See [68, Section II.2.1], the transition from Wise’s notations to ours
is given by x 7→ a1, y 7→ a2, a 7→ b1, b 7→ b2, c 7→ b3.)

R2·3 :=





a1b2a−1
1 b−1

1 , a2b2a−1
2 b−1

1 ,

a1b3a−1
2 b−1

3 , a1b1a−1
2 b−1

2 ,

a2b1a−1
1 b−1

3 , a2b3a−1
1 b−1

2




.

Theorem 2.37. (Wise [68]) The (4, 6)–group 0 of Example 2.36 is irreducible and
not 〈b1, b2, b3〉-separable.



2.4. TWO EXAMPLES OF WISE 63

Proof. See [68]. Let G be a group and H < G a subgroup. Recall that G is said to be
H-separable, if for each element g ∈ G \ H , there is a homomorphism ψ : G → Q
onto a finite group Q such that ψ(g) /∈ ψ(H). It is shown in [68, Corollary II.4.4] that
ψ(a1a−1

2 ) ∈ ψ(〈b1, b2, b3〉) for every homomorphism ψ : 0→ Q with finite Q.

Remark. The proof of Theorem 2.37 given in [68] is based on the fact that the two
elements a2, b3 have no commuting non-trivial powers (this phenomenon is called
anti-torus and is proved in [68, Proposition II.3.8]. Much more about anti-tori can be
found in Section 3.6). Note however, that 〈a2, b3〉 is not a free subgroup of 0 since we
have for example the non-trivial relation b−2

3 a−3
2 b2

3a2b−1
3 a2b3a2 = 1 in 0.

Using the separability property of the (4, 6)–group 0 described in Theorem 2.37
and the following lemma of Long-Niblo ([44]), a doubling of 0 along its subgroup
〈b1, b2, b3〉 (geometrically, doubling X along its vertical 1-skeleton ({x}, Ev)) leads
to the non-residually finite (8, 6)–group of Example 2.39. (By a double or a doubling
of a group G along a subgroup H , we mean the amalgamated free product G ∗H=H̄ Ḡ,
where Ḡ ↪→ H̄ is an isomorphic copy of G ↪→ H .)

Lemma 2.38. (Long-Niblo, see [44, Lemma, p.211]) Let θ : G → G be an automor-
phism of a residually finite group G. Then G is Fix(θ)–separable, where

Fix(θ) := {g ∈ G : θ(g) = g}
is the subgroup of elements fixed by the homomorphism θ .

More precisely, if θ : G → G is an automorphism and G is not Fix(θ)–separable,
then

x−1θ(x) ∈
⋂

N
f.i.
CG

N ,

where x ∈ G \ Fix(θ) is any element such that ψ(x) ∈ ψ(Fix(θ)) for all homomor-
phisms ψ : G → Q onto finite groups Q.

Proof. See [44]. Note that the same result is true for endomorphisms θ : G → G of
finitely generated residually finite groups G, see [68, Theorem II.5.2].

Example 2.39. (See [68, Section II.5], where this example is called D)

R4·3 :=





a1b2a−1
1 b−1

1 , a2b2a−1
2 b−1

1 , a1b3a−1
2 b−1

3 , a1b1a−1
2 b−1

2 ,

a2b1a−1
1 b−1

3 , a2b3a−1
1 b−1

2 , a3b2a−1
3 b−1

1 , a4b2a−1
4 b−1

1 ,

a3b3a−1
4 b−1

3 , a3b1a−1
4 b−1

2 , a4b1a−1
3 b−1

3 , a4b3a−1
3 b−1

2





.

The six underlined relators are the relators of Example 2.36 which is embedded in
Example 2.39.
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Theorem 2.40. (Wise [68, Main Theorem II.5.5]) The (8, 6)–group0 of Example 2.39
is non-residually finite.

Proof. By [68], we have for example

a2a−1
1 a3a−1

4 ∈
⋂

N
f.i.C0

N .

2.5 Constructing simple groups

Using an appropriate embedding of Wise’s non-residually finite group described in
Example 2.39 above, we construct in this section a virtually simple (A10, A10)–group
(Example 2.43). Moreover, we are able to prove in Theorem 2.45 that its index 4
subgroup 00 is a simple group. Therefore, we get an explicit description of a finitely
presented torsion-free simple group in Aut(T10)× Aut(T10), which moreover has the
form F9 ∗F81 F9.

At first, we give two very elementary but crucial lemmas used in the proof of
Theorem 2.45.

Lemma 2.41. Let G be a group, H < G a non-residually finite subgroup of G and
h ∈ H an element such that

1 6= h ∈
⋂

M
f.i.
CH

M .

Then
h ∈

⋂

N
f.i.
CG

N ,

in particular G is also non-residually finite.

Proof. Let N C G be any normal subgroup of finite index in G. Obviously,

N ∩ H C G ∩ H = H .

Moreover
[H : (N ∩ H)] ≤ [G : N ]

is finite by Lemma 2.8, hence

h ∈ N ∩ H < N

and we are done.
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Lemma 2.42. Let G be a non-residually finite group and g ∈ G an element such that

1 6= g ∈
⋂

N
f.i.
CG

N .

Moreover, assume that the normal subgroup 〈〈g〉〉G has finite index in G. Then

〈〈g〉〉G =
⋂

N
f.i.
CG

N .

Proof. By assumption, 〈〈g〉〉G is a normal subgroup of G of finite index, hence

〈〈g〉〉G ⊇
⋂

N
f.i.CG

N .

The other inclusion follows directly from

g ∈
⋂

N
f.i.CG

N C G ,

by definition of the normal closure of g.

Now, we are ready to describe one of our main examples:

Example 2.43. Let R5·5 be the set of 25 relators




a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
2 b−1

3 , a1b4a2b−1
5 , a1b5a−1

5 b4,

a1b−1
5 a3b−1

4 , a1b−1
4 a3b5, a1b−1

3 a−1
2 b2, a1b−1

1 a−1
2 b3, a2b2a−1

2 b−1
1 ,

a2b4a−1
2 b5, a2b5a4b−1

4 , a3b1a−1
4 b−1

2 , a3b2a−1
3 b−1

1 , a3b3a−1
4 b−1

3 ,

a3b4a4b5, a3b−1
5 a4b4, a3b−1

3 a−1
4 b2, a3b−1

1 a−1
4 b3, a4b2a−1

4 b−1
1 ,

a4b−1
5 a−1

5 b−1
4 , a5b1a−1

5 b3, a5b2a−1
5 b−1

5 , a5b3a−1
5 b−1

1 , a5b4a−1
5 b−1

2





.

Proposition 2.44. Let 0 be the (10, 10)–group of Example 2.43. Then

(1) Ph = A10, Pv = A10.

(2) 0 is non-residually finite.

(3) 0 is a finitely presented torsion-free virtually simple group.
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(4) There are two amalgam decompositions

0 ∼= F5 ∗F41 F21

and two amalgam decompositions

00
∼= F9 ∗F81 F9 < Aut(T10) .

(5) [0, 0] = 00 and 00 is perfect.

(6) The number of generators d(0k) grows linearly to infinity for k → ∞, but
d(0k

0) ≤ 3 for all k ∈ N.

(7) Z0(a5) = N0(〈a5〉) = 〈a5〉.
(8) b1 ∈ Z0(a4

5), in particular 0 is not commutative transitive.

Proof. (1) We compute

ρv(b1) = (7, 8)(9, 10),

ρv(b2) = (1, 2)(3, 4),

ρv(b3) = (1, 2)(3, 4)(7, 8)(9, 10),

ρv(b4) = (1, 8, 4, 5)(2, 7, 3, 10),

ρv(b5) = (1, 9, 4, 8)(3, 10, 6, 7),

ρh(a1) = (1, 2)(4, 6, 7, 5)(8, 10, 9),

ρh(a2) = (1, 2, 3)(4, 5, 7, 6)(9, 10),

ρh(a3) = (1, 2)(4, 5, 7, 6)(8, 10, 9),

ρh(a4) = (1, 2, 3)(4, 6, 7, 5)(9, 10),

ρh(a5) = (1, 3, 10, 8)(2, 4, 6, 9, 7, 5).

(2) The embedding of the non-residually finite (8, 6)–complex of Example 2.39 into
the (10, 10)–complex X , indicated by the twelve (single or double) underlined
relators in R5·5, induces a π1-injection by Proposition 1.9(1). The six relators
coming from Example 2.36 (which is embedded in Example 2.39) are doubly
underlined.

(3) Apply [17, Corollary 5.4].

(4) We use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.
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(6) We apply results of Wiegold-Wilson ([67]). First note that d(0) = 2, since for
example 0 = 〈a1, b4〉, and that d(00) = 2, since 00 = 〈a2

1, b5b−1
1 〉 (this can be

easily checked with GAP ([29])). By [67, Theorem 2.2], we have d(0k) = 2k,
if k ≥ 18. However, using the simplicity of 00 which is shown in the following
Theorem 2.45, the result [67, Theorem 4.3] implies d(0k

0) ≤ d(00)+ 1 = 3 for
all k ∈ N.

(7) This follows from Proposition 1.12.

(8) We compute a4
5b1 = b1a4

5 . Obviously, a5 and a4
5 commute. Part (7) shows that

a5 and b1 do not commute and we conclude that 0 is not commutative transitive.

Theorem 2.45. Let 0 be the (10, 10)–group of Example 2.43. Then the subgroup 00

is a finitely presented torsion-free simple group.

Proof. Using Proposition 2.44, we “only” have to show that

00 =
⋂

N
f.i.C0

N .

Take w := a2a−1
1 a3a−1

4 ∈ 00. Then by Theorem 2.40 and Lemma 2.41 we have

w ∈
⋂

N
f.i.C0

N ,

hence by Lemma 2.42, using the fact that every non-trivial normal subgroup of 0 has
finite index in 0 (applying Proposition 2.1), we have

〈〈w〉〉0 =
⋂

N
f.i.C0

N .

A computer algebra system like GAP ([29]) immediately checks that

[0 : 〈〈w〉〉0] = |〈a1, . . . , a5, b1, . . . , b5 | R5·5, w〉| = 4 .

Since [0 : 00] = 4 and w ∈ 00, we conclude that
⋂

N
f.i.C0

N = 〈〈w〉〉0 = 00 .

Alternatively and more explicitly, one proves 〈〈w〉〉0 = 00 by checking that

00 = 〈a1a−1
2 , b3b−1

1 , b3b−1
5 〉
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and
a1a−1

2 = (b2b5wb−1
5 b−1

2 )(b5w
−1b−1

5 ) ∈ 〈〈w〉〉0
b3b−1

1 = (b−1
1 b5w

−1b−1
5 b1)(b1b5wb−1

5 b−1
1 ) ∈ 〈〈w〉〉0

b3b−1
5 = (b−1

1 b−1
4 wb4b1)(b5b−1

4 w−1b4b−1
5 ) ∈ 〈〈w〉〉0 .

A finite presentation of the simple group 00 is given as follows: We take the 37
generators s1, . . . , s37 and the 100 relators of Table 2.6.





s24s34, s10s23s33, s11s24s35, s12s19s37, s13s27s31,

s18s20s36, s17s20s32, s16s24s29, s14s24s30, s1s10s24s33,

s1s12s24s32, s1s13s21s36, s2s26s34, s2s10s25s33, s2s11s26s35,

s2s12s21s32, s2s18s21s31, s2s16s26s29, s2s14s26s30, s3s10s26s33,

s3s18s27s36, s4s27s30, s4s10s27s37, s4s11s27s33, s4s12s27s34,

s5s10s19s33, s5s34, s5s11s19s35, s5s13s24s36, s5s17s22s37,

s5s12s25s32, s5s18s25s31, s5s15s19s30, s5s16s19s28, s6s19s34,

s6s18s19s36, s6s12s26s37, s7s10s21s33, s7s20s34, s7s11s21s35,

s7s18s26s36, s7s17s26s32, s7s15s21s30, s7s16s21s28, s8s21s34,

s8s12s22s32, s9s16s22s33, s9s13s22s34, s9s22s35, s9s10s22s36,

s6s15s28, s5s14s29, s6s16s30, s1s18s31, s9s12s32,

s2s17s37, s2s13s36, s6s10s35, s6s11s33, s6s14s19s29,

s6s13s19s31, s3s17s19s32, s8s15s20s28, s7s14s20s29, s8s16s20s30,

s3s13s20s31, s3s12s20s37, s8s10s20s35, s8s11s20s33, s8s14s21s29,

s9s17s21s37, s9s11s22s28, s9s18s22s29, s9s14s22s30, s9s15s22s31,

s1s14s23s29, s15s23s28, s1s16s23s30, s6s17s23s32, s4s18s23s36,

s7s13s23s31, s7s12s23s37, s1s11s23s34, s1s23s35, s1s15s24s28,

s1s17s24s37, s8s18s24s31, s3s14s25s29, s2s15s25s28, s3s16s25s30,

s8s17s25s37, s8s13s25s36, s3s11s25s34, s3s25s35, s3s15s26s28,

s4s13s26s31, s4s14s27s35, s4s15s27s32, s4s16s27s28, s4s17s27s29





.

Table 2.6: Relators of the simple group of Theorem 2.45

Of course, this presentation can be slightly simplified, for example using the iden-
tities s5 = s24 = s−1

34 . Applying the GAP-command ([29])

SimplifiedFpGroup(G);

we get a presentation of 00 with 3 generators and 66 relators of lengths between 18
and 113. Note that the deficiency of 00 is −63, cf. Section 4.6.
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Remark. The smallest finitely presented torsion-free simple group coming from the
construction given in [17, Section 6.5] either has amalgam decompositions

Aut(T48) > F7919 ∗F380065 F7919
∼= F47 ∗F364321 F47 < Aut(T7920) ,

if we take k = 3, l = 44, Ph = A6, Pv = A88, or has amalgam decompositions

Aut(T48) > F8279 ∗F397345 F8279
∼= F47 ∗F380881 F47 < Aut(T8280) ,

if we take k = 3, l = 45 and Y = A5,89, using the notation of [17]. Observe that both
groups need more than 360000 relators in any finite presentation. Also the smallest
candidate for being a finitely presented torsion-free simple group in the construction
leading to [17, Theorem 6.4] has complicated amalgam decompositions

Aut(T218) > F349 ∗F75865 F349
∼= F217 ∗F75601 F217 < Aut(T350) ,

needing more than 75000 relators. Obviously, it would be an enormous work to write
down a presentation of such a group.

More simple groups

Using exactly the same ideas as in Theorem 2.45, we embed now the non-residually
finite (8, 6)–complex of Example 2.39 into several (2m, 2n)–complexes with virtually
simple fundamental groups 0. See the following list (Table 2.7) for examples with

(2m, 2n) ∈ {(10, 10), (10, 12), (12, 8), (12, 10), (12, 12)} .
As before, the group

0∗ :=
⋂

N
f.i.C0

N = 〈〈a2a−1
1 a3a−1

4 〉〉0

is finitely presented, torsion-free and simple. In the list, we use the following notation:
In the third column, [2, 2] stands for Z2

2 etc. and in the last column, for example
(9, 81, 9) means an amalgam decomposition F9 ∗F81 F9. Note that 00 and 0∗ always
have two amalgam decompositions, a horizontal and a vertical one. Since 0∗ < 00

is a subgroup, the index [0 : 0∗] is a multiple of 4. In most (but not all) examples
listed below, we have [0, 0] = 0∗, in particular for these examples

∣∣0ab
∣∣ = [0 : 0∗]

and [0, 0] is simple. In all examples (in particular for those with 0∗ � [0, 0]), we
compute that 0∗ is the group

〈〈[a1, a2], [a1, b1], [a1, b2], [a1, b3], [a2, b1],
[a2, b2], [a2, b3], [b1, b2], [b1, b3], [b2, b3]〉〉0 .

If [0 : 0∗] > ∣∣0ab
∣∣, we give the non-abelian quotient 0/0∗.
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Ex 0 0ab 0/0∗
∣∣0ab

∣∣ 0∗ = 〈〈a2a−1
1 a3a−1

4 〉〉0
2.43 (A10, A10) [2, 2] 4 (9, 81, 9) = (9, 81, 9)

(A10, A10) [2, 2, 2] 8 (17, 161, 17) = (17, 161, 17)
(A10, A10) [2, 4] 8 (17, 161, 17) = (17, 161, 17)
(A10, A10) [2, 6] 12 (25, 241, 25) = (25, 241, 25)
(A10, A10) [2, 2, 4] 16 (33, 321, 33) = (33, 321, 33)
(A10, A10) [2, 8] 16 (33, 321, 33) = (33, 321, 33)
(A10, A10) [2, 10] 20 (41, 401, 41) = (41, 401, 41)
(A10, A10) [2, 2, 6] 24 (49, 481, 49) = (49, 481, 49)
(A10, A10) [2, 12] 24 (49, 481, 49) = (49, 481, 49)
(A10, A10) [2, 2, 8] 32 (65, 641, 65) = (65, 641, 65)

2.50 (A10, A10) [2, 20] 40 (81, 801, 81) = (81, 801, 81)

(A10, A12) [2, 2] 4 (11, 101, 11) = (9, 97, 9)
2.48 (A10, A12) [2, 2] D6 4 (31, 301, 31) = (25, 289, 25)

(A10, A12) [2, 2, 2] 8 (21, 201, 21) = (17, 193, 17)
(A10, A12) [2, 2, 2] S3 × Z2

2 8 (61, 601, 61) = (49, 577, 49)
(A10, A12) [2, 4] 8 (21, 201, 21) = (17, 193, 17)

2m = 12
(A12, A8) [2, 2] 4 (7, 73, 7) = (11, 81, 11)
(A12, A8) [2, 4] 8 (13, 145, 13) = (21, 161, 21)

2.46 (M12, A8) [2, 2] 4 (7, 73, 7) = (11, 81, 11)

(A12, A10) [2, 2] 4 (9, 97, 9) = (11, 101, 11)
(A12, A10) [2, 2] D6 4 (25, 289, 25) = (31, 301, 31)
(A12, A10) [2, 2] D5 × Z2 4 (41, 481, 41) = (51, 501, 51)
(A12, A10) [2, 2, 2] 8 (17, 193, 17) = (21, 201, 21)
(A12, A10) [2, 4] 8 (17, 193, 17) = (21, 201, 21)
(A12, A10) [2, 2, 2] D4 × Z2 8 (33, 385, 33) = (41, 401, 41)
(A12, A10) [2, 6] 12 (25, 289, 25) = (31, 301, 31)
(A12, A10) [2, 8] 16 (33, 385, 33) = (41, 401, 41)
(A12, A10) [2, 10] 20 (41, 481, 41) = (51, 501, 51)
(A12, A10) [2, 2, 6] 24 (49, 577, 49) = (61, 601, 61)
(M12, A10) [2, 2] 4 (9, 97, 9) = (11, 101, 11)

(A12, A12) [2, 2] 4 (11, 121, 11) = (11, 121, 11)
(A12, A12) [2, 2, 2] 8 (21, 241, 21) = (21, 241, 21)
(A12, A12) [2, 6] 12 (31, 361, 31) = (31, 361, 31)

Table 2.7: Many simple groups 0∗
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Three more examples appearing in Table 2.7 (namely Example 2.46, Example 2.48
and Example 2.50) will be described now. We have chosen these three examples for
the following reasons:

• In Example 2.46, Ph
∼= M12, the fascinating Mathieu group.

• In Example 2.48, 0∗ � [0, 0].
• In Example 2.50, [0 : 0∗] = 40 is the largest such index in Table 2.7.

Here is the description of a (M12, A8)–group:

Example 2.46.

R6·4 :=





a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
2 b−1

3 , a1b4a3b4,

a1b−1
4 a2b−1

4 , a1b−1
3 a−1

2 b2, a1b−1
1 a−1

2 b3, a2b2a−1
2 b−1

1 ,

a2b4a5b4, a3b1a−1
4 b−1

2 , a3b2a−1
3 b−1

1 , a3b3a−1
4 b−1

3 ,

a3b−1
4 a−1

4 b−1
4 , a3b−1

3 a−1
4 b2, a3b−1

1 a−1
4 b3, a4b2a−1

4 b−1
1 ,

a4b−1
4 a5b−1

4 , a5b1a−1
6 b2, a5b2a−1

6 b−1
2 , a5b3a−1

5 b−1
3 ,

a5b−1
2 a−1

6 b−1
1 , a5b−1

1 a−1
6 b1, a6b3a−1

6 b−1
4 , a6b4a−1

6 b3





.

Theorem 2.47. Let 0 be the (12, 8)–group defined in Example 2.46. Then

(1) Ph
∼= M12, Pv = A8.

(2) 0 is non-residually finite.

(3) 0 is a finitely presented torsion-free virtually simple group.

(4) There are amalgam decompositions

F4 ∗F37 F19
∼= 0 ∼= F6 ∗F41 F21

and
Aut(T12) > F7 ∗F73 F7

∼= 00
∼= F11 ∗F81 F11 < Aut(T8) .

(5) [0, 0] = 00 and 00 is perfect.

(6) 00 is a finitely presented torsion-free simple group.
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Proof. (1) We compute

ρv(b1) = (5, 6)(7, 8)(9, 10)(11, 12),

ρv(b2) = (1, 2)(3, 4)(5, 6)(7, 8),

ρv(b3) = (1, 2)(3, 4)(9, 10)(11, 12),

ρv(b4) = (1, 11, 5, 9, 10)(2, 12, 3, 4, 8),

ρh(a1) = ρh(a3) = (1, 2)(4, 5)(6, 8, 7),

ρh(a2) = ρh(a4) = (1, 2, 3)(4, 5)(7, 8),

ρh(a5) = (1, 7)(4, 5),

ρh(a6) = (2, 8)(3, 5, 6, 4).

(2) The embedding of the non-residually finite (8, 6)–complex of Example 2.39
into the (12, 8)–complex X (indicated by the twelve underlined relators in R6·4)
induces a π1-injection by Proposition 1.9(1).

(3) We use [17, Corollary 5.3] and conclude as in [17, Corollary 5.4].

(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.

(6) The proof is in the same spirit as the proof of Theorem 2.45.

Our next example is an (A10, A12)–group0 with a simple subgroup0∗ of index 12
such that 0/0∗ is non-abelian:

Example 2.48. Let R5·6 be the set of relators




a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
2 b−1

3 , a1b4a2b−1
4 , a1b5a2b−1

5 ,

a1b6a−1
4 b4, a1b−1

6 a4b6, a1b−1
5 a−1

2 b5, a1b−1
4 a−1

4 b−1
6 , a1b−1

3 a−1
2 b2,

a1b−1
1 a−1

2 b3, a2b2a−1
2 b−1

1 , a2b4a−1
3 b−1

6 , a2b6a−1
3 b−1

4 , a2b−1
6 a3b6,

a3b1a−1
4 b−1

2 , a3b2a−1
3 b−1

1 , a3b3a−1
4 b−1

3 , a3b4a5b5, a3b5a−1
4 b−1

4 ,

a3b−1
5 a−1

4 b−1
5 , a3b−1

3 a−1
4 b2, a3b−1

1 a−1
4 b3, a4b2a−1

4 b−1
1 , a4b−1

4 a5b−1
5 ,

a5b1a−1
5 b−1

1 , a5b2a−1
5 b2, a5b3a−1

5 b5, a5b4a−1
5 b−1

3 , a5b6a−1
5 b6
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Theorem 2.49. Let 0 be the (10, 12)–group defined in Example 2.48 and let

0∗ :=
⋂

N
f.i.
C0

N .

Then

(1) Ph = A10, Pv = A12.

(2) The group 0∗ is finitely presented, torsion-free and simple.

(3) The finite index subgroups of 0 and the normal subgroups of 0 are completely
known (and explicitly described below).

Proof. (1) We compute

ρv(b1) = (7, 8)(9, 10),

ρv(b2) = (1, 2)(3, 4),

ρv(b3) = (1, 2)(3, 4)(7, 8)(9, 10),

ρv(b4) = (1, 9, 8, 5, 7, 10, 2, 3, 4),

ρv(b5) = (1, 9, 10, 2)(3, 4, 6)(7, 8),

ρv(b6) = (1, 4, 10, 7)(2, 3, 9, 8),

ρh(a1) = (1, 2)(6, 9)(10, 12, 11),

ρh(a2) = (1, 2, 3)(4, 6)(11, 12),

ρh(a3) = (1, 2)(4, 5, 8)(7, 9)(10, 12, 11),

ρh(a4) = (1, 2, 3)(4, 7)(5, 9, 8)(11, 12),

ρh(a5) = (2, 11)(3, 4, 8)(5, 10, 9)(6, 7).

(2) Same proof as in the previous theorems.

(3) We have used GAP ([29]) for the computations. Look at the following diagram
(Figure 2.2), which describes all subgroups of 0 of finite index (0 has no non-
trivial normal subgroups of infinite index by Proposition 2.1).

Here are some explanations: N1, N2, N3, N4 are normal subgroups of 0. The
subgroups H1, H2, H3 are not normal. The index in 0 is given on the left hand
side of the diagram. All arrows are inclusions. The subgroups of 0 are defined
as follows:

N1 := ker(0→ S2), ai 7→ (), b j 7→ (1, 2)

N2 := ker(0→ S2), ai 7→ (1, 2), b j 7→ ()

N3 := ker(0→ S2), ai 7→ (1, 2), b j 7→ (1, 2) .
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1 0

2 N1

44hhhhhhhhhhhhhhhhhhhhhhhh N2

66mmmmmmmmmmmmmmmm
N3

=={{{{{{{{

3 H1

XX111111111111111

4 00

OO FF

==||||||||||||||||||||

6 H2

==||||||||||||||||||||

[[77777777777777777777777777

N4

FF

[[77777777777777777777777777

H3

OO

[[77777777777777777777777777

12 0∗

XX111111111111111

=={{{{{{{{

66mmmmmmmmmmmmmmm

44hhhhhhhhhhhhhhhhhhhhhhhh

Figure 2.2: Subgroups of Example 2.48

N4 := ker(0→ S3)

a1, a2 7→ (1, 2)(3, 5)(4, 6)

a3, a4, a5 7→ (1, 3)(2, 4)(5, 6)

b1, b2, b3, b4, b5 7→ ()

b6 7→ (1, 4, 5)(2, 3, 6) .

H1 := 〈a1, a5a−1
3 , b1〉

H2 := 〈a1, a5a−1
3 , b2b−1

1 〉
H3 := 〈a5a−1

3 , b1a−1
1 , b2a−1

1 〉 .
We have

0/0∗ ∼= D6, 0/N4
∼= S3, H1/0

∗ ∼= Z2
2 ,

N1/0
∗ ∼= S3, N2/0

∗ ∼= Z6, N3/0
∗ ∼= S3 ,

[0, 0] = [N1, N1] = [N3, N3] = 00 ,

[00, 00] = [N2, N2] = [N4, N4] = [H1, H1] = [H2, H2] = [H3, H3] = 0∗ .
The following commutators are not in 0∗:

[a1, a3], [a1, a4], [a1, a5], [a1, b6] ,
[a2, a3], [a2, a4], [a2, a5], [a2, b6], [a3, b6], [a4, b6], [a5, b6] .
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∣∣0/〈〈wk〉〉0
∣∣ k = 1 2 3 4 5 6 7 8 9 10 11 12

w = a1, . . . , a5 2 12 2 12 2 12 2 12 2 12 2 12
b1, . . . , b5 6 12 6 12 6 12 6 12 6 12 6 12

b6 2 4 6 4 2 12 2 4 6 4 2 12

Table 2.8: Some orders of 0/〈〈wk〉〉0 in Example 2.48

In addition, see Table 2.8 for the orders of some quotients of 0.

Here is an example of an (A10, A10)–group with a simple subgroup of index 40:

Example 2.50. Let R5·5 be the set





a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
2 b−1

3 , a1b4a3b4, a1b5a−1
1 b−1

5 ,

a1b−1
4 a2b−1

4 , a1b−1
3 a−1

2 b2, a1b−1
1 a−1

2 b3, a2b2a−1
2 b−1

1 , a2b4a4b4,

a2b5a−1
5 b−1

5 , a2b−1
5 a−1

5 b5, a3b1a−1
4 b−1

2 , a3b2a−1
3 b−1

1 , a3b3a−1
4 b−1

3 ,

a3b5a4b−1
4 , a3b−1

5 a4b−1
5 , a3b−1

4 a4b5, a3b−1
3 a−1

4 b2, a3b−1
1 a−1

4 b3,

a4b2a−1
4 b−1

1 , a5b1a−1
5 b−1

3 , a5b2a−1
5 b−1

2 , a5b3a−1
5 b4, a5b4a−1

5 b1





.

Theorem 2.51. Let 0 be the (10, 10)–group of Example 2.50 and define

0∗ :=
⋂

N
f.i.
C0

N .

Then

(1) Ph = A10, Pv = A10.

(2) 0∗ is a finitely presented torsion-free simple group.

(3) All finite index subgroups of 0 are normal. They are visualized in the following
diagram (Figure 2.3), where all arrows are inclusions.
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1 0

2 N1

55llllllllllllllllll
N2

<<yyyyyyyyy
N3

OO

4 N4

66mmmmmmmmmmmmmmmm
N5

=={{{{{{{{
N6

OO <<yyyyyyyy

66lllllllllllllllll

8 N8

OO >>||||||||

66mmmmmmmmmmmmmmmm

5 N7

YY2222222222222222222222222222222222

10 N11

YY2222222222222222222222222222222222

66mmmmmmmmmmmmmmmm
N10

YY2222222222222222222222222222222222

=={{{{{{{{
N9

XX2222222222222222222222222222222222

OO

20 N14

XX1111111111111111111111111111111111

66llllllllllllllll
N13

XX2222222222222222222222222222222222

<<yyyyyyyy
N12

YY2222222222222222222222222222222222

OO <<yyyyyyyy

66mmmmmmmmmmmmmmmm

40 0∗

XX1111111111111111111111111111111111

OO <<yyyyyyyy

55lllllllllllllllll

Figure 2.3: Subgroups of Example 2.50

Proof. (1) We compute

ρv(b1) = (7, 8)(9, 10),

ρv(b2) = (1, 2)(3, 4),

ρv(b3) = (1, 2)(3, 4)(7, 8)(9, 10),

ρv(b4) = (1, 9, 4, 8)(2, 10, 3, 7),

ρv(b5) = (2, 5)(3, 7)(4, 8)(6, 9),

ρh(a1) = (1, 2)(4, 7)(8, 10, 9),

ρh(a2) = (1, 2, 3)(4, 7)(9, 10),

ρh(a3) = (1, 2)(4, 5, 6, 7)(8, 10, 9),

ρh(a4) = (1, 2, 3)(4, 5, 6, 7)(9, 10),

ρh(a5) = (1, 7, 3)(4, 8, 10).

(2) We apply the same strategy as in the previous theorems.
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(3) Using GAP ([29]), we have computed

N1 = 〈〈a2
1, a1b1〉〉0 0/N1

∼= Z2

N2 = 〈〈b1〉〉0 0/N2
∼= Z2

N3 = 〈〈a1〉〉0 0/N3
∼= Z2

N4 = 〈〈a1b4〉〉0 0/N4
∼= Z4

N5 = 〈〈a1b5〉〉0 0/N5
∼= Z4

N6 = 〈〈a2
1〉〉0 = 00 0/N6

∼= Z2
2

N7 = 〈〈a5
1, b5

1〉〉0 0/N7
∼= Z5

N8 = 〈〈a4
1〉〉0 0/N8

∼= Z2 × Z4

N9 = 〈〈a2
1a−1

3 〉〉0 0/N9
∼= Z10

N10 = 〈〈a2
1b−1

5 〉〉0 0/N10
∼= Z10

N11 = 〈〈a10
1 , a1b1〉〉0 0/N11

∼= Z10

N12 = 〈〈a10
1 〉〉0 0/N12

∼= Z2 × Z10

N13 = 〈〈a1b1〉〉0 0/N13
∼= Z20

N14 = 〈〈b5a−1
3 〉〉0 0/N14

∼= Z20

0∗ = [0, 0] 0/0∗ ∼= Z2 × Z20 .

= 〈〈a1a−1
2 〉〉0

= 〈〈a20
1 〉〉0

= 〈〈b20
1 〉〉0

See Table 2.9 for the orders of some quotients of 0:

∣∣0/〈〈wk〉〉0
∣∣ k = 1 2 3 4 5 6 7 8 9 10 11 12 20

w = a1, . . . , a5 2 4 2 8 10 4 2 8 2 20 2 8 40
b1, . . . , b5 2 4 2 8 10 4 2 8 2 20 2 8 40

Table 2.9: Some orders of 0/〈〈wk〉〉0 in Example 2.50

See Appendix C.7 for a long list of other embeddings of the non-residually finite
(8, 6)–complex of Example 2.39 into (10, 10)–complexes X such that Ph and Pv are
both primitive permutation groups.
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2.6 A non-simple group without finite quotients

We use an embedding of the non-residually finite (8, 6)–complex of Example 2.39
into a (10, 10)–complex to get a non-simple group 00 < Aut(T10)×Aut(T10) without
proper subgroups of finite index.

Example 2.52. Let R5·5 be the set of relators




a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
2 b−1

3 , a1b4a1b5, a1b−1
5 a2b−1

5 ,

a1b−1
4 a−1

4 b−1
4 , a1b−1

3 a−1
2 b2, a1b−1

1 a−1
2 b3, a2b2a−1

2 b−1
1 , a2b4a2b5,

a2b−1
4 a−1

3 b−1
4 , a3b1a−1

4 b−1
2 , a3b2a−1

3 b−1
1 , a3b3a−1

4 b−1
3 , a3b5a4b−1

4 ,

a3b−1
5 a−1

5 b−1
5 , a3b−1

4 a4b5, a3b−1
3 a−1

4 b2, a3b−1
1 a−1

4 b3, a4b2a−1
4 b−1

1 ,

a4b−1
5 a5b−1

5 , a5b1a5b4, a5b2a−1
5 b3, a5b3a−1

5 b2, a5b−1
4 a5b−1

1





.

Proposition 2.53. Let 0 be the (10, 10)–group defined in Example 2.52. Then

(1) Ph < S10 is transitive, but not quasi-primitive; Pv = S10.

(2) [0, 0] = 00 and 00 is perfect.

(3) There are two amalgam decompositions

0 ∼= F5 ∗F41 F21

and two amalgam decompositions

00
∼= F9 ∗F81 F9 < Aut(T10) .

(4) 0 is non-residually finite, in particular not linear over any field and irreducible.

Proof. (1) We compute

ρv(b1) = (5, 6)(7, 8)(9, 10),

ρv(b2) = (1, 2)(3, 4),

ρv(b3) = (1, 2)(3, 4)(7, 8)(9, 10),

ρv(b4) = (1, 4, 8, 9, 2, 3, 7, 10)(5, 6),

ρv(b5) = (1, 9, 2, 10)(3, 5, 7)(4, 6, 8).
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These permutations generate a transitive group Ph < S10 of order 3840 which
is not quasi-primitive, since Ph has a normal subgroup of order 2 generated by
the element (1, 2)(3, 4)(5, 6)(7, 8)(9, 10) = ρv(b1)ρv(b2).

ρh(a1) = (1, 2)(4, 7, 5, 6)(8, 10, 9),

ρh(a2) = (1, 2, 3)(4, 7, 5, 6)(9, 10),

ρh(a3) = (1, 2)(4, 5, 6, 7)(8, 10, 9),

ρh(a4) = (1, 2, 3)(4, 5, 6, 7)(9, 10),

ρh(a5) = (1, 7)(2, 8)(3, 9)(4, 10)(5, 6).

(2) These are easy computations.

(3) We use Proposition 1.3 and Proposition 1.4. To apply Proposition 1.4, the only
thing to check is that ρv(F

(2)
n ) < S2m is transitive, but here we have

Ph = 〈ρv(b2
1), ρv(b1b2), ρv(b1b4), ρv(b

2
5)〉 ,

in particular ρv(F
(2)
n ) = ρv(Fn) = Ph in the notation of Proposition 1.4.

(4) We use the fact that the non-residually finite (8, 6)–complex of Example 2.39
embeds into the (10, 10)–complex X , see the twelve underlined relators in R5·5.

Theorem 2.54. Let 0 be the (10, 10)–group defined in Example 2.52. Then

(1) The subgroup 00 has no proper subgroups of finite index.

(2) 00 is not simple.

Proof. (1) By construction, the non-residually finite complex of Example 2.39 is
embedded into X . Take w := a2a−1

1 a3a−1
4 and

0∗ :=
⋂

N
f.i.C0

N .

As in Theorem 2.45, we observe that 〈〈w〉〉0 = 00, in particular 〈〈w〉〉0 > 0∗.
Since w ∈ 0∗, using Theorem 2.40 and Lemma 2.41, we conclude that

〈〈w〉〉0 = 0∗ = 00 .

Assume now that M is a finite index subgroup of 00. Then M also has finite
index in 0 and therefore

M >
⋂

L
f.i.
<0

L =
⋂

N
f.i.C0

N = 0∗ = 00 ,

using Lemma 2.6, hence M = 00.
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(2) QZ(H1) ∩ 00 is a non-trivial normal subgroup of infinite index in 00. More
precisely, let A be the set

A := {(a1a−1
2 )2, (a−1

2 a1)
2, (a3a−1

4 )2, (a−1
4 a3)

2, a4
5}±1 .

Then A ⊂ 31 ∩ 00 < QZ(H1) ∩ 00, since for each a ∈ A and b ∈ Ev we have
ρh(a)(b) = b and ρv(b)(a) ∈ A, using Lemma 1.1(1a).

Note that we have |F81\F9/F81| = 3 for the vertical amalgam decomposition of
00
∼= F9 ∗F81 F9 (more than 2 by Proposition 1.6, since Ph is not 2-transitive),

and 00 is therefore even SQ-universal, according to Proposition 1.7.

Remarks. (see Appendix D.1 for much more history)

(1) Higman’s group

H = 〈a, b, c, d | b−1ab = a2, c−1bc = b2, d−1cd = c2, a−1da = d2〉

introduced in [34], has no proper subgroup of finite index. There is another
similarity to the group 00 of Example 2.52: Using small cancellation theory,
Schupp proved in [62] that H is SQ-universal. By the way, H was used to show
the existence of a finitely generated infinite simple group (one takes the quotient
of H by a maximal normal subgroup of H ), thus answering a question posed by
Kuroš ([42]).

(2) Bhattacharjee has constructed in [7] an amalgam F3 ∗F13 F3 without non-trivial
finite quotients. It is not clear if it has proper infinite quotients.

(3) In [68], Wise gave a construction of a square complex, whose fundamental
group has no non-trivial finite quotients.

As usual, we give in Table 2.10 orders of some quotients of the group 0 defined in
Example 2.52. The infinite quotients in the table correspond to elements in 31.

∣∣0/〈〈wk〉〉0
∣∣ k = 1 2 3 4 5 6 7 8 9 10 11 12

w = a1, . . . , a4 2 4 2 4 2 4 2 4 2 4 2 4
a5 2 4 2 ∞ 2 4 2 ∞ 2 4 2 ∞

b1, . . . , b5 2 4 2 4 2 4 2 4 2 4 2 4

Table 2.10: Some orders of 0/〈〈wk〉〉0 in Example 2.52
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2.7 A group which is not virtually torsion-free

Using an idea of Wise ([68, Section II.6]), we construct a finitely presented infinite
quotient Q of an (8, 8)–group such that Q is not virtually torsion-free, i.e. each sub-
group of Q of finite index has non-trivial elements of finite order.

Lemma 2.55. (Wise, cf. [68, Easy Lemma II.6.1]) Let G be a non-residually finite
group and g ∈ G a non-trivial element such that

g ∈
⋂

N
f.i.
CG

N

and assume that g /∈ 〈〈gn〉〉G for some n ≥ 2 (equivalently: 〈〈gn〉〉G � 〈〈g〉〉G). Then
the quotient G/〈〈gn〉〉G is non-residually finite and not virtually torsion-free.

Proof. (cf. [68, Proof of Easy Lemma II.6.1]) Let H < G/〈〈gn〉〉G =: Q be a subgroup
of finite index (say of index k). Let ψ = φ ◦ π be the composition homomorphism

ψ : G π−→ Q
φ−→ Sk ,

where π is the canonical projection and φ is induced by left multiplication on left
cosets in Q/H , i.e. φ(q)(qi H) := qqi H (cf. proof of Lemma 2.6). Since kerψ C G
and [G : kerψ] ≤ |Sk | = k! is finite, we have g ∈ kerψ , hence

π(g) = g〈〈gn〉〉G ∈ kerφ < H .

By assumption g /∈ 〈〈gn〉〉G , which implies g〈〈gn〉〉G 6= 1Q . We conclude that Q is
non-residually finite.

H is not torsion-free, since (g〈〈gn〉〉G)n = 〈〈gn〉〉G = 1H .

Example 2.56.

R4·4 :=





a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
2 b−1

3 , a1b4a−1
2 b4,

a1b−1
4 a−1

2 b−1
4 , a1b−1

3 a−1
2 b2, a1b−1

1 a−1
2 b3, a2b2a−1

2 b−1
1 ,

a3b1a−1
4 b−1

2 , a3b2a−1
3 b−1

1 , a3b3a−1
4 b−1

3 , a3b4a−1
3 b4,

a3b−1
3 a−1

4 b2, a3b−1
1 a−1

4 b3, a4b2a−1
4 b−1

1 , a4b4a−1
4 b−1

4





.
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Theorem 2.57. Let 0 be the (8, 8)–group defined in Example 2.56 and let w be the
element a2a−1

1 a3a−1
4 . Then Q := 0/〈〈w2〉〉0 is non-residually finite and not virtually

torsion-free. More precisely, the element

w〈〈w2〉〉0 ∈
⋂

N
f.i.
CQ

N < Q

has order 2 in Q.

Proof. The non-residually finite (8, 6)–complex of Example 2.39 embeds into the
(8, 8)–complex of Example 2.56 and induces a π1-injection by Proposition 1.9(1),
in particular

w ∈
⋂

N
f.i.C0

N

by Lemma 2.41. Note that w /∈ 31, since ρh(w)(b4) = b−1
4 6= b4 (see Figure 2.4).

b4 b4 b4 b4

a4a3a1a2

a2

b4

a1 a3 a4

Figure 2.4: Illustrating ρh(w)(b4) = b−1
4 in Example 2.56

However, by Lemma 1.1(1a), the set

A := {w2, (a1a−1
2 a4a−1

3 )2, (a1a−1
2 a3a−1

4 )2, (a2a−1
1 a4a−1

3 )2}
is a subset of 31, since for each a ∈ A and b ∈ Ev we have ρh(a)(b) = b and
ρv(b)(a) ∈ A. Using w2 ∈ 31 C 0, we conclude that 〈〈w2〉〉0 < 31 and therefore
w /∈ 〈〈w2〉〉0. Now apply Lemma 2.55 to the quotient 0/〈〈w2〉〉0.

Remark. Let 0 be a (2m, 2n)–group such that every non-trivial normal subgroup of 0
has finite index, for example by Proposition 2.1. Then every quotient of 0 is either
torsion-free (if the quotient is 0/1 ∼= 0) or finite, in particular virtually torsion-free.

2.8 Locally primitive, not 2-transitive

To guarantee that an irreducible (2m, 2n)–group has no non-trivial normal subgroup
of infinite index, it is required in Proposition 2.1 that both local groups Ph and Pv
are 2-transitive. We construct now an irreducible (A6, Pv)–group, where Pv < S10

is primitive, but not 2-transitive. All primitive permutation groups are 2-transitive in
degree 2, 4, 6, 8, 12 and 14, see Table C.1.
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Example 2.58.

R3·5 :=





a1b1a−1
1 b−1

2 , a1b2a−1
2 b−1

3 , a1b3a−1
2 b1,

a1b4a−1
2 b−1

5 , a1b5a−1
2 b5, a1b−1

5 a−1
2 b−1

4 ,

a1b−1
4 a2b−1

1 , a1b−1
3 a−1

2 b3, a1b−1
2 a2b4,

a2b1a−1
3 b2, a2b2a−1

3 b1, a3b1a3b2,

a3b3a−1
3 b−1

3 , a3b4a3b−1
4 , a3b5a−1

3 b5





.

Theorem 2.59. Let 0 be the (6, 10)–group defined in Example 2.58. Then

(1) Ph = A6; Pv ∼= S5 < S10 is primitive, not 2-transitive.

(2) There are two amalgam decompositions of 0:

F5 ∗F25 F13
∼= 0 ∼= F3 ∗F21 F11 .

There is a vertical decomposition of 00

00
∼= F9 ∗F49 F9 ,

acting locally like A6 (but possibly not effectively) on the tree T2m = T6, and a
horizontal decomposition

00
∼= F5 ∗F41 F5 < Aut(T10) ,

where the (effective) action on T10 is locally like S5 < S10, in particular locally
primitive, but not locally 2-transitive.

(3) H2
b (0;R) is infinite dimensional as R-vector space (cf. Theorem 2.3(8)).

(4) 0 is SQ-universal, in particular not virtually simple.

(5) [0, 0] = 00 and 00 is perfect.

(6) 0 is not linear over any field, in particular irreducible.

Proof. (1) We compute

ρv(b1) = (1, 5, 4, 3, 2),

ρv(b2) = (2, 6, 5, 4, 3),

ρv(b3) = ρv(b5) = (1, 2)(5, 6),

ρv(b4) = (1, 2, 6, 5)(3, 4),
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ρh(a1) = (1, 7, 9, 10, 3, 2)(4, 6, 5),

ρh(a2) = (1, 8, 9)(2, 4, 10)(5, 6, 7),

ρh(a3) = (1, 9)(2, 10)(5, 6).

The action of P (2)v on the sphere S(xv, 2) has two orbits of size 60 and 30,
respectively. Observe that in general the action of P (2)v on S(xv, 2) is transitive
if and only if Pv is a 2-transitive permutation group. Note that Pv acts like S5

on the set of 2-element subsets of {1, 2, 3, 4, 5}.
(2) Use Proposition 1.3 and Proposition 1.4. The explicit horizontal decomposition

of 00 can be found in Appendix A.5.

(3) In the horizontal amalgam decomposition 0 ∼= F3 ∗F21 F11 we have

|F21\F3/F21| = 3 and |F11/F21| = 2 .

See Proposition 1.6 for an easy method to compute |F21\F3/F21|. Now we
apply a result of Fujiwara ([28, Theorem 1.1]), which states that H 2

b (A∗C B;R)
is an infinite dimensional R-vector space if |C\A/C | ≥ 3 and |B/C | ≥ 2.

Note that the assumptions of Fujiwara’s theorem are not fulfilled in the two
(F3 ∗F13 F7)–decompositions of Example 2.2, since |F13\F3/F13| = 2 due to
the 2-transitivity of Ph and Pv in Example 2.2.

(4) Apply Proposition 1.7 to 0 ∼= F3 ∗F21 F11. Observe that 0 does not satisfy the
assumptions of the normal subgroup theorem [17, Theorem 4.1], since H2 is not
locally 2-transitive and consequently not locally∞-transitive.

(5) This is a short computation.

(6) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

Proposition 2.60. Let 0 be as in Example 2.58. Then

〈〈ak
1〉〉0 = 00, if k ∈ {2+ 6l, 4+ 6l}, l ∈ N0 .

Moreover, 〈〈a6
1〉〉0 = 〈〈a12

1 〉〉0 = 〈〈a18
1 〉〉0 = 00.

Proof. For the first part, we only give the idea of the proof, which is essentially the
same as in the proof of Proposition 2.12: show that 〈〈b4b5〉〉0 = 00 and 〈〈b2

5〉〉0 = 00,
then show that for l ∈ N0

a−k
1 (b−1

5 b3ak
1b−1

3 b5) =
{

b4b5 , k = 2+ 6l

b2
5 , k = 4+ 6l .

We have checked the second part of the proposition with MAGNUS ([50]).
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Conjecture 2.61. The group 0 of Example 2.58 is non-residually finite and
⋂

N
f.i.
C0

N = 00 .

See Table 2.11 for the orders of some quotients of 0.
∣∣0/〈〈wk〉〉0

∣∣ k = 1 2 3 4 5 6 7 8 9 10 11 12

w = a1, a2, a3 2 4 2 4 2 4 2 4 2 4 2 4
b1, . . . , b5 2 4 2 4 2 4 2 4 2 4 2 4

Table 2.11: Some orders of 0/〈〈wk〉〉0 in Example 2.58

We also would like to construct an explicit non-trivial infinite index normal sub-
group of 0, for example given as normal closure of one element or of several elements,
but we did not manage to do this. What follows is a mix of ideas to achieve this goal, a
possible application to Kazhdan’s property (T), and some remarks on SQ-universality.

Conjecture 2.62. Let 0 be the group defined in Example 2.58 and xv a vertex in T10.
Then every orbit of the H2(xv)–action on ∂∞T10 is uncountable.

“Proof”. Studying the orbits of the local action of H2 on finite spheres S(xv, k), we
believe that the orbit of any boundary point ω ∈ ∂∞T10 under the H2(xv)–action
contains the uncountable boundary at infinity ∂∞T10;4,7 of a certain infinite subtree
T10;4,7 ⊂ T10. This subtree contains S(xv, 1) and the valency of any vertex yv 6= xv is
either 4 or 7 (depending on ω), but constant on finite spheres S(xv, k).

More precisely, we imagine reduced paths in T10 originating at xv to be labelled by
freely reduced words in the free group 〈b1, . . . , b5〉. Using the explicit isomorphism
Ev ∼= {1, . . . , 10} described in Section 1.4, we identify the sphere S(xv, k) with the
set of k-tuples

{(e1, . . . , ek) ∈ {1, . . . , 10}k : ei + ei+1 6= 11 for each i ∈ {1, . . . , k − 1}} .
For each k ≥ 2, we define an equivalence relation ∼k on S(xv, k) as follows. First,
∼2 gives a partition of S(xv, 2) into two equivalence classes consisting of 30 and
60 elements, respectively. The equivalence class with 30 elements is the set {(1, 3),
(1, 5), (1, 9), (2, 6), (2, 7), (2, 10), (3, 4), (3, 5), (3, 6), (4, 1), (4, 4), (4, 9), (5, 2),
(5, 8), (5, 9), (6, 1), (6, 8), (6, 10), (7, 3), (7, 7), (7, 8), (8, 2), (8, 4), (8, 10), (9, 1),
(9, 3), (9, 6), (10, 2), (10, 5), (10, 7)}. For k ≥ 3 we define

(e1, . . . , ek) ∼k ( f1, . . . , fk) :⇐⇒ (ei , ei+1) ∼2 ( fi , fi+1) ∀i ∈ {1, . . . , k − 1} .
Note that we have 2k−1 equivalence classes on S(xv, k) with respect to ∼k , where the
number of elements in each class is 10 · 6 j · 3k−1− j for some j ∈ {0, . . . , k − 1}. We
have checked that the H2(xv)–action induces exactly the equivalence relation ∼k on
S(xv, k) for k = 2, 3, 4.
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As a “corollary” of Conjecture 2.62, we have

Conjecture 2.63. Let 0 be the group of Example 2.58. Then QZ(H2) = 1.

“Proof”. If Conjecture 2.62 holds, then we follow verbatim the proof of [16, Propo-
sition 3.1.2, 1)]: Let S ⊂ ∂∞T10 be the set of fixed points of hyperbolic elements
in QZ(H2). Then S is countable, since QZ(H2) is countable, which follows directly
from the fact that QZ(H2) is discrete (see [16, Proposition 1.2.1, 2)]). Moreover, S is
H2-invariant, since QZ(H2) is a normal subgroup of H2. We could conclude by Con-
jecture 2.62 that S is empty, in other words QZ(H2) has no hyperbolic elements. On
the other hand, QZ(H2) acts by [16, Proposition 1.2.1, 2)] freely on the vertices of T10

(in particular, there are no elliptic elements in QZ(H2) \ {1}), hence |QZ(H2)| ≤ 2.
But then, QZ(H2) ⊆ Z(H2) = 1.

See the subsequent Table 2.12 to check that small powers of b1, . . . , b5 are not in
the group 32 < QZ(H2) (see also Appendix A.5 for a computation of |ρ(k)v (w)| for
all words w of length 2 and k ≤ 5).

∣∣ρ(k)v (w)
∣∣ k = 1 2 3 4 5

w = b1, b2 5 10 100 600 3000
b3 2 10 50 100 1000
b4 4 8 40 200 1000
b5 2 4 20 40 1200

Table 2.12: Order of ρ(k)v (w) in Example 2.58

For instance, it follows from this table that b j
1 /∈ 32, if 1 ≤ j < 3000, using the

following general lemma.

Lemma 2.64. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group and
b ∈ 〈b1, . . . , bn〉 an element such that b j ∈ 32 for some j ∈ N. Then |ρ(k)v (b)| ≤ j
for each k ∈ N.

Proof. Fix any k ∈ N. Using the identification

32
∼=
⋂

k∈N
kerρ(k)v

we get (
ρ(k)v (b)

) j = ρ(k)v (b j ) = 1Sym(E (k)h )

hence |ρ(k)v (b)| ≤ j .
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∣∣ρ(k)h (w)
∣∣ k = 1 2 3 4

w = a1 6 12 72 432
a2 3 6 12 72
a3 2 4 8 16

Table 2.13: Order of ρ(k)h (w) in Example 2.58

Compare Table 2.12 to Table 2.13, where we already know that QZ(H1) is trivial
by [16, Proposition 3.1.2, 1)].

Conjecture 2.63 implies another conjecture:

Conjecture 2.65. Let 0 be the group of Example 2.58 and let N C 0 be a non-trivial
normal subgroup of infinite index. Then 0/N is an infinite group having property (T)
of Kazhdan.

“Proof”. We know that QZ(H1) = 1 (see [16, Proposition 3.1.2, 1)]) and assume
that QZ(H2) = 1 (see Conjecture 2.63). For 1 6= N C 0 and i = 1, 2, we have
1 6= pri(N ) C Hi . By [16, Proposition 1.2.1] Hi/pri(N ) is compact. We can apply
[17, Proposition 3.1] to conclude that 0/N has property (T).

Note that there are uncountably many non-isomorphic infinite quotients 0/N ,
since 0 is SQ-universal by Theorem 2.59(4) (see [56], the proof is based on the
fact that there are uncountably many non-isomorphic finitely generated groups, but
each quotient 0/N , being countable, has only countably many finitely generated sub-
groups).

A homomorphism of B. H. Neumann

Proposition 2.66. (Neumann, see [55]) Let A, B, C be groups, i A : C → A and
iB : C → B two injective homomorphisms and assume that A 6= 1. Then there is a
surjective homomorphism

ρ : A ∗C B � P < Sym(A × B) ,

such that P 6= 1. In particular, if ρ is not injective, we get a non-trivial proper quotient
P ∼= (A ∗C B)/kerρ of A ∗C B, and if ρ is injective, then A ∗C B < Sym(A × B).

Proof. (cf. [55]) We fix right coset representatives SA := {a1 = 1, a2, a3, . . .} and
SB := {b1 = 1, b2, b3, . . .} of C in A and B, respectively, i.e.

A =
⊔

i

Cai and B =
⊔

j

Cb j .
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We will define two homomorphisms

ρA : A→ Sym(A × B) and ρB : B → Sym(A × B)

as follows. Let (x, y) ∈ A × B, then ρA(a)(x, y) := (ax, y). Obviously, ρA is a
homomorphism:

ρA(aã)(x, y) = (aãx, y) = ρA(a)(ãx, y) = ρA(a)ρA(ã)(x, y) .

To define ρB(b)(x, y), note that with respect to the chosen (fixed) right coset repre-
sentatives, we have unique decompositions

x = cx ax , y = cyby, bcx by = czbz (cx , cy, cz ∈ C, ax ∈ SA, by, bz ∈ SB) .

Now we define ρB(b)(x, y) := (czax , cybz) and check that ρB is a homomorphism:

ρB(bb̃)(x, y) = (ct ax , cybt) ,

where bb̃cx by = ct bt (ct ∈ C , bt ∈ SB) is the unique decomposition. We have

ρB(b̃)(x, y) = (cr ax , cybr ) ,

where b̃cx by = cr br (cr ∈ C , br ∈ SB) is the unique decomposition. Hence,

ρB(b)ρB(b̃)(x, y) = ρB(b)(cr ax , cybr ) = (ct ax , cybt) = ρB(bb̃)(x, y) ,

since bcr br = bb̃cx by = ct bt . Let c ∈ C , then

ρB(c)(x, y) = (ccx ax , cyby) = (cx, y) = ρA(c)(x, y) ,

in other words, ρA ◦ i A = ρB ◦ iB . By the universal property of A ∗C B, the desired
homomorphism ρ : A ∗C B � P exists (see the following diagram), where the group
P < Sym(A×B) is generated by {ρA(A), ρB(B)} ⊆ Sym(A×B). Obviously, P 6= 1,
since A 6= 1 (by assumption) and ρA(a)(1A, 1B) = (a, 1B).

C

i A
��

iB // B

�� ρB

��

A //

ρA ,,

A ∗C B
ρ

## ##
P

Question 2.67. Let 0 be the group defined in Example 2.58. Is there an amalgam
decomposition A ∗C B of 0 (or of its subgroup 00) such that the homomorphism ρ of
Proposition 2.66 is not injective?
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A result of Lyndon

Perhaps useful in the construction of infinite quotients of amalgamated free products
could be the following proposition of Lyndon:

Proposition 2.68. (Lyndon [48, Proposition 1.3]) Let G = A∗C B be an amalgamated
free product. Let NAC A, NBC B be normal subgroups such that NA ∩C = NB ∩C.
Then

G/N ∼= A/NA ∗C/NC B/NB ,

where NC := NA ∩ C = NB ∩ C and N := 〈〈NA ∪ NB〉〉G .

Proof. See [48] or [22].

Blocking pairs

One method to prove the SQ-universality of an amalgamated free product is a criterion
of Schupp ([62]) using the notion of a blocking pair. The following definition is taken
from [62]: Let C < A be groups. A pair {x1, x2} of distinct elements in A\C is called
a blocking pair for C < A if

i) xεi xδj /∈ C \ {1}, for all i, j = 1, 2; ε, δ = ±1.

ii) xεi cxδj /∈ C , if c ∈ C \ {1}; i, j = 1, 2; ε, δ = ±1.

Proposition 2.69. (1) (Schupp [62]) If there is a blocking pair for C < A or a
blocking pair for C < B, then the amalgam A ∗C B is SQ-universal.

(2) If there is a blocking pair for C < A, then |C\A/C | ≥ 3.

(3) Let 0 be a (2m, 2n)–group. Suppose that Ph < S2m is transitive. Then there is
no blocking pair for C < B and no blocking pair for C < A, where

B ∗C A := Fn ∗F1−2m+2mn F1−m+mn
∼= 0

is the vertical decomposition given by Proposition 1.3(1a).

Proof. (1) See [62], the proof uses small cancellation theory.

(2) Let {x1, x2} be a blocking pair for C < A. Obviously Cx1C 6= C 6= Cx2C .
Assume that Cx1C = Cx2C , thus there exist c1, c2 ∈ C such that x1 = c1x2c2.
If c1 = 1 and c2 = 1, then x1 = x2, a contradiction. If c1 6= 1, then we get the
contradiction x−1

1 c1x2 = c−1
2 ∈ C . If c2 6= 1, then x2c2x−1

1 = c−1
1 ∈ C , again

a contradiction to the blocking pair assumption.
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(3) By part (2), there is no blocking pair for C < A, since

|C\A/C | ≤ |A/C | = 2 < 3 .

Let x1 be in a blocking pair for C < B. Let b be a non-trivial element in
ker(ρv : 〈b1, . . . , bn〉 � Ph). Since [B : C] = 2m is finite, there is an integer
k ∈ N such that bk ∈ C . Let c := bk , then c ∈ ker ρv \ {1} fixes the 1-sphere
around the vertex “B” in the corresponding Bass-Serre tree (see Figure 2.5), in
particular c fixes the edge “Cx1”, hence Cx1c = Cx1, but then x1cx−1

1 ∈ C is a
contradiction to the assumption that x1 is in a blocking pair for C < B.

B

C

A
Ax1

Cx1

Figure 2.5: Illustration in the proof of Proposition 2.69(3)

2.9 Three candidates for simplicity

So far, we have presented many simple groups and many candidates. In this section,
we give three more candidates for simplicity coming from three different construc-
tions. The third one (Example 2.77) has very small finite presentations and is therefore
particularly suitable for computer experiments.

A non-linear (4, 6)–group

Let 0 be the (4, 6)–group defined by

R2·3 :=





a1b1a−1
1 b−1

2 , a1b2a−1
2 b−1

1 ,

a1b3a−1
2 b1, a1b−1

3 a2b3,

a1b−1
2 a−1

2 b−1
3 , a2b1a−1

2 b2




.

Some properties of 0 will be described in Section 4.2, in particular 0 is not linear.

Question 2.70. Let 0 be as above. Is 00 simple?
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Embedding the (4, 6)–group of Wise

Recall Wise’s (4, 6)–group of Example 2.36:

R2·3 :=





a1b2a−1
1 b−1

1 , a2b2a−1
2 b−1

1 ,

a1b3a−1
2 b−1

3 , a1b1a−1
2 b−1

2 ,

a2b1a−1
1 b−1

3 , a2b3a−1
1 b−1

2




.

Lemma 2.71. Let 0 be the group defined in Example 2.36 and let θ : 0 → 0,
γ 7→ b3γ b−1

3 be the conjugation by b3. Then Fix(θ) = 〈b3〉.

Proof. Note that Fix(θ) = {γ ∈ 0 : b3γ b−1
3 = γ } is the centralizer of b3 in 0. The

statement follows now from Proposition 1.12(1b).

Proposition 2.72. Let 0 be the (4, 6)–group defined in Example 2.36 and let S be the
subset

S :=
⋂

k∈N
〈b3〉〈〈b2k

3 〉〉0 \ 〈b3〉 ⊂ 0 .

(1) If S is non-empty, then 0 is not 〈b3〉-separable.

(2) If γ ∈ S for some γ ∈ 0, then 0 is non-residually finite such that

γ−1θ(γ ) = [γ−1, b3] ∈
⋂

N
f.i.
C0

N .

(3) If a1a−1
2 ∈ S, then the index 4 subgroup 0̂0 of the (A8, A8)–group 0̂ which is

given by

R4·4 :=





a1b1a−1
2 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
2 b−1

3 , a1b4a−1
4 b4,

a1b−1
4 a2b−1

4 , a1b−1
3 a−1

2 b2, a1b−1
1 a−1

2 b3, a2b2a−1
2 b−1

1 ,

a2b4a3b4, a3b1a3b2, a3b3a−1
4 b−1

3 , a3b−1
4 a−1

4 b3,

a3b−1
3 a−1

4 b−1
2 , a3b−1

2 a−1
4 b−1

4 , a3b−1
1 a4b−1

1 , a4b1a4b−1
2





,

is a finitely presented torsion-free simple group isomorphic to an amalgam of
the form F7 ∗F49 F7.
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Proof. (1) Let γ be an element in S, let ψ : 0 → Q be a homomorphism onto a
finite group Q and let k be the order of ψ(b3) in Q. Then bk

3 ∈ ker(ψ) and ψ
can be written as a composition

0
ψ1−→ 0/〈〈b2k

3 〉〉0
ψ2−→ 0/〈〈bk

3〉〉0
ψ3−→ Q .

Hence

ψ(γ ) = ψ3ψ2(γ 〈〈b2k
3 〉〉0) ∈ ψ3ψ2(〈b3〉〈〈b2k

3 〉〉0) = ψ3(〈b3〉〈〈bk
3〉〉0) = ψ(〈b3〉)

and 0 is not 〈b3〉-separable.

(2) It follows from Lemma 2.38, using part (1) of this proposition and Lemma 2.71.

(3) Using part (2) of this proposition, the claim follows as in Section 2.5, because
the (4, 6)–complex corresponding to 0 embeds into the (8, 8)–complex corre-
sponding to 0̂, and 〈〈[a2a−1

1 , b3]〉〉0̂ has index 4 in 0̂.

Lemma 2.73. Let 0 be the group of Example 2.36. Then [0, 0] = 〈〈a1a−1
2 〉〉0 and

0/[0, 0] ∼= 〈a1, b1 | a1b1 = b1a1〉 ∼= Z2.

Proof. The inclusion [0, 0] > 〈〈a1a−1
2 〉〉0 follows from a1a−1

2 = [a1, b−1
3 ] ∈ [0, 0].

Let N C 0 be any normal subgroup containing a1a−1
2 , for example N = 〈〈a1a−1

2 〉〉0.
Then a1 N = a2 N , hence

a2b1 N = a1b1 N = b2a2 N = b2a1 N = a2b3 N ,

and
b2a2 N = a1b1 N = a2b1 N = b3a1 N = b3a2 N ,

which implies b1 N = b2 N = b3 N . Moreover, b1a1 N = a1b2 N = a1b1 N , in
particular, the group 0/N is generated by {a1 N , b1 N } and abelian, therefore [0, 0] is
a subgroup of N .

Lemma 2.74. Let 0 be the (4, 6)–group defined in Example 2.36. Then

〈〈[a2a−1
1 , b3]〉〉0 = 〈〈a1a−1

2 〉〉0 .

Proof. We have checked the statement using MAGNUS ([50]). The inclusion

〈〈[a2a−1
1 , b3]〉〉0 < 〈〈a1a−1

2 〉〉0
is obvious, since [a2a−1

1 , b3] ∈ [0, 0] = 〈〈a1a−1
2 〉〉0 by Lemma 2.73.



2.9. THREE CANDIDATES FOR SIMPLICITY 93

Conjecture 2.75. Let 0 be the group of Example 2.36. Then for each k ∈ N
a1a−1

2 ∈ 〈b3〉〈〈b2k
3 〉〉0 ,

in particular Proposition 2.72 can be applied.

Conjecture 2.76. Let 0 be the group of Example 2.36. Then
⋂

N
f.i.
C0

N = [0, 0] .

Remarks. Let 0 be the group of Example 2.36. Then

(1) 〈〈bi
3〉〉0 6= 〈〈b j

3〉〉0, if i 6= j and i, j ∈ N, since (0/〈〈bi
3〉〉0)ab ∼= Z× Zi .

(2) It follows from Lemma 2.73 that a1a−1
2 ∈ 〈〈b2k

3 〉〉0 if and only if 0/〈〈b2k
3 〉〉0 is

abelian. Using MAGNUS ([50]), we see that 0/〈〈b8
3〉〉0 is not abelian, in other

words a1a−1
2 /∈ 〈〈b8

3〉〉0.

(3) If k ≤ 10, then the number of subgroups of index k is the same for the group 0
and the group Z2.

A 4-vertex construction

A (2m, 2n)–group 0 is never simple, since 00 is a normal subgroup of index 4. How-
ever, we have conjectured 00 to be simple in Example 2.2, 2.18, 2.21, 2.30, A.26
and 2.33, and proved it to be simple in Example 2.43 and in many more examples listed
in Table 2.7. The corresponding square complex X0 has 4 vertices and T2m × T2n as
universal covering space. In this section, we directly construct a 4-vertex square com-
plex Y , which is not a 4-fold covering of a (2m, 2n)–complex. Its universal covering
space Ỹ is T3 × T4. Observe that due to this more general construction, the valencies
of the regular trees in Ỹ are not necessarily even. As a consequence, the number of
geometric squares in Y is only 12 (this is small, compared to the 36 geometric squares
of X0 in Example 2.2 or the 100 geometric squares of X0 in Example 2.43) and we get
therefore relatively short presentations of π1Y . The construction of Y is done in such
a way that Y is irreducible, all the “local groups” are at least 2-transitive and π1Y is
perfect. This seems to give some reasons to hope that π1Y is a simple group.

Note that we have introduced the local groups and the notion of link in Section 1.2
only for (2m, 2n)–complexes, but they can also be defined similarly, now depending
on the vertices, for more general square complexes, see [17, Chapter 1]. In the fol-
lowing, we denote these local groups by P (k)h (α), P(k)v (α), P(k)h (β), P(k)v (β), P(k)h (γ ),

P(k)v (γ ), P(k)h (δ), P(k)v (δ), and the links by Lk(α), Lk(β), Lk(γ ), Lk(δ), where α, β,
γ , δ are the four vertices of Y and k ∈ N.
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γ

α

δ

β

b2

c1

a1

b3 b4

b4b3b2b1

b1 b2 b3 b4

b1

c1 c1 c2

c2 c2 c3 c1

c3 c3 c2 c3

a1 a1 a1

a2 a2 a2 a2

a3 a3 a3 a3

d1

d1

d3 d4

d3

d2 d3

d2

d2 d1

d4

d4

Figure 2.6: The 4-vertex square complex Y of Example 2.77

Example 2.77. Let Y be the 4-vertex square complex illustrated in Figure 2.6.

Proposition 2.78. Let Y be the 2-dimensional cell complex of Figure 2.6 with four
vertices α, β, γ and δ. Then

(1) The links are Lk(α) ∼= Lk(β) ∼= Lk(γ ) ∼= Lk(δ) ∼= K3,4 (complete bipartite
graph), the universal covering space of Y is Ỹ = T3 × T4.

(2) We have local groups

Ph(α) ∼= Ph(δ) ∼= S3 , Ph(β) ∼= Ph(γ ) ∼= S3

Pv(α) ∼= Pv(β) ∼= S4 , Pv(γ ) ∼= Pv(δ) ∼= S4 .

(3) The complex Y is irreducible.

(4) The fundamental group π1Y is a perfect group.

(5) There are amalgam decompositions F3 ∗F7 F3
∼= π1Y ∼= F2 ∗F5 F2.
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Proof. (1) It can be directly read off from Figure 2.6.

(2) This follows from the definitions (see [17, Chapter 1]) and Figure 2.6. Note
that for example Ph(α) and Ph(β) could a priori be different, since α and β are
not in the same connected component of the vertical 1-skeleton of Y . For an
example where indeed Ph(α) � Ph(β), see Example A.29.

(3) We compute
∣∣P(2)v (α)

∣∣ = ∣∣P(2)v (β)
∣∣ = ∣∣P(2)v (γ )

∣∣ = ∣∣P(2)v (δ)
∣∣ = 24 · 64 .

The claim follows now from an obvious generalization of [17, Proposition 1.3]
to the case where the horizontal 1-skeleton is not connected.

(4) This follows directly from any of the explicit presentations of π1Y given in the
proof of part (5).

(5) We give three presentations of π1Y and the corresponding isomorphisms be-
tween them. If we choose the vertex α as base point and the edges a1, b1, d1 as
“spanning tree” in the 1-skeleton of Y , we immediately get the following finite
presentation of π1(Y, α):

π1(Y, α) ∼= 〈a2, a3, b2, b3, b4, c2, c3, d2, d3, d4 |
b2 = d2, b3 = d3, b4 = d4c2,

a2 = c2, a2b2 = d3c2, a2b3 = d2c3, a2b4 = d4,

a3 = d3c3, a3b2 = d4c3, a3b3 = d2c2, a3b4 = c3〉 ,
and after replacing c2, d2, d3 by a2, b2 and b3, respectively, we get

π1(Y, α) ∼= 〈a2, a3, b2, b3, b4, c3, d4 |
b4 = d4a2, a2b2 = b3a2, a2b3 = b2c3, a2b4 = d4,

a3 = b3c3, a3b2 = d4c3, a3b3 = b2a2, a3b4 = c3〉 .
Using the GAP-commands ([29])

GG := SimplifiedFpGroup(G); and RelatorsOfFpGroup(GG);

where G describes the group π1(Y, α) as given above, and writing a2, b3 as x
and y, respectively, we get a presentation of π1Y with two generators x , y and
three relators

xy2x−2y−1xyx−1y−1x ,

xyx−2y−2x2yxy−1x−2 y2x2y−1 ,

x−1yxy−1x−2yx2y−1x−2y2xy−1x2y .
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The two decompositions of π1Y as amalgamated free products of free groups
follow from [68, Theorem I.1.18].

F3 ∗F7 F3 = 〈b2, b3, b4, d2, d3, d4 | d2 = b2, d3 = b3, d2
4 = b2

4,

d4d3d−1
4 = b4b2b−1

4 ,

d4d2
2 d−1

4 = b4b3b−1
4 b3b−1

4 ,

d4d−1
2 d4d2d−1

4 = b4b−1
3 b2b−1

4 b3b−1
4 ,

d4d−1
2 d3d2d−1

4 = b4b−1
3 b−1

4 b3b−1
4 〉 .

F2 ∗F5 F2 = 〈a2, a3, c2, c3 | a2 = c2, a4
3 = c3c−1

2 c3c2c3,

a−1
3 a2a−2

3 = c−1
3 c2c−1

3 c2c−1
3 ,

a3a2a−1
3 = c3c−1

2 c−1
3 , a2

3a2a3 = c3c−1
2 c3

3〉 .
Isomorphisms between these three groups are given as follows:

T4 x F2 ∗F5 F2
∼=←→ π1(Y, α)

∼=←→ F3 ∗F7 F3 y T3

a2 ←→ a2 ←→ d4b−1
4

a3 ←→ a3 ←→ d2d−1
4 b4b−1

3
a−1

2 a3c−1
3 c2 ←→ b2 ←→ b2

a3c−1
3 ←→ b3 ←→ b3

a−1
3 c3 ←→ b4 ←→ b4

c2 ←→ c2 ←→ d4b−1
4

c3 ←→ c3 ←→ d−1
2 d−1

4 b4b3

a−1
2 a3c−1

3 c2 ←→ d2 ←→ d2

a3c−1
3 ←→ d3 ←→ d3

a2a−1
3 c3 ←→ d4 ←→ d4 .

Question 2.79. Let Y be as in Example 2.77.

(1) Is it true that π1Y does not have proper subgroups of finite index?

(2) Is π1Y a non-residually finite group?

(3) Does every non-trivial normal subgroup of π1Y have finite index?

(4) Is π1Y a simple group?

Remark. We have checked with GAP ([29]) that 〈〈wk〉〉π1Y = π1Y , where w is any
generator of π1(Y, α) in the first presentation given in the proof of Proposition 2.78(5),
and k = 1, . . . , 8.



Chapter 3

Quaternion lattices in
PGL2(Qp)× PGL2(Ql)

In Section 3.1, we provide some concepts which will be used throughout this chap-
ter, in particular we study Hamilton quaternion algebras over commutative rings.
To any pair of distinct prime numbers p, l ≡ 1 (mod 4), Mozes has associated a
(p + 1, l + 1)–group 0p,l < PGL2(Qp) × PGL2(Ql). There is a strong interplay
between properties of quaternions and the group 0 p,l , for example 0p,l turns out to
be commutative transitive. We recall the definition of 0 p,l in Section 3.2 and prove
that it is a normal subgroup of index 4 of the group of invertible elements of the
Hamilton quaternion algebra over the ring Z[1/p, 1/ l], modulo its center, adapting
some ideas from Lubotzky’s book [45]. These ideas are also useful to realize 0 p,l

as a subgroup of SO3(Q) or PGL2(C), and to construct homomorphisms onto finite
groups PGL2(Zq) or PSL2(Zq) for each odd prime number q different from p and l.
These and other results are illustrated by concrete examples. In Section 3.3 and 3.4,
we generalize and adapt the construction of 0 p,l to the other cases of prime num-
bers p, l ≡ 3 (mod 4) and p ≡ 3 (mod 4), l ≡ 1 (mod 4), prove that these groups
are also (p + 1, l + 1)–groups, and again give many examples. In total, we have
made computations in 130 examples. They lead to some conjectures in Section 3.5,
in particular about the abelianization of 0p,l , generalizing a conjecture of Kimberley-
Robertson given for the classical case. It also seems that the abelianization of the
subgroup (0p,l)0 is independent of p and l, except if p = 3 or l = 3. The notion of an
anti-torus was introduced by Wise, and only very few examples are known. We give
in Section 3.6 an easy criterion for the existence of anti-tori in commutative transi-
tive (2m, 2n)–groups and combine it with earlier results on centralizers. In particular,
these results can be applied to the groups 0p,l , and can therefore also be expressed
in terms of integer quaternions. It turns out that the groups 0 p,l have many anti-tori.
Then we study relations between free anti-tori in 0 p,l , free subgroups of SO3(Q) and
quaternions generating a free group. As an application, we prove for example that

97
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the two quaternions 1 + 2i and 1 + 4k do not generate a free group, which is quite
surprising. In Section 3.7, we give a different construction for p = 2, l = 5, also
based on quaternion multiplication.

3.1 Some notations and preliminaries

At first, we define quaternions over a commutative ring, following [23, Section 2.5]:
Let R be a commutative ring with unit. Then the Hamilton quaternion algebra over R,
denoted by H(R), is the associative unital algebra defined as follows:

• H(R) = {x0 + x1i + x2 j + x3k : x0, x1, x2, x3 ∈ R} is the free R-module with
basis 1, i , j , k.

• 1 = 1+ 0i + 0 j + 0k is the multiplicative unit.

• i2 = j 2 = k2 = −1.

• i j = − j i = k, j k = −k j = i , ki = −ik = j .

This gives the multiplication rule in H(R)

(x0 + x1i+x2 j + x3k)(y0 + y1i + y2 j + y3k)

= x0y0 − x1y1 − x2 y2 − x3y3

+ (x0y1 + x1y0 + x2 y3 − x3y2) i

+ (x0y2 − x1y3 + x2 y0 + x3y1) j

+ (x0y3 + x1y2 − x2 y1 + x3y0) k .

For a quaternion x = x0+ x1i + x2 j + x3k ∈ H(R), let x̄ := x0− x1i − x2 j − x3k be
its conjugate, |x |2 := x x̄ = x̄ x = x2

0 + x2
1 + x2

2 + x2
3 ∈ R its norm, and <(x) := x0

its “R-part”. Note that |xy|2 = |x |2|y|2.
We divide quaternions x = x0+ x1i + x2 j + x3k ∈ H(Z) with odd norm |x |2 into

eight classes (and say that these quaternions have type o0, o1, o2, o3, e0, e1, e2 or e3)
according to Table 3.1.

This terminology of types is not standard, but useful to simplify some definitions
and statements. Moreover, we say that x has type o if it has type o0, o1, o2 or o3. Note
that x has type o if and only if |x |2 ≡ 1 (mod 4). Finally, we say that x has type e if
it has type e0, e1, e2 or e3, which happens if and only if |x |2 ≡ 3 (mod 4).

If R is a ring with unit (denoted by 1), let U(R) be the group of (left and right)
invertible elements in R, i.e. elements x ∈ R such that there are y1, y2 ∈ R satisfying
y1x = xy2 = 1. Observe that then y1 = y2. This element is uniquely determined by
x ∈ U(R) and is usually written as x−1.

The following elementary lemmas characterize invertible and central elements in
the Hamilton quaternion algebra H(R).
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x x0 x1 x2 x3

type o0 odd even even even
o1 even odd even even
o2 even even odd even
o3 even even even odd
e0 even odd odd odd
e1 odd even odd odd
e2 odd odd even odd
e3 odd odd odd even

Table 3.1: Types of integer quaternions x with odd norm |x |2.

Lemma 3.1. Let R be a commutative ring with unit. Then

U(H(R)) = {x ∈ H(R) : |x |2 ∈ U(R)} .

Proof. “⊇” Take x−1 = (|x |2)−1 x̄ .
“⊆” Let x ∈ U(H(R)) and y := x−1, then 1 = |xy|2 = |x |2|y|2 = |y|2|x |2, and it
follows |x |2 ∈ U(R).

Lemma 3.2. Let R be a commutative ring with unit and let x = x0+ x1i + x2 j + x3k,
y = y0 + y1i + y2 j + y3k ∈ H(R). Then xy = yx if and only if the following three
equations hold:

2(x2y3 − x3 y2) = 0

2(x3y1 − x1 y3) = 0

2(x1y2 − x2 y1) = 0 .

Proof. This is an elementary computation. We only use the multiplication rule for
quaternions in H(R).

Lemma 3.3. Let R be a commutative ring with unit.

(1) The central elements in H(R) are

{x ∈ H(R) : xy = yx, ∀y ∈ H(R)} = {x ∈ H(R) : x = x̄} .

(2) ZU(H(R)) = {x ∈ U(H(R)) : x = x}.
Proof. (1) Let x = x0+x1i+x2 j+x3k ∈ H(R). The condition x = x is equivalent

to the condition
2x1 = 2x2 = 2x3 = 0 ,
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thus if x = x , then xy = yx for each y ∈ H(R) by Lemma 3.2. Conversely,
suppose that xy = yx for each y ∈ H(R). Taking y = i gives xi = i x , which
is

−x1 + x0i + x3 j − x2k = −x1 + x0i − x3 j + x2k ,

hence 2x2 = 0, 2x3 = 0. Moreover, taking y = j , we conclude in a similar way
2x1 = 2x3 = 0 and get x = x .

(2) We can use the same proof as in part (1), since i(−i) = j (− j) = 1, which
shows that i, j ∈ U(H(R)).

Remark. If R is a subring of C with unit, then

{x ∈ H(R) : xy = yx, ∀y ∈ H(R)} = {x ∈ H(R) : x = <(x)}
and

ZU(H(R)) = {x ∈ U(H(R)) : x = <(x)} = U(H(R)) ∩ ZU(H(C)) .

However, for example the case R = Z2 is different, since H(Z2) is commutative and

ZU(H(Z2)) = U(H(Z2)) 6= {x ∈ U(H(Z2)) : x = <(x)} = {1} .

The following lemma, especially part (3), will be very useful in Section 3.2.

Lemma 3.4. Let R be a commutative ring with unit and let x = x0+ x1i + x2 j + x3k,
y = y0+ y1i+ y2 j+ y3k and z = z0+ z1i + z2 j + z3k be three quaternions inH(R).
Then

(1) xy = −yx if and only if the following four equations hold:

2(x0y0 − x1y1 − x2 y2 − x3y3) = 0

2(x0 y1 + x1y0) = 0

2(x0 y2 + x2y0) = 0

2(x0 y3 + x3y0) = 0 .

(2) Suppose that R is a subring of R with unit, x0 6= 0 and xy = −yx. Then y = 0.

(3) Let R be a subring ofCwith unit, x 6= x0, xy = yx and xz = zx. Then yz = zy,
in particular U(H(C)) is commutative transitive on non-central elements.

Proof. (1) This is an elementary computations using the multiplication rule for
quaternions in H(R).
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(2) Using part (1), we have x0 y0 − x1y1 − x2y2 − x3 y3 = 0 and

y1 = −x1 y0

x0
, y2 = −x2y0

x0
, y3 = −x3y0

x0
.

It follows

x0y0 + x2
1 y0

x0
+ x2

2 y0

x0
+ x2

3 y0

x0
= 0 ,

and therefore y0|x |2 = 0. Since |x |2 ≥ x2
0 > 0, we conclude y0 = 0 which

implies y1 = 0, y2 = 0 and y3 = 0, in other words y = 0.

(3) By Lemma 3.2, we have to prove y2z3 = y3z2, y3z1 = y1z3 and y1z2 = y2z1.
We only prove here y1z2 = y2z1, the other two computations are completely
analogous: If x2 = 0, then using the assumption xy = yx and Lemma 3.2,
we have x1y2 = x2 y1 = 0 and x3y2 = x2 y3 = 0. This implies y2 = 0
(otherwise x1 = x3 = 0 and x = x0). Moreover, using xz = zx , we have
x1z2 = x2z1 = 0 and x3z2 = x2z3 = 0, which implies z2 = 0. So, we conclude
that y1z2 = 0 = y2z1. Assume now that x2 6= 0, then y1z2 = x1

x2
y2z2 = y2z1,

using x2y1 = x1y2 and x2z1 = x1z2.

Remark. The statement of Lemma 3.4(2) is not true in H(C). Take for example
x = 1 + iCi , y = iC + i , where iC denotes the imaginary unit in C, and check that
xy = −yx = 0.

Throughout this chapter, let p, l be two distinct odd prime numbers. Then the ring

Z[1/p, 1/ l] := {0} ∪ {tpr ls : r, s, t ∈ Z; t 6= 0; t is relatively prime to p and l}
is a subring of Q, containing Z. Note that with this definition, any non-zero element
in Z[1/p, 1/ l] uniquely determines a triple (t, r, s) having the properties required in
the definition, and vice versa. Of course Z[1/p, 1/ l] could also be defined as

{ t

pr ls
: t ∈ Z; r, s ∈ N0} .

Let
( p

l

)
be the Legendre symbol. This means that

( p
l

) := 1, if p is a quadratic
residue modulo l, i.e. if the equation x 2 ≡ p (mod l) has an integer solution, and( p

l

) := −1, otherwise. See Table 3.2 for some small examples, where “+” and “−”
stand for 1 and−1, respectively. The definition of the Legendre symbol can be gener-
alized to non-prime numbers, but we do not need it here.

Let K be a field, K× = K \ {0} = U(K ) the group of invertible elements and
GL2(K ) the group of invertible (2 × 2)–matrices with coefficients in K . We denote
by PGL2(K ) the quotient group

PGL2(K ) = GL2(K )/

{(
λ 0
0 λ

)
: λ ∈ K×

}
= GL2(K )/ZGL2(K ) .
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( p
l

)
l = 3 5 7 11 13 17 19 23 29 31 37 41 43 47

p =
3 − − + + − − + − − + − − +
5 − − + − − + − + + − + − −
7 + − − − − + − + + + − − +

11 − + + − − + − − − + − + −
13 + − − − + − + + − − − + −
17 − − − − + + − − − − − + +
19 + + − − − + − − + − − − −
23 − − + + + − + + − − + + −
29 − + + − + − − + − − − − −
31 + + − + − − − + − − + + −
37 + − + + − − − − − − + − +
41 − + − − − − − + − + + + −
43 + − + − + + + − − − − + −
47 − − − + − + + + − + + − +

Table 3.2: Legendre symbol
( p

l

)
for small distinct odd prime numbers p, l

If A is a matrix in GL2(K ), we write

[A] := A

{(
λ 0
0 λ

)
: λ ∈ K×

}
∈ PGL2(K )

for the image of A under the quotient map GL2(K ) → PGL2(K ). We denote by
SL2(K ) the kernel of the determinant map det : GL2(K )→ K× and by PSL2(K ) the
quotient group

PSL2(K ) = SL2(K )/

{(
ε 0
0 ε

)
: ε2 = 1

}
= SL2(K )/ZSL2(K ) .

The group PSL2(K ) can be seen as a (normal) subgroup of PGL2(K ) via the injective
homomorphism

θ : PSL2(K )→ PGL2(K )

A

{(
ε 0
0 ε

)
: ε2 = 1

}
7→ [A] ,

where A ∈ SL2(K ) < GL2(K ).
For q a prime number, we write GL2(q), PGL2(q), SL2(q), PSL2(q) instead of

GL2(Zq), PGL2(Zq), SL2(Zq), PSL2(Zq). Recall that Zq stands for the finite ring
(field) Z/qZ and not for the “q-adic integers”.
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Lemma 3.5. Let K be a field and B ∈ GL2(K ). Then [B] ∈ θ(PSL2(K )) ∼= PSL2(K )
if and only if det B ∈ (K×)2 := {λ2 : λ ∈ K×}.
Proof. By definition, [B] ∈ θ(PSL2(K )) if and only if there is a matrix A ∈ SL2(K )
such that [A] = [B] ∈ PGL2(K ), i.e. if and only if there is a matrix A ∈ SL2(K ) and
an element λ ∈ K× such that

B−1 A =
(
λ 0
0 λ

)
.

To prove the statement of the lemma, we first assume that [B] ∈ θ(PSL2(K )). Then
(with A and λ as above)

det B = det A · λ−2 = λ−2 ∈ (K×)2 .
To show the other direction, assume that det B = λ2 for some λ ∈ K×. If we choose

A := B

(
λ−1 0

0 λ−1

)
,

then A ∈ SL2(K ), since det A = λ2 · λ−2 = 1, and we have

B−1 A =
(
λ−1 0

0 λ−1

)
.

From now on, we will see PSL2(K ) as a subgroup of PGL2(K ) without mention
of the homomorphism θ .

Lemma 3.6. Let p, l be two distinct odd prime numbers. Then p+ lZ ∈ (Z×l )2 if and
only if

( p
l

) = 1.

Proof. We have the following equivalences:

p + lZ ∈ (Z×l )2 ⇐⇒ ∃ x + lZ ∈ Z×l such that (x + lZ)2 = p + lZ
⇐⇒ ∃ x ∈ {1, . . . , l − 1} such that x2 + lZ = p + lZ
⇐⇒ ∃ x ∈ {1, . . . , l − 1} such that x2 ≡ p (mod l)

⇐⇒ ∃ x ∈ Z such that x2 ≡ p (mod l)

⇐⇒
( p

l

)
= 1 .

The next lemma gives a selection of results about the decomposability of prime
numbers as certain sums of squares of integers. They are all well-known in number
theory.
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Lemma 3.7. Let p be an odd prime number.

(1) (Fermat, Euler) p is a sum of two squares if and only if p ≡ 1 (mod 4).

(2) (Gauss) Assume that p ≡ 3 (mod 4). Then p is a sum of three squares if and
only if p ≡ 3 (mod 8). More generally, an odd natural number s is a sum of
three squares if and only if s 6≡ 7 (mod 8).

(3) (Jacobi) There are exactly 8(p+1) representations of p as a sum of four squares
p = x2

0 + x2
1 + x2

2 + x2
3 ; x0, x1, x2, x3 ∈ Z. For each such representation, three

integers in {x0, x1, x2, x3} are even, if p ≡ 1 (mod 4), and three integers are
odd, if p ≡ 3 (mod 4). It follows that for p ≡ 1 (mod 4)

|{x ∈ H(Z) : |x |2 = p}| = 8(p + 1) ,

|{x ∈ H(Z) : |x |2 = p, x has type o0}| = 2(p + 1) ,

|{x ∈ H(Z) : |x |2 = p, x has type o0, <(x) > 0}| = p + 1 .

Let p be an odd prime number. The following lemma applies for example to
the finite field Zp, the field of p-adic numbers Qp and algebraically closed fields of
characteristic different from 2 like C, but not to Z2 or subfields of R.

Lemma 3.8. (see [23, Proposition 2.5.2]) Let K be a field of characteristic different
from 2, and assume that there exist c, d ∈ K such that c2 + d2 + 1 = 0. Then H(K )
is isomorphic to the algebra M2(K ) of (2 × 2)–matrices over K . An isomorphism of
algebras is given by the map

H(K )→ M2(K )

x0 + x1i + x2 j + x3k 7→
(

x0 + x1c + x3d −x1d + x2 + x3c
−x1d − x2 + x3c x0 − x1c − x3d

)
.

In particular, if c2 + 1 = 0 in K , i.e. if we can choose d = 0, then the isomorphism
above is given by

H(K )→ M2(K )

x0 + x1i + x2 j + x3k 7→
(

x0 + x1c x2 + x3c
−x2 + x3c x0 − x1c

)
.

Proof. See [23, Proof of Proposition 2.5.2].

Note that the determinant of the image of x

det

(
x0 + x1c + x3d −x1d + x2 + x3c
−x1d − x2 + x3c x0 − x1c − x3d

)

equals x2
0 − x2

1(c
2 + d2)+ x2

2 − x2
3(c

2 + d2) = |x |2, i.e. the norm of x .
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3.2 Standard case p, l ≡ 1 (mod 4)

The following construction of the group 0p,l is taken from [54], see also [53], [17]
and [41]. Let p, l ≡ 1 (mod 4) be two distinct prime numbers. We first define the
map ψ (a monoid homomorphism, as we will see):

ψ : H(Z) \ {0} → PGL2(Qp)× PGL2(Ql)

x 7→
([(

x0 + x1i p x2 + x3i p

−x2 + x3i p x0 − x1i p

)]
,

[(
x0 + x1il x2 + x3il

−x2 + x3il x0 − x1il

)])
,

where x = x0 + x1i + x2 j + x3k, and i p ∈ Qp, il ∈ Ql satisfy the conditions

i2
p + 1 = 0 and i2

l + 1 = 0 .

The assumption p, l ≡ 1 (mod 4) guarantees the existence of such elements i p, il .
Note that ψ is not injective, but (for x, y ∈ H(Z) \ {0}) we have ψ(x) = ψ(y) if and
only if y = λx for some λ ∈ Q×. Moreover,

(
x0 + x1i p x2 + x3i p

−x2 + x3i p x0 − x1i p

)(
y0 + y1i p y2 + y3i p

−y2 + y3i p y0 − y1i p

)

=
(

z0 + z1i p z2 + z3i p

−z2 + z3i p z0 − z1i p

)
,

where z0, z1, z2, z3 are determined by the quaternion multiplication

z0 + z1i + z2 j + z3k = (x0 + x1i + x2 j + x3k)(y0 + y1i + y2 j + y3k) ,

in particular ψ(xy) = ψ(x)ψ(y) and

ker(ψ) := {x ∈ H(Z) \ {0} : ψ(x) = 1PGL2(Qp)×PGL2(Ql )}
= {x ∈ H(Z) \ {0} : x = x}
= H(Z) ∩ ZU(H(Q)) ,

where

1PGL2(Qp)×PGL2(Ql) =
([(

1 0
0 1

)]
,

[(
1 0
0 1

)])
.

This implies that ψ(x)−1 = ψ(x̄) if x ∈ H(Z) \ {0}, since

ψ(x)ψ(x̄) = ψ(x x̄) = ψ(|x |2)
and |x |2 ∈ ker(ψ). Finally, let

0p,l := {ψ(x) : x ∈ H(Z) has type o0, |x |2 = pr ls; r, s ∈ N0}
= {ψ(x) : x ∈ H(Z) has type o0, <(x) > 0, |x |2 = pr ls; r, s ∈ N0}

be our desired subgroup of PGL2(Qp)× PGL2(Ql).
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Mozes has proved the following result:

Proposition 3.9. (Mozes, [54, Section 3]) If p, l ≡ 1 (mod 4) are two distinct prime
numbers, then

0p,l < PGL2(Qp)× PGL2(Ql) < Aut(Tp+1)× Aut(Tl+1)

is a (p + 1, l + 1)–group.

See for example [45, Section 5.3] or [64] for the description of the tree (the
“Bruhat-Tits building”) Tp+1 corresponding to PGL2(Qp) and its action on Tp+1.

The fact that 0p,l is a (p + 1, l + 1)–group is mainly based on a factorization
property for integer quaternions, first proved by Dickson ([24]). However, it does not
follow that 0p,l is torsion-free; this is shown in [54, Proposition 3.6]. It is also known
that the groups 0p,l are irreducible (see Corollary 3.59(3)).

See [40] for an alternative proof that 0p,l is a (p + 1, l + 1)–group.

Proposition 3.10. (Dickson [24, Theorem 8]) Let x ∈ H(Z) be of odd norm and let
|x |2 = p1 . . . pr be the prime decomposition of |x |2, where the factors pι are arranged
in an arbitrary but definite order. Then x can be decomposed as x = x (1) . . . x (r) such
that x (ι) ∈ H(Z) and |x (ι)|2 = pι, ι = 1, . . . , r . This decomposition is uniquely
determined up to multiplication of the factors x (ι) with a unit±1,±i,± j,±k ∈ H(Z)
(if there is no prime number dividing x; this is somehow missing in Dickson’s original
statement, as noted and corrected by Kimberley [40]).

Before applying Proposition 3.10, we define the two subsets of 0 p,l

Eh := {ψ(x) : x ∈ H(Z) has type o0, |x |2 = p}
= {ψ(x) : x ∈ H(Z) has type o0, <(x) > 0, |x |2 = p} ,

Ev := {ψ(y) : y ∈ H(Z) has type o0, |y|2 = l}
= {ψ(y) : y ∈ H(Z) has type o0, <(y) > 0, |y|2 = l} .

If ψ(x) ∈ Eh then also ψ(x̄) = ψ(x)−1 ∈ Eh . By Lemma 3.7(3), the set Eh has
exactly p + 1 elements. For these reasons, we write

Eh = {a1, . . . , a p+1
2
}±1

and similarly
Ev = {b1, . . . , b l+1

2
}±1 .

As probably expected, all these definitions of Eh , Ev, a1, . . . , a p+1
2

, b1, . . . , b l+1
2

will

be compatible with the original ones for general (2m, 2n)–groups given in Section 1.2
(here, we have 2m = p + 1 and 2n = l + 1).
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Corollary 3.11. Let p, l ≡ 1 (mod 4) be distinct odd prime numbers and recall that

0p,l = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = pr ls; r, s ∈ N0} .
(1) Let x ∈ H(Z) be of type o0 such that |x |2 = pl. Then there are integer quater-

nions y, ỹ, z, z̃ ∈ H(Z) of type o0 such that |y|2 = |ỹ|2 = p, |z|2 = |z̃|2 = l
and yz = x = z̃ ỹ. The quaternions y, ỹ, z, z̃ are uniquely determined by x up
to sign.

(2) Let a ∈ Eh , b ∈ Ev. Then there are unique elements ã ∈ Eh , b̃ ∈ Ev such that
ab = b̃ã in 0p,l .

(3) The group 0p,l is generated by {a1, . . . , a p+1
2
, b1, . . . , b l+1

2
}.

(4) Let {α1, . . . , α p+1
2
, α p+1

2
, . . . , α1} be the set of quaternions

{x ∈ H(Z) : x has type o0, <(x) > 0, |x |2 = p}
and let x ∈ H(Z) be of type o0 such that |x |2 = pr for some r ∈ N0. Then there
is a unique representation

x = ±pr1wr2(α1, . . . , α p+1
2
, α p+1

2
, . . . , α1) ,

where r1, r2 ∈ N0, 2r1 + r2 = r and

wr2(α1, . . . , α p+1
2
, α p+1

2
, . . . , α1)

denotes a reduced word of length r2 in

{α1, . . . , α p+1
2
, α p+1

2
, . . . , α1}

(reduced means here that there are no subwords of the form αiαi or αiαi ).

(5) There are two non-abelian free groups

〈a1, . . . , a p+1
2
〉0p,l
∼= F p+1

2
and 〈b1, . . . , b l+1

2
〉0p,l
∼= Fl+1

2
.

Proof. We define a map u : {x ∈ H(Z) : x has type o} → {1, i, j, k} by

u(x) :=





1 , if x has type o0

i , if x has type o1

j , if x has type o2

k , if x has type o3 .

Note that u(1) = 1, u(i) = i , u( j) = j , u(k) = k and that xu(x) always has type o0.
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(1) By Proposition 3.10 there are ŷ, ẑ ∈ H(Z) such that |ŷ|2 = p, |ẑ|2 = l and
x = ŷ ẑ. Since p, l ≡ 1 (mod 4), the quaternions ŷ and ẑ have type o. They
have both the same type since x = ŷ ẑ has type o0. If ŷ and ẑ have type o0,
we take y := ŷ, z := ẑ and are done. If ŷ and ẑ have type o1, o2 or o3, we
take y := −ŷu(ŷ), z := u(ẑ)ẑ and get yz = −ŷu(ŷ)u(ẑ)ẑ = −ŷ(−1)ẑ = x .
The uniqueness of y and z up to sign follows from the uniqueness statement in
Proposition 3.10. Analogously, one proves x = z̃ ỹ.

(2) The given elements a and b uniquely determine y, z ∈ H(Z) of type o0 such
that <(y) > 0, <(z) > 0, |y|2 = p, |z|2 = l and ψ(y) = a, ψ(z) = b. It
follows that yz has type o0 and |yz|2 = pl. By part (1), there are ỹ, z̃ ∈ H(Z)
of type o0 such that |ỹ|2 = p, |z̃|2 = l and yz = z̃ ỹ. Moreover, ỹ, z̃ are
uniquely determined up to sign. In particular, there are unique ỹ, z̃ ∈ H(Z) of
type o0 such that |ỹ|2 = p, |z̃|2 = l, <(ỹ) > 0, <(z̃) > 0 and z̃ ỹ ∈ {yz,−yz}.
Now take b̃ := ψ(z̃) ∈ Ev and ã := ψ(ỹ) ∈ Eh . The claim follows, since
ab = ψ(y)ψ(z) = ψ(yz) = ψ(−yz) = ψ(z̃ ỹ) = ψ(z̃)ψ(ỹ) = b̃ã.

(3) Fix any element x ∈ H(Z) of type o0 such that |x |2 ∈ {pr ls : r, s ∈ N0} and
<(x) > 0. We may assume that r > 0 or s > 0. By Proposition 3.10, there is a
decomposition

x = y(1) . . . y(r)z(1) . . . z(s)

such that y(1), . . . , y(r) ∈ H(Z) have norm p, and z(1), . . . , z(s) ∈ H(Z) have
norm l. Note that the quaternions y(1), . . . , y(r), z(1), . . . , z(s) all have type o,
since p, l ≡ 1 (mod 4). Our goal is to have a decomposition

x = ŷ(1) . . . ŷ(r)ẑ(1) . . . ẑ(s)

such that ŷ(1), . . . , ŷ(r) and ẑ(1), . . . , ẑ(s) have norm p and l, respectively, and
are moreover of type o0. To achieve this, we define the following algorithm:

ỹ(1) := y(1)

ỹ(ι) := u(ỹ(ι−1))y(ι) , ι = 2, . . . , r
ŷ(ι) := ỹ(ι)u(ỹ(ι)) , ι = 1, . . . , r − 1
ŷ(r) := ỹ(r)u(ỹ(r)) , if s ≥ 1
ŷ(r) := ỹ(r) , if s = 0
z̃(1) := u(ỹ(r))z(1) , if r ≥ 1
z̃(1) := z(1) , if r = 0
z̃(κ) := u(z̃(κ−1))z(κ) , κ = 2, . . . , s
ẑ(κ) := z̃(κ)u(z̃(κ)) , κ = 1, . . . , s − 1
ẑ(s) := z̃(s) .
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By construction, ŷ(1), . . . , ŷ(r−1), ẑ(1), . . . , ẑ(s−1) have type o0 and

|ŷ(ι)|2 = |ỹ(ι)|2 = |y(ι)|2 = p, ι = 1, . . . , r ,

|ẑ(κ)|2 = |z̃(κ)|2 = |z(κ)|2 = l, κ = 1, . . . , s .

Moreover,

x = y(1)y(2)y(3) . . . y(r)z(1) . . . z(s)

= ± y(1)u(y(1))︸ ︷︷ ︸
= ŷ(1)

u(y(1))y(2)︸ ︷︷ ︸
= ỹ(2)

y(3) . . . y(r)z(1) . . . z(s)

= ±ŷ(1) ỹ(2)u(ỹ(2))︸ ︷︷ ︸
= ŷ(2)

u(ỹ(2))y(3)︸ ︷︷ ︸
= ỹ(3)

. . . · y(r)z(1) . . . z(s)

= . . .
= ±ŷ(1) . . . ŷ(r) u(ỹ(r))z(1)︸ ︷︷ ︸

=z̃(1)

. . . z(s)

= ±ŷ(1) . . . ŷ(r) z̃(1)u(z̃(1))︸ ︷︷ ︸
=ẑ(1)

u(z̃(1))z(2)︸ ︷︷ ︸
=z̃(2)

. . . z(s)

= . . .
= ±ŷ(1) . . . ŷ(r) ẑ(1) . . . ẑ(s−1) u(z̃(s−1))z(s)︸ ︷︷ ︸

=z̃(s)

= ±ŷ(1) . . . ŷ(r) ẑ(1) . . . ẑ(s) .

It follows that also ŷ(r) and ẑ(s) have type o0. After replacing those ŷ(ι) and
ẑ(κ) satisfying <(ŷ(ι)) < 0 and <(ẑ(κ)) < 0 by −ŷ(ι) and −ẑ(κ), respectively,
we can assume that moreover

<(ŷ(1)) > 0, . . . ,<(ŷ(r)) > 0, <(ẑ(1)) > 0, . . . ,<(ẑ(s)) > 0

and still x = ±ŷ(1) . . . ŷ(r)ẑ(1) . . . ẑ(s). But now,

ψ(x) = ψ(±ŷ(1) . . . ŷ(r)ẑ(1) . . . ẑ(s)) = ψ(ŷ(1)) . . . ψ(ŷ(r))ψ(ẑ(1)) . . . ψ(ẑ(s)) ,
where ψ(ŷ(1)), . . . , ψ(ŷ(r)) ∈ Eh and ψ(ẑ(1)), . . . , ψ(ẑ(s)) ∈ Ev, and we are
done.

A shorter proof of part (3) would be to generalize part (4) as in Theorem 3.30(1)
and apply it as in Theorem 3.30(2).

(4) See [46, Corollary 3.2] or [45, Corollary 2.1.10]. The existence proof is based
on Proposition 3.10, the uniqueness follows from a counting argument; we will
reproduce it in a more general context in Theorem 3.30.



110 CHAPTER 3. QUATERNION LATTICES IN PGL2(QP)× PGL2(QL)

(5) The first isomorphism 〈a1, . . . , a p+1
2
〉0p,l
∼= F p+1

2
is implied by the uniqueness

statement of part (4), using

Eh = ψ({α1, . . . , α p+1
2
, α p+1

2
, . . . , α1}) .

The second isomorphism 〈b1, . . . , b l+1
2
〉0p,l
∼= Fl+1

2
follows analogously.

To summarize, we can see 0p,l as a (p+ 1, l+ 1)–group with a finite presentation

0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉 ,

where the p+1
2 · l+1

2 relators in R p+1
2 · l+1

2
come from Corollary 3.11(2), and as the

subgroup of PGL2(Qp)× PGL2(Ql)

0p,l = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = pr ls; r, s ∈ N0} .
For certain important subsets or subgroups of 0 p,l , we thus get the following charac-
terizations:

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type o0, |y|2 = l}

F p+1
2

∼= 〈a1, . . . , a p+1
2
〉 = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = pr ; r ∈ N0}

Fl+1
2

∼= 〈b1, . . . , b l+1
2
〉 = {ψ(y) : y ∈ H(Z) has type o0, |y|2 = ls; s ∈ N0}

and

(0p,l)0 = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = p2r l2s; r, s ∈ N0}
< PSL2(Qp)× PSL2(Ql) .

We can see PSL2(Qp) as a subgroup of PGL2(Qp) of index 4 = |Q×p /(Q×p )2|. With
the identification from above, we have

{a1, . . . , a p+1
2
}±1 ⊂ PGL2(Qp)× PSL2(Ql) < PGL2(Qp)× PGL2(Ql)

if and only if
( p

l

) = 1, and

{b1, . . . , b l+1
2
}±1 ⊂ PSL2(Qp)× PGL2(Ql) < PGL2(Qp)× PGL2(Ql)

if and only if
( l

p

) = 1. This follows from Lemma 3.5 (and Hensel’s Lemma), see also

[16, p.134]. Note that our assumption p, l ≡ 1 (mod 4) implies
( p

l

) = ( l
p

)
by the

famous law of quadratic reciprocity, see e.g. [23, Theorem 2.3.2 (iii)].
The following theorem is motivated by Lubotzky’s book [45], and some parts are

obvious generalizations of results appearing there; nevertheless, we try to give very
detailed proofs here.
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Theorem 3.12. Let p, l ≡ 1 (mod 4) be two distinct prime numbers. Let G p,l be the
group U(H(Z[1/p, 1/ l])). Then

(1) The group 0p,l is (isomorphic to) a normal subgroup of G p,l/Z G p,l of index 4
such that (G p,l/Z G p,l)/0p,l

∼= Z2
2.

(2) The group 0p,l can be realized as a rational matrix group. More precisely, there
is a chain of subgroups

0p,l < SO3(Q) < SO3(R) < PGL2(C) ,

in particular 0p,l is residually finite.

(3) If q is an odd prime number different from p and l, then there is a non-trivial
homomorphism τ : 0p,l → PGL2(q).

(4) Let τ : 0p,l → PGL2(q) be the homomorphism constructed in part (3), where q
is an odd prime number different from p and l. Then its image is

τ (0p,l) =
{

PSL2(q) , if
( p

q

) = ( l
q

) = 1

PGL2(q) , else .

Moreover, τ (a2
1) ∈ τ (〈b1, . . . , b l+1

2
〉).

Proof. (1) To simplify the notation, we write G p := U(H(Qp)). Since

Z G p,l = G p,l ∩ Z G p = G p,l ∩ Z Gl ,

and Z[1/p, 1/ l] is a subring of Qp and Ql (which implies G p,l ⊂ G p and
G p,l ⊂ Gl ), there is an injective diagonal homomorphism

G p,l/Z G p,l → G p/Z G p × Gl/Z Gl

x Z G p,l 7→ (x Z G p, x Z Gl) .

The isomorphismH(Qp)→ M2(Qp) of Lemma 3.8 (with i 2
p + 1 = 0) induces

an isomorphism

G p = U(H(Qp))→ U(M2(Qp)) = GL2(Qp)

and consequently an isomorphism

G p/Z G p → PGL2(Qp) = GL2(Qp)/ZGL2(Qp)

x Z G p 7→
[(

x0 + x1i p x2 + x3i p

−x2 + x3i p x0 − x1i p

)]
.
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Let ρ be the injective composition homomorphism

G p,l/Z G p,l ↪→ G p/Z G p × Gl/Z Gl
∼=−→ PGL2(Qp)× PGL2(Ql) ,

explicitly given by mapping x Z G p,l ∈ G p,l/Z G p,l to

ψ̃(x) =
([(

x0 + x1i p x2 + x3i p

−x2 + x3i p x0 − x1i p

)]
,

[(
x0 + x1il x2 + x3il

−x2 + x3il x0 − x1il

)])
,

where x = x0 + x1i + x2 j + x3k ∈ G p,l and ψ̃ is the natural extension of ψ
from H(Z) \ {0} to H(Z[1/p, 1/ l]) \ {0}.
Note that

U(Z[1/p, 1/ l]) = {±pr ls : r, s ∈ Z} ,
hence by Lemma 3.1

G p,l = {x ∈ H(Z[1/p, 1/ l]) : |x |2 = pr ls; r, s ∈ Z}
and by Lemma 3.3(2)

Z G p,l = {x ∈ H(Z[1/p, 1/ l]) : x = x = ±pr ls; r, s ∈ Z} .
Now let x ∈ H(Z) be an integer quaternion such that |x |2 = pr ls for some
r, s ∈ N0, then x ∈ G p,l and ψ(x) = ψ̃(x) = ρ(x Z G p,l) ∈ ρ(G p,l/Z G p,l),
hence 0p,l < ρ(G p,l/Z G p,l) ∼= G p,l/Z G p,l .

Note that each element in G p,l/Z G p,l has a representative x Z G p,l such that
x ∈ H(Z) and |x |2 = pr ls; r, s ∈ N0, by multiplying with large enough positive
powers of p and l, however 0p,l 6= ρ(G p,l/Z G p,l) since x must have type o0

in the definition of 0p,l . More precisely, we can write

ρ(G p,l/Z G p,l) = g00p,l t g10p,l t g20p,l t g30p,l < PGL2(Qp)×PGL2(Ql)

where for each ι ∈ {0, 1, 2, 3} we choose any element gι = ψ(x), such that
x = x0+ x1i + x2 j + x3k ∈ H(Z) has type oι and norm |x |2 = pr ls; r, s ∈ N0.
For example, the simplest choice is to take r = s = 0 (i.e. |x |2 = 1) and
consequently

g0 := ψ(1) =
([(

1 0
0 1

)]
,

[(
1 0
0 1

)])

g1 := ψ(i) =
([(

i p 0
0 −i p

)]
,

[(
il 0
0 −il

)])

g2 := ψ( j) =
([(

0 1
−1 0

)]
,

[(
0 1
−1 0

)])
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g3 := ψ(k) =
([(

0 i p

i p 0

)]
,

[(
0 il

il 0

)])
.

To see the decomposition of ρ(G p,l/Z G p,l) given above, we first observe that
pr ls ≡ 1 (mod 4), since p, l ≡ 1 (mod 4). Therefore, each decomposition of
|x |2 = pr ls as a sum of four squares is a sum of squares of three even numbers
and one odd number (cf. Lemma 3.7(3)). If we take the quaternion multipli-
cation on the four classes of quaternions of type o0, o1, o2 and o3 respectively,
then we get a group structure, where the class of type o0 quaternions is the
identity element. The group is isomorphic to Z2

2, as it is seen in the following
multiplication table.

· type o0 type o1 type o2 type o3

type o0 type o0 type o1 type o2 type o3

type o1 type o1 type o0 type o3 type o2

type o2 type o2 type o3 type o0 type o1

type o3 type o3 type o2 type o1 type o0

Table 3.3: Multiplication table for quaternions of type o

Because of ψ(xy) = ψ(x)ψ(y), this group structure carries over to the cosets

{g00p,l , g10p,l, g20p,l , g30p,l}
in ρ(G p,l/Z G p,l) and we are done. To summarize, we have shown that

0p,l
4
C {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0}
= ρ(G p,l/Z G p,l)

∼= G p,l/Z G p,l .

(2) If G is a group, we denote here by G/Z the quotient group G/Z G of G by its
center Z G. We study the following diagram of group homomorphisms:

0p,l // G p,l/Z // U(H(Q))/Z //

∼=
��

U(H(R))/Z //

∼=
��

U(H(C))/Z

∼=
��

SO3(Q) SO3(R) PGL2(C)

The homomorphisms in the top line are all injective: the first of them is de-
scribed in part (1) of this theorem. The other three homomorphisms are induced
by the natural injective group homomorphisms (which are induced themselves
by the chain of the corresponding subrings Z[1/p, 1/ l]) ⊂ Q ⊂ R ⊂ C)

U(H(Z[1/p, 1/ l])) ↪→ U(H(Q)) ↪→ U(H(R)) ↪→ U(H(C)) , (3.1)
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since

ZU(H(Z[1/p, 1/ l])) ⊂ ZU(H(Q)) ⊂ ZU(H(R)) ⊂ ZU(H(C)) . (3.2)

Assertion (3.2) follows directly from (3.1) using the fact, see Lemma 3.3(2),

ZU(H(R)) = U(H(R)) ∩ {x ∈ U(H(C)) : x = x} ,
which holds if R ∈ {Z[1/p, 1/ l],Q,R,C}.
The homomorphisms

G p,l/Z −→ U(H(Q))/Z −→ U(H(R))/Z −→ U(H(C))/Z

are injective, since (3.1) directly implies

U(H(R1)) ∩ ZU(H(R2)) < ZU(H(R1)) ,

whenever (R1, R2) ∈ {(Z[1/p, 1/ l],Q), (Q,R), (R,C)}. In fact, the equality
U(H(R1)) ∩ ZU(H(R2)) = ZU(H(R1)) holds by (3.2).

To get U(H(Q))/Z ∼= SO3(Q), first note that U(H(Q)) = H(Q) \ {0}. Now
define ϑ : U(H(Q))→ SO3(Q) by mapping x to the (3× 3)–matrix

1

|x |2




x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3


 ,

where x = x0 + x1i + x2 j + x3k ∈ U(H(Q)). Note that this is the matrix
which represents the Q-linear map Q3 → Q3, y 7→ xyx−1 with respect to
the standard basis of Q3, where y = (y1, y2, y3)

T ∈ Q3 is identified with the
“purely imaginary” quaternion y1i+ y2 j+ y3k ∈ H(Q). It is well-known that ϑ
is a surjective group homomorphism. Even the restricted map

ϑ |H(Z)\{0} : H(Z) \ {0} → SO3(Q)

is surjective, since ϑ(ax) = ϑ(x), if a ∈ Q× and x ∈ U(H(Q)). For an
elementary proof of the surjectivity of ϑ |H(Z)\{0}, see [43]. Moreover, it is easy
to check by solving a system of equations that

ker(ϑ) = {x ∈ H(Q) \ {0} : x = x} = ZU(H(Q)) .

Seeing ϑ(x) as Q-linear map y 7→ xyx−1 as described above, it is even very
easy to determine the kernel:

ker(ϑ) = {x ∈ U(H(Q)) : xyx−1 = y, ∀y ∈ H(Q) such that <(y) = 0}
= {x ∈ U(H(Q)) : xy = yx, ∀y ∈ H(Q) such that <(y) = 0}
= {x ∈ U(H(Q)) : x = x} .
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Observe that if x ∈ U(H(Q)) \ ZU(H(Q)), then the axis of the rotation ϑ(x) is
the line (x1, x2, x3)

T ·Q, and the rotation angle ω satisfies

cosω = x2
0 − x2

1 − x2
2 − x2

3

|x |2 .

Equivalently,

cos
ω

2
= x0√
|x |2

.

To prove U(H(R))/Z ∼= SO3(R), replace Q by R above.

The isomorphism U(H(C))/Z ∼= PGL2(C) follows from Lemma 3.8.

Note that the injective composition homomorphism 0 p,l → SO3(Q) can be
explicitly constructed as follows: if γ ∈ 0p,l is given as γ = ψ(x), where
x = x0 + x1i + x2 j + x3k ∈ H(Z) has type o0 and |x |2 = pr ls; r, s ∈ N0, then
the image of γ in SO3(Q) is ϑ(x), independent of the possible choice of x . In
the same way, the image of γ = ψ(x) in PGL2(C) is

[(
x0 + x1iC x2 + x3iC
−x2 + x3iC x0 − x1iC

)]
.

By a result of Malcev ([51]), finitely generated linear groups (over a field of
characteristic zero) are residually finite.

(3) Let q be an odd prime number different from p, l and let

Gq,p,l := U(H(Z[1/p, 1/ l]/qZ[1/p, 1/ l])) .
As in the proof of part (2), we denote by G/Z the quotient G/Z G of a group G
by its center Z G. We want to define the desired homomorphism

τ : 0p,l → PGL2(q)

as composition of the homomorphisms

0p,l ↪→ G p,l/Z → Gq,p,l/Z
∼=−→ U(H(Zq ))/Z

∼=−→ PGL2(q) .

We describe now separately these four homomorphisms.

The injection 0p,l ↪→ G p,l/Z is given by part (1) of this theorem.

The unital (quotient) ring homomorphism

Z[1/p, 1/ l] → Z[1/p, 1/ l]/qZ[1/p, 1/ l]
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extends to a unital ring homomorphism

H(Z[1/p, 1/ l])→ H(Z[1/p, 1/ l]/qZ[1/p, 1/ l])
mapping 1, i, j, k, to 1, i, j, k, respectively (see [23, Section 2.5]), and induces
a group homomorphism of the invertible elements G p,l → Gq,p,l . Since

Z G p,l = {x ∈ G p,l : x = x}
by Lemma 3.3(2), it is not difficult to see that the image of Z G p,l under the
homomorphism G p,l → Gq,p,l is contained in Z Gq,p,l . This gives the second
homomorphism

G p,l/Z → Gq,p,l/Z .

Now we attack the third one Gq,p,l/Z
∼=−→ U(H(Zq))/Z . The map

φ : Zq → Z[1/p, 1/ l]/qZ[1/p, 1/ l]
v + qZ 7→ v + qZ[1/p, 1/ l] ,

v ∈ Z, is an isomorphism of rings (even of fields, since q is a prime number),
and φ−1 therefore induces isomorphisms

H(Z[1/p, 1/ l]/qZ[1/p, 1/ l]) ∼=−→ H(Zq) ,

Gq,p,l = U(H(Z[1/p, 1/ l]/qZ[1/p, 1/ l])) ∼=−→ U(H(Zq))

and finally an isomorphism Gq,p,l/Z → U(H(Zq ))/Z . The only non-trivial
thing to check is the surjectivity of φ: First, we have

φ(0+ qZ) = 0+ qZ[1/p, 1/ l] .
Now, take any element

tpr ls + qZ[1/p, 1/ l] ∈ Z[1/p, 1/ l]/qZ[1/p, 1/ l] ,
where t ∈ Z \ {0} is relatively prime to p and l. To simplify matters, we assume
that r, s < 0 (if r, s ≥ 0, then φ−1(tpr ls + qZ[1/p, 1/ l]) = tpr ls + qZ; in
the cases r ≥ 0, s < 0 and r < 0, s ≥ 0 the proofs are similar to the proof for
the case r, s < 0 given now). Then gcd(p−r l−s, q) is 1 and therefore obviously
divides t , hence (see e.g. [36, Proposition 3.3.1]) there is an integer u such that
p−r l−su ≡ t (mod q), i.e. t − p−r l−su ∈ qZ and

tpr ls − u = pr ls(t − p−r l−su) ∈ qZ[1/p, 1/ l] .
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This implies

tpr ls + qZ[1/p, 1/ l] = u + qZ[1/p, 1/ l] = φ(u + qZ) .

The isomorphism U(H(Zq ))/Z ∼= PGL2(q) follows from Lemma 3.8, since
there exist elements c and d in the field Zq such that c2+ d2 + 1 = 0 in Zq , see
[23, Proposition 2.5.3].

Therefore, if γ ∈ 0p,l is given by γ = ψ(x0 + x1i + x2 j + x3k) (where
we require as in the definition of 0p,l that x ∈ H(Z) has type o0 and norm
|x |2 = pr ls; r, s ∈ N0), and we have chosen c, d ∈ Z such that c2+ d2+ 1 ≡ 0
(mod q), then τ = τc,d : 0p,l → PGL2(q) is explicitly constructed as

τc,d (γ ) =
[(

x0 + x1c + x3d + qZ −x1d + x2 + x3c + qZ
−x1d − x2 + x3c + qZ x0 − x1c − x3d + qZ

)]
.

If for example q ≡ 1 (mod 4), we can choose d = 0 and c ∈ {1, . . . , q − 1},
such that c2 + 1 ≡ 0 (mod q), and τ = τc,0 then simplifies to

γ 7→
[(

x0 + x1c + qZ x2 + x3c + qZ
−x2 + x3c + qZ x0 − x1c + qZ

)]
.

What happens if we take q = 2 ?

The group G2,p,l
∼= U(H(Z2)) ∼= Z3

2 is abelian, hence

G2,p,l/Z ∼= U(H(Z2))/Z = 1 6= PGL2(2) ∼= S3 .

Note that the field Z2 is excluded in the assumptions of Lemma 3.8.

(4) At first, we show that τ (0p,l) < PSL2(q) if and only if
( p

q

) = ( l
q

) = 1. The
group 0p,l is generated by the set {a1, . . . , a p+1

2
, b1, . . . , b l+1

2
}, hence we have

τ (0p,l) < PSL2(q) if and only if

{τ (a1), . . . , τ (a p+1
2
), τ (b1), . . . , τ (b l+1

2
)} ⊂ PSL2(q) .

Since the elements τ (a1), . . . , τ (a p+1
2
) are represented by matrices in GL2(q)

with determinant p+qZ ∈ Zq and τ (b1), . . . , τ (b l+1
2
) are represented by matri-

ces in GL2(q) with determinant l + qZ ∈ Zq , the condition τ (0p,l) < PSL2(q)
is by Lemma 3.5 equivalent to the condition {p + qZ, l + qZ} ⊂ (Z×q )2. But

this is equivalent to
( p

q

) = ( l
q

) = 1 by Lemma 3.6.

By [45, Lemma 7.4.2] or [46, Proposition 3.3], we have

PSL2(q) < τ(〈a1, . . . , a p+1
2
〉) and PSL2(q) < τ(〈b1, . . . , b l+1

2
〉) ,
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in particular PSL2(q) < τ(0p,l) < PGL2(q).

This determines the image of τ , since [PGL2(q) : PSL2(q)] = 2.

Exactly as above, we can show that

τ (〈b1, . . . , b l+1
2
〉) =

{
PSL2(q) , if

( l
q

) = 1

PGL2(q) , if
( l

q

) = −1 .

Since the element τ (a2
1) = τ (a1)

2 is represented by a matrix in GL2(q) with de-
terminant (p+qZ)2 = p2+qZ ∈ Zq , we have τ (a2

1) ∈ PSL2(q) by Lemma 3.5
and consequently τ (a2

1) ∈ τ (〈b1, . . . , b l+1
2
〉).

See Table 3.4 for some information about groups U(H(R))/ZU(H(R)), where R
is a commutative ring with unit, p, l ≡ 1 (mod 4) are distinct prime numbers and q
is an odd prime number.

R U(H(R))/ZU(H(R))
Z[1/p, 1/ l] contains 0p,l as index 4 subgroup

Z[1/p] important in [45], virtually F p+1
2

Z Z2
2

Zq PGL2(q)
Z2 1
Q SO3(Q)
R SO3(R)
C PGL2(C)
Qq PGL2(Qq)

Table 3.4: The group U(H(R))/ZU(H(R)) for some rings R

The following result is also mentioned in [59, Example 5.12] and [30, Proposi-
tion 3.2, Proof of Theorem 4.1]. It is a very special case of Proposition 4.2(3), where
we prove that all (2m, 2n)–groups contain Z2–subgroups.

Proposition 3.13. The group 0p,l contains a subgroup isomorphic to Z2.

Proof. By Lemma 3.7(1), we can choose x = x0+x1i , y = y0+ y1i ∈ H(Z) such that
x0, y0 are odd, x1, y1 are even and non-zero, |x |2 = x2

0 + x2
1 = p, |y|2 = y2

0 + y2
1 = l.

Obviously, we have xy = yx , hence ψ(x)ψ(y) = ψ(y)ψ(x), where ψ(x), ψ(y) are
non-trivial. The subgroup 〈ψ(x), ψ(y)〉 of 0p,l is isomorphic to Z2 by the following
general lemma.
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Lemma 3.14. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group and let
a ∈ 〈a1, . . . , am〉, b ∈ 〈b1, . . . , bn〉 be two non-trivial elements. If a and b commute,
then 〈a, b〉 ∼= Z2.

Proof. Since 0 is torsion-free, the subgroup 〈a, b〉 is a finitely generated abelian
torsion-free quotient of Z2. Using a, b 6= 1 and the uniqueness of the ab-normal
forms (see Proposition 1.10) of powers of a and b, we conclude that 〈a, b〉 is not
cyclic, but itself isomorphic to Z2.

Kimberley-Robertson have computed presentations of 0 p,l for many pairs (p, l).
They conjecture for the abelianization 0ab

p,l

Conjecture 3.15. (Kimberley-Robertson [41, Section 6]) Let p, l ≡ 1 (mod 4) be
two distinct prime numbers and let

r := gcd

(
p − 1

4
,

l − 1

4
, 6

)
.

Then

0ab
p,l
∼=





Z2 × Z3
4 , if r = 1

Z3
2 × Z2

8 , if r = 2

Z2 × Z3 × Z3
4 , if r = 3

Z3
2 × Z3 × Z2

8 , if r = 6 .

Note that the smallest pairs (p, l) such that r = 1, 2, 3, 6 are (5, 13), (17, 41),
(13, 37) and (73, 97), respectively. Conjecture 3.15 is equivalent to the following
conjecture (see Section 3.5 for generalizations of Conjecture 3.16):

Conjecture 3.16. Let p, l ≡ 1 (mod 4) be two distinct prime numbers.
If p, l ≡ 1 (mod 8), then

0ab
p,l
∼=
{
Z3

2 × Z3 × Z2
8 , if p, l ≡ 1 (mod 3)

Z3
2 × Z2

8 , else .

If p ≡ 5 (mod 8) or l ≡ 5 (mod 8), then

0ab
p,l
∼=
{
Z2 × Z3 × Z3

4 , if p, l ≡ 1 (mod 3)

Z2 × Z3
4 , else .

Proof of the equivalence of Conjecture 3.15 and Conjecture 3.16. First, observe that
r ∈ {1, 2, 3, 6} in Conjecture 3.15 and that all possibilities for (p, l) are treated in
the four cases of Conjecture 3.16.

If r = 6, then (p−1)/4 = 6s and (l−1)/4 = 6t for some s, t ∈ N, i.e. p = 24s+1
and l = 24t + 1. It follows p, l ≡ 1 (mod 8) and p, l ≡ 1 (mod 3).
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If r = 3, then (p− 1)/4 = 3s and (l− 1)/4 = 3t , where s or t is odd (otherwise r
would be 6). Consequently, we have p = 12s + 1 and l = 12t + 1, in particular
p, l ≡ 1 (mod 3). If s is odd, then p ≡ 5 (mod 8). If t is odd, then l ≡ 5 (mod 8).

If r = 2, then (p− 1)/4 = 2s and (l − 1)/4 = 2t , i.e. p = 8s + 1 and l = 8t + 1,
hence p, l ≡ 1 (mod 8). Moreover, s 6≡ 0 (mod 3) or t 6≡ 0 (mod 3) (otherwise r
would be 6). In the first case, we have p 6≡ 1 (mod 3), in the second case l 6≡ 1
(mod 3).

If r = 1, then (p − 1)/4 = 2s − 1 or (l − 1)/4 = 2t − 1 (otherwise r would
be even), hence p = 8s − 3 or l = 8t − 3, i.e. p ≡ 5 (mod 8) or l ≡ 5 (mod 8).
Moreover: (p − 1)/4 = 3s + 1 or (p − 1)/4 = 3s + 2 or (l − 1)/4 = 3t + 1 or
(l − 1)/4 = 3s + 2 for some s, t ∈ N0 (otherwise r would be a multiple of 3), hence
p = 12s + 5 or p = 12s + 9 or l = 12t + 5 or l = 12t + 9, in particular p 6≡ 1
(mod 3) or l 6≡ 1 (mod 3).

The structure of 0ab
p,l also seems to depend only on the number of commuting

quaternions whose ψ-images generate 0p,l . To make this precise, if l ≡ 1 (mod 4) is
a prime number, let Yl ⊂ H(Z) be any set of cardinality l+1

2 , such that 〈ψ(Yl)〉 ∼= Fl+1
2

and each element y ∈ Yl has type o0 and satisfies <(y) > 0, |y|2 = l. We think of
Yl = {ψ−1(b1), . . . , ψ

−1(b l+1
2
)} and Yp = {ψ−1(a1), . . . , ψ

−1(a p+1
2
)}, where

0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉 .

Then, let
cp,l := |{(x, y) : x ∈ Yp, y ∈ Yl , xy = yx}| .

Note that the definition of cp,l is independent of the explicit choice of elements in Y p

and Yl . Obviously,

cp,l ≤ min

{
p + 1

2
,

l + 1

2

}
.

Moreover, cp,l ≥ 3, since Yp contains by Lemma 3.7(1) elements of the form x0+x1i ,
x0+ x2 j , x0+ x3k and Yl contains elements of the form y0+ y1i , y0+ y2 j , y0+ y3k,
and for example x0 + x1i commutes with y0 + y1i .

Conjecture 3.17. Let p, l ≡ 1 (mod 4) be two distinct prime numbers, and

r = gcd

(
p − 1

4
,

l − 1

4
, 6

)

as in Conjecture 3.15. Then

cp,l ≡





3 (mod 12) , if r = 1

9 (mod 12) , if r = 2

7 (mod 12) , if r = 3

1 (mod 12) , if r = 6 .
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We have checked Conjecture 3.17 for all possible p, l < 1000. The following
values for cp,l appear in this range:

cp,l ∈





{3, 15, 27, 39, 51, 63, 75, 87, 99} , if r = 1

{9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 153} , if r = 2

{7, 19, 31, 43, 55, 67, 79, 91, 103, 115, 127, 151} , if r = 3

{37, 49, 61, 73, 85, 97, 109, 121, 133} , if r = 6 .

See Table 3.5 for the frequencies of the values of c p,l , where p, l ≡ 1 (mod 4) are
prime numbers such that p < l < 1000.

cp,l 3 15 27 39 51 63 75
# 1242 449 143 56 34 17 7

87 99
5 2 1955

cp,l 9 21 33 45 57 69 81
# 178 158 84 57 40 21 8

93 105 117 129 141 153
9 12 5 2 1 575

cp,l 7 19 31 43 55 67 79
# 236 130 79 42 18 8 12

91 103 115 127 139 151
6 1 4 2 1 539

cp,l 1 13 25 37 49 61 73
# 26 15 15 16

85 97 109 121 133
7 4 3 2 3 91

3160

Table 3.5: cp,l and its frequency, p < l < 1000

Combining Conjecture 3.17 with Conjecture 3.15, we get another conjecture:

Conjecture 3.18. Let p, l ≡ 1 (mod 4) be two distinct prime numbers, then

0ab
p,l
∼=





Z2 × Z3
4 , if cp,l ≡ 3 (mod 12)

Z3
2 × Z2

8 , if cp,l ≡ 9 (mod 12)

Z2 × Z3 × Z3
4 , if cp,l ≡ 7 (mod 12)

Z3
2 × Z3 × Z2

8 , if cp,l ≡ 1 (mod 12) .
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Now, we want to prove that the groups 0p,l are commutative transitive. This has
for example applications to centralizers of powers of elements, and a nice application
which allows to detect “anti-tori” in 0p,l (see Proposition 3.53 in Section 3.6).

Lemma 3.19. Let p, l ≡ 1 (mod 4) be two distinct prime numbers. Let x, y ∈ H(Z)
be of type o0 such that |x |2, |y|2 ∈ {pr ls : r, s ∈ N0}. Then xy = yx if and only if
ψ(x)ψ(y) = ψ(y)ψ(x).
Proof. Obviously xy = yx implies ψ(x)ψ(y) = ψ(y)ψ(x). Assume now that
ψ(x)ψ(y) = ψ(y)ψ(x). Then ψ(xy) = ψ(yx) and xy = λyx for some λ ∈ Q×.
Taking the norm | · |2 of xy = λyx , we conclude |λ|2 = λ2 = 1, hence λ = 1 or
λ = −1. If λ = 1, then xy = yx and we are done. The case λ = −1 is impossible
since xy = −yx together with <(x) 6= 0 implies by Lemma 3.4(2) the contradiction
y = 0.

Proposition 3.20. Let p, l ≡ 1 (mod 4) be two distinct prime numbers. Then 0 p,l

is commutative transitive, i.e. the relation of commutativity is transitive on the set of
non-trivial elements of 0p,l .

Equivalently, this means that if x, y, z ∈ H(Z) are of type o0 such that

x 6= <(x), y 6= <(y), z 6= <(z) ,
|x |2, |y|2, |z|2 ∈ {pr ls : r, s ∈ N0} ,

ψ(x)ψ(y) = ψ(y)ψ(x) and ψ(x)ψ(z) = ψ(z)ψ(x) ,
then also ψ(y)ψ(z) = ψ(z)ψ(y).
Proof. Note that for x of type o0 we have x 6= <(x), if and only if ψ(x) 6= 1. By
Lemma 3.19, we have xy = yx and xz = zx . Moreover, again by Lemma 3.19,
ψ(y)ψ(z) = ψ(z)ψ(y) if and only if yz = zy. But yz = zy follows now directly by
Lemma 3.4(3).

Corollary 3.21. Let p, l ≡ 1 (mod 4) be two distinct prime numbers, 0 = 0 p,l and
γ ∈ 0 a non-trivial element.

(1) If k ∈ N, then Z0(γ k) = Z0(γ ).

(2) The centralizer Z0(γ ) is abelian.

(3) The center Z0 is trivial.

Proof. (1) Since γ and γ k commute, the statement follows from Proposition 3.20,
using the fact that 0 is torsion-free.

(2) Again, this is a direct consequence of Proposition 3.20.
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(3) Of course, the statement follows from the more general result Corollary 1.11(3)
for (2m, 2n)–groups. Here, it follows directly from Proposition 3.20, since the
existence of a non-trivial element in Z0 would imply that 0 is abelian.

Using the following result of Mozes ([54]) together with Proposition 1.12 about
centralizers, we give some applications to number theory, illustrated for two concrete
examples in Proposition 3.23:

Proposition 3.22. (Mozes [54, Proposition 3.15]) Let p, l ≡ 1 (mod 4) be two dis-
tinct prime numbers,

0 = 0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉

and let z ∈ H(Z) be of type o0 such that z 6= <(z) and |z|2 = ls for some s ∈ N.
Take c1, c2, c3 ∈ Z relatively prime such that c := c1i + c2 j + c3k ∈ H(Z) commutes
with z. Then there exists a non-trivial element a ∈ 〈a1, . . . , a p+1

2
〉 ⊂ 0 commuting

with ψ(z) if and only if there are integers x, y ∈ Z such that

gcd(x, y) = gcd(x, pl) = gcd(y, pl) = 1

and x2 + 4|c|2 y2 ∈ {pr ls : r, s ∈ N}.
Proposition 3.23. (1) There are no pairs of integers x, y ∈ Z such that

gcd(x, y) = gcd(x, 65) = gcd(y, 65) = 1

and
x2 + 12y2 ∈ {5r 13s : r, s ∈ N} .

(2) There are no pairs x, y ∈ Z such that

gcd(x, y) = gcd(x, 221) = gcd(y, 221) = 1

and
x2 + 8y2 ∈ {13r 17s : r, s ∈ N} .

Proof. (1) For b1 = ψ(1+2i+2 j+2k) ∈ 05,13 =: 0 we have Z0(b1) = 〈b1〉, see
Proposition 3.29(7) below. In particular, b1 does not commute with any element
in 〈a1, a2, a3〉 \ {1}. The statement follows now by Proposition 3.22, taking
c = i + j + k.

(2) Proposition 3.27(4) below shows that Z0(b4) = 〈b4〉, where

b4 = ψ(3+ 2i + 2 j) ∈ 013,17 =: 0 .
Taking c = i + j , we can again apply Proposition 3.22.
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The results on centralizers in 0p,l used in the proof of the preceding proposition
can also be applied to give statements about non-commuting quaternions. We first
illustrate it again for (p, l) ∈ {(5, 13), (13, 17)} and generalize it in Proposition 3.25.

Proposition 3.24. (1) Let y = 1 + 2i + 2 j + 2k. Then there is no x ∈ H(Z),
x 6= <(x), of type o0 such that |x |2 ∈ {5r : r ∈ N} and xy = yx.

(2) Let y = 3+ 2i + 2 j . Then there is no x ∈ H(Z), x 6= <(x), of type o0 such that
|x |2 ∈ {13r : r ∈ N} and xy = yx.

Proof. (1) Let 0 = 05,13 and b1 = ψ(y) ∈ 0. Assume that x ∈ H(Z) is of type o0

such that |x |2 ∈ {5r : r ∈ N} and xy = yx , where x 6= <(x). This implies
ψ(x) ∈ 〈a1, a2, a3〉 \ {1} and ψ(x) ∈ Z0(b1), contradicting Z0(b1) = 〈b1〉
(which holds by Proposition 3.29(7)).

(2) Same proof as in part (1) taking p = 13, l = 17, b4 = ψ(y) ∈ 0 = 013,17 and
using Z0(b4) = 〈b4〉 (which holds by Proposition 3.27(4)).

Proposition 3.25. Let p, l ≡ 1 (mod 4) be two distinct prime numbers and

0 = 0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉 .

Assume that ρv(b j )(a) 6= a for some b j ∈ {b1, . . . , b l+1
2
} and all elements a ∈ Eh .

Let y ∈ H(Z) be of type o0 such that |y|2 = l and b j = ψ(y). Then there is no
x ∈ H(Z), x 6= <(x), of type o0 such that |x |2 ∈ {pr : r ∈ N} and xy = yx.

Proof. As in the proof of Proposition 3.24 the claim follows directly from the fact
Z0(b j ) = 〈b j〉 which is a consequence of Proposition 1.12(1b).

Now, we want to study the two examples 013,17 and 05,13.

Example: p = 13, l = 17

Using the explicit identification

a1 = ψ(1+ 2i + 2 j + 2k), a−1
1 = ψ(1− 2i − 2 j − 2k),

a2 = ψ(1+ 2i + 2 j − 2k), a−1
2 = ψ(1− 2i − 2 j + 2k),

a3 = ψ(1+ 2i − 2 j + 2k), a−1
3 = ψ(1− 2i + 2 j − 2k),

a4 = ψ(1− 2i + 2 j + 2k), a−1
4 = ψ(1+ 2i − 2 j − 2k),

a5 = ψ(3+ 2i), a−1
5 = ψ(3− 2i),

a6 = ψ(3+ 2 j), a−1
6 = ψ(3− 2 j),

a7 = ψ(3+ 2k), a−1
7 = ψ(3− 2k),
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b1 = ψ(1+ 4i), b−1
1 = ψ(1− 4i),

b2 = ψ(1+ 4 j), b−1
2 = ψ(1− 4 j),

b3 = ψ(1+ 4k), b−1
3 = ψ(1− 4k),

b4 = ψ(3+ 2i + 2 j), b−1
4 = ψ(3− 2i − 2 j),

b5 = ψ(3+ 2i − 2 j), b−1
5 = ψ(3− 2i + 2 j),

b6 = ψ(3+ 2i + 2k), b−1
6 = ψ(3− 2i − 2k),

b7 = ψ(3+ 2i − 2k), b−1
7 = ψ(3− 2i + 2k),

b8 = ψ(3+ 2 j + 2k), b−1
8 = ψ(3− 2 j − 2k),

b9 = ψ(3+ 2 j − 2k), b−1
9 = ψ(3− 2 j + 2k),

we get the example 0 = 013,17. The corresponding (14, 18)–complex X is denoted
by A13,17 in [17] and essentially used there in the construction of finitely presented
torsion-free (virtually) simple groups, see [17, Theorem 6.4].

Example 3.26. Let R7·9 = R p+1
2 · l+1

2
be the set of 63 relators

R7·9 :=





a1b1a3b3, a1b2a2b1, a1b3a4b2,

. . . . . . . . .

a7b3a−1
7 b−1

3 , a7b7a7b−1
6 , a7b9a7b−1

8




.

(The complete set of relators can be found in Appendix A.10.)

Proposition 3.27. Let 0 = 013,17 be the (14, 18)–group defined in Example 3.26
(actually in Appendix A.10). Then

(1) Ph
∼= PSL2(13) < S14, Pv ∼= PSL2(17) < S18.

(2) 0ab ∼= Z2 × Z3
4, [0, 0]ab ∼= Z3 × Z3

16, 0ab
0
∼= Z2 × Z3 × Z2

8.

(3) Any non-trivial normal subgroup of 0 has finite index.

(4) Z0(b) = N0(〈b〉) = 〈b〉, if b ∈ {b4, . . . , b9}.
Z0(a) = N0(〈a〉) = 〈a〉, if a ∈ {a1, a2, a3, a4}.

(5) Let V be the subgroup of U(H(Q))

V := 〈1+ 2i + 2 j + 2k, 3+ 2i, 1+ 4 j, 3+ 2i + 2 j〉 .
Then 0 ∼= V/Z V .
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Proof. (1) We compute

ρv(b1) = (1, 8, 13)(2, 9, 4)(3, 6, 14)(7, 12, 11),

ρv(b2) = (1, 10, 11)(2, 7, 14)(3, 4, 8)(5, 13, 12),

ρv(b3) = (1, 9, 12)(2, 3, 10)(4, 5, 14)(6, 11, 13),

ρv(b4) = (1, 4, 8, 3, 13, 5, 10)(2, 11, 7, 12, 14, 6, 9),

ρv(b5) = (1, 8, 13, 4, 9, 6, 3)(2, 12, 5, 10, 11, 14, 7),

ρv(b6) = (1, 2, 9, 4, 12, 7, 8)(3, 13, 6, 11, 14, 5, 10),

ρv(b7) = (1, 4, 5, 10, 2, 12, 9)(3, 6, 14, 13, 8, 7, 11),

ρv(b8) = (1, 3, 10, 2, 11, 6, 9)(4, 12, 5, 13, 14, 7, 8),

ρv(b9) = (1, 10, 11, 3, 8, 7, 2)(4, 13, 6, 9, 12, 14, 5),

ρh(a1) = (1, 5, 17, 3, 12, 18, 2, 9, 16)(4, 14, 15, 6, 7, 13, 8, 10, 11),

ρh(a2) = (1, 6, 3, 2, 14, 18, 16, 11, 17)(4, 5, 15, 9, 8, 10, 7, 13, 12),

ρh(a3) = (1, 7, 16, 17, 15, 18, 3, 8, 2)(4, 14, 10, 11, 9, 6, 12, 13, 5),

ρh(a4) = (1, 3, 10, 17, 18, 13, 16, 2, 4)(5, 8, 9, 11, 12, 6, 7, 14, 15),

ρh(a5) = (2, 8, 3, 10, 17, 11, 16, 9)(4, 14, 6, 12, 5, 15, 7, 13),

ρh(a6) = (1, 7, 16, 13, 18, 12, 3, 6)(4, 5, 9, 11, 14, 15, 8, 10),

ρh(a7) = (1, 4, 2, 14, 18, 15, 17, 5)(6, 7, 8, 9, 12, 13, 10, 11).

(2) We use GAP ([29]).

(3) We can apply [17, Theorem 4.1] using the results described in [17, Section 2.4]
and [16, Section 1.8]. Note that

PSL2(Q13) � H1 � PGL2(Q13) and PSL2(Q17) � H2 � PGL2(Q17) ,

in particular
[PGL2(Q13) : H1] = [H1 : PSL2(Q13)] = 2

and
[PGL2(Q17) : H2] = [H2 : PSL2(Q17)] = 2 .

(4) This follows from Proposition 1.12.

(5) Let ψ̂ : V → PGL2(Qp) × PGL2(Ql) be the map which sends the quaternion
x = x0 + x1i + x2 j + x3k ∈ V to

([(
x0 + x1i p x2 + x3i p

−x2 + x3i p x0 − x1i p

)]
,

[(
x0 + x1il x2 + x3il

−x2 + x3il x0 − x1il

)])
.
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It is a group homomorphism such that ψ̂(x) = ψ(x), if x ∈ H(Z)∩V . We have

ψ̂(V ) = 〈ψ̂(1+ 2i + 2 j + 2k), ψ̂(3+ 2i), ψ̂(1+ 4 j), ψ̂(3+ 2i + 2 j)〉
= 〈ψ(1+ 2i + 2 j + 2k), ψ(3+ 2i), ψ(1+ 4 j), ψ(3+ 2i + 2 j)〉
= 〈a1, a5, b2, b4〉 < 0 .

In fact, GAP ([29]) shows that [0 : 〈a1, a5, b2, b4〉] = 1, in other words

〈a1, a5, b2, b4〉 = 0 .

Therefore 0 = ψ̂(V ) ∼= V/ker(ψ̂). We claim that ker(ψ̂) = Z V . On the one
hand, we have

ker(ψ̂) = {x ∈ V : x = x} = V ∩ ZU(H(Q)) < Z V .

On the other hand, if x = x0 + x1i + x2 j + x3k ∈ V < U(H(Q)) commutes
both with 3+ 2i ∈ V and 1+ 4 j ∈ V , then x = x 6= 0, hence x ∈ ker(ψ̂) and
in particular Z V < ker(ψ̂).

Note that the only commuting pairs among the standard generators of 013,17 are
{a5, b1}, {a6, b2} and {a7, b3}.

Example: p = 5, l = 13

Our second example is 0 = 05,13, using the identification

a1 = ψ(1+ 2i), a−1
1 = ψ(1− 2i),

a2 = ψ(1+ 2 j), a−1
2 = ψ(1− 2 j),

a3 = ψ(1+ 2k), a−1
3 = ψ(1− 2k),

b1 = ψ(1+ 2i + 2 j + 2k), b−1
1 = ψ(1− 2i − 2 j − 2k),

b2 = ψ(1+ 2i + 2 j − 2k), b−1
2 = ψ(1− 2i − 2 j + 2k),

b3 = ψ(1+ 2i − 2 j + 2k), b−1
3 = ψ(1− 2i + 2 j − 2k),

b4 = ψ(1− 2i + 2 j + 2k), b−1
4 = ψ(1+ 2i − 2 j − 2k),

b5 = ψ(3+ 2i), b−1
5 = ψ(3− 2i),

b6 = ψ(3+ 2 j), b−1
6 = ψ(3− 2 j),

b7 = ψ(3+ 2k), b−1
7 = ψ(3− 2k).
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Example 3.28.

R3·7 :=





a1b1a3b−1
6 , a1b2a2b7, a1b3a−1

2 b−1
7 ,

a1b4a1b−1
1 , a1b5a−1

1 b−1
5 , a1b6a3b3,

a1b7a−1
2 b−1

4 , a1b−1
7 a2b1, a1b−1

6 a−1
3 b2,

a1b−1
4 a−1

3 b6, a1b−1
3 a1b−1

2 , a2b2a−1
3 b−1

5 ,

a2b3a2b−1
1 , a2b4a3b5, a2b5a−1

3 b−1
3 ,

a2b6a−1
2 b−1

6 , a2b−1
5 a3b1, a2b−1

4 a2b−1
2 ,

a3b2a3b−1
1 , a3b7a−1

3 b−1
7 , a3b−1

4 a3b−1
3





.

Proposition 3.29. Let 0 = 05,13 be the (6, 14)–group defined in Example 3.28 and
let G = U(H(Z[1/5, 1/13]))/ZU(H(Z[1/5, 1/13])). Then

(1) Ph
∼= PGL2(5) < S6, Pv ∼= PGL2(13) < S14.

(2) 0ab ∼= Z2 × Z3
4, [0, 0]ab ∼= Z3 × Z3

16, 0ab
0
∼= Z2 × Z3 × Z2

8.

(3) There are finite quotients

0/〈〈b3
1, b2

5, (a1a2)
3, (b1b5)

3〉〉0 ∼= PGL2(3) ∼= S4,

such that 〈〈b3
1, b2

5, (a1a2)
3, (b1b5)

3〉〉ab
0
∼= Z2 × Z3

12.

0/〈〈a8
1, (a1a2)

3, (a1b1)
7, (b1b5)

7, (a1b1b5)
6〉〉0 ∼= PGL2(7),

such that 〈〈a8
1, (a1a2)

3, (a1b1)
7, (b1b5)

7, (a1b1b5)
6〉〉ab
0
∼= Z2

2 × Z14 × Z56.

0/〈〈b4
1, (b1b5)

3, (a1a2)
5, (a1b1b5)

5〉〉0 ∼= PGL2(11),

0/〈〈b9
2, b8

5, (a1a2)
9, (a1a3)

9, (b2b6)
8, (a1b1b5)

2〉〉0 ∼= PGL2(17),

0/〈〈a5
1, a5

2, a5
3, b20

5 〉〉0 ∼= PGL2(19),

0/〈〈b12
4 , b3

5, b3
6, (b4b5)

11〉〉0 ∼= PGL2(23),

0/〈〈a14
1 , b5

1, b7
5, b7

6, (a1b1)
3〉〉0 ∼= PSL2(29).

(4) We get a finite presentation of G by adding to the presentation

〈a1, a2, a3, b1, . . . , b7 | R3·7〉
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of 0 two new generators i , j and the relations/relators

i2, j 2, [i, j ],
[a1, i ], a2i = ia−1

2 , a3i = ia−1
3 , a1 j = ja−1

1 , [a2, j ], a3 j = ja−1
3 ,

b1i = ib−1
4 , b2i = ib3, b3i = ib2, [b5, i ], b6i = ib−1

6 , b7i = ib−1
7 ,

b1 j = jb−1
3 , b2 j = jb4, b4 j = jb2, b5 j = jb−1

5 , [b6, j ], b7 j = jb−1
7 ,

and 0 is then the kernel of the homomorphism

G → Z2
2

i 7→ (1+ 2Z, 0+ 2Z)
j 7→ (0+ 2Z, 1+ 2Z)

a1, a2, a3 7→ (0+ 2Z, 0+ 2Z)
b1, . . . , b7 7→ (0+ 2Z, 0+ 2Z) .

(5) For a group H we use the notation H (1) := [H, H ], H (2) := [H (1), H (1)].
There is a chain of normal subgroups of G

0(2)
64
C G(2) 16

C 0(1)0

12
C 0(1)

8
C G(1) 4

C 00
4
C 0

4
C G

such that

G/0 ∼= 0/00
∼= 00/G(1) ∼= Z2

2 , G(1)/0(1) ∼= Z3
2 , 0

(1)/0
(1)
0
∼= Z2

2 × Z3 ,

Gab ∼= Z6
2 and G/00

∼= Z4
2. It follows for example that 0(2) is a normal

subgroup of G of index 6291456 = 3 · 221.

(6) 0 < SO3(Q) (illustrating Theorem 3.12(2)).

(7) Z0(b) = N0(〈b〉) = 〈b〉, if b ∈ {b1, b2, b3, b4}.
Proof. (1) We compute

ρv(b1) = (1, 6, 3, 4, 2, 5),

ρv(b2) = (1, 6, 2, 5, 4, 3),

ρv(b3) = (1, 6, 5, 2, 3, 4),

ρv(b4) = (1, 2, 5, 3, 4, 6),

ρv(b5) = (2, 3, 5, 4),

ρv(b6) = (1, 4, 6, 3),

ρv(b7) = (1, 2, 6, 5),

ρh(a1) = (1, 4, 7, 3, 13, 9, 11, 14, 8, 2, 12, 6),

ρh(a2) = (1, 3, 5, 2, 11, 8, 12, 14, 10, 4, 13, 7),

ρh(a3) = (1, 2, 6, 4, 12, 10, 13, 14, 9, 3, 11, 5).
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(2) We use GAP ([29]).

(3) We have used quotpic ([58]) to compute the abelianizations

〈〈b3
1, b2

5, (a1a2)
3, (b1b5)

3〉〉ab
0
∼= Z2 × Z3

12

and

〈〈a8
1, (a1a2)

3, (a1b1)
7, (b1b5)

7, (a1b1b5)
6〉〉ab
0
∼= Z2

2 × Z14 × Z56 .

The other statements about the finite quotients of the group 0 are computed by
GAP ([29]).

To illustrate Theorem 3.12(3) and (4), the homomorphism τ2,3 : 0 � PGL2(7)
with kernel

〈〈a8
1, (a1a2)

3, (a1b1)
7, (b1b5)

7, (a1b1b5)
6〉〉0

is given by

a1 7→
[(

5+ 7Z 1+ 7Z
1+ 7Z 4+ 7Z

)]

a2 7→
[(

1+ 7Z 2+ 7Z
5+ 7Z 1+ 7Z

)]

a3 7→
[(

0+ 7Z 4+ 7Z
4+ 7Z 2+ 7Z

)]

b1 7→
[(

4+ 7Z 0+ 7Z
3+ 7Z 5+ 7Z

)]

b2 7→
[(

6+ 7Z 6+ 7Z
2+ 7Z 3+ 7Z

)]

b3 7→
[(

4+ 7Z 3+ 7Z
0+ 7Z 5+ 7Z

)]

b4 7→
[(

3+ 7Z 5+ 7Z
1+ 7Z 6+ 7Z

)]

b5 7→
[(

0+ 7Z 1+ 7Z
1+ 7Z 6+ 7Z

)]

b6 7→
[(

3+ 7Z 2+ 7Z
5+ 7Z 3+ 7Z

)]

b7 7→
[(

2+ 7Z 4+ 7Z
4+ 7Z 4+ 7Z

)]
.
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We observe that this homomorphism τ2,3 : 0 → PGL2(7) corresponds to the
permutation representation in S8 found by quotpic ([58]):

a1 7→ (1, 5, 7, 2, 4, 6, 3, 8),

a2 7→ (1, 5, 6, 4, 8, 3, 7, 2),

a3 7→ (1, 5, 3, 8, 2, 7, 6, 4),

b1 7→ (2, 6, 4, 3, 8, 7),

b2 7→ (1, 5, 4, 6, 8, 3),

b3 7→ (1, 5, 2, 7, 4, 6),

b4 7→ (1, 5, 8, 3, 2, 7),

b5 7→ (1, 6, 7, 8, 4, 5, 3, 2),

b6 7→ (1, 3, 6, 2, 8, 5, 7, 4),

b7 7→ (1, 7, 3, 4, 2, 5, 6, 8).

For q = 29, we have τ12,0(0) = PSL2(29) < PGL2(29), given by

a1 7→
[(

25+ 29Z 0+ 29Z
0+ 29Z 6+ 29Z

)]

a2 7→
[(

1+ 29Z 2+ 29Z
27+ 29Z 1+ 29Z

)]

a3 7→
[(

1+ 29Z 24+ 29Z
24+ 29Z 1+ 29Z

)]

b1 7→
[(

25+ 29Z 26+ 29Z
22+ 29Z 6+ 29Z

)]

b2 7→
[(

25+ 29Z 7+ 29Z
3+ 29Z 6+ 29Z

)]

b3 7→
[(

25+ 29Z 22+ 29Z
26+ 29Z 6+ 29Z

)]

b4 7→
[(

6+ 29Z 26+ 29Z
22+ 29Z 25+ 29Z

)]

b5 7→
[(

27+ 29Z 0+ 29Z
0+ 29Z 8+ 29Z

)]

b6 7→
[(

3+ 29Z 2+ 29Z
27+ 29Z 3+ 29Z

)]

b7 7→
[(

3+ 29Z 24+ 29Z
24+ 29Z 3+ 29Z

)]
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and kernel 〈〈a14
1 , b5

1, b7
5, b7

6, (a1b1)
3〉〉0. The choice c = 17, d = 0 gives another

homomorphism
τ17,0 : 0 � PSL2(29)

with kernel ker(τ17,0) = ker(τ12,0).

Note that q = 29 is the smallest odd prime number such that
( 5

q

) = (13
q

) = 1,
see Table 3.2 (other numbers with this property are for example 61 and 79).

(4) This follows from Theorem 3.12(1). Observe that the generators i and j in the
given presentation correspond to

ψ(i) =
([(

i5 0
0 −i5

)]
,

[(
i13 0

0 −i13

)])
∈ PGL2(Q5)× PGL2(Q13)

and

ψ( j) =
([(

0 1
−1 0

)]
,

[(
0 1
−1 0

)])
∈ PGL2(Q5)× PGL2(Q13) ,

respectively. Note that it would be enough to add the relations/relators

i2, j 2, [i, j ],
[a1, i ], a1 j = ja−1

1 , [a2, j ], a3 j = ja−1
3 ,

b1i = ib−1
4 , [b5, i ], b6i = ib−1

6 , b1 j = jb−1
3

in order to get a presentation of the group G.

(5) We have used GAP ([29]), quotpic ([58]) and the presentation of G given in
part (4).

(6) The injective group homomorphism 0→ SO3(Q) of Theorem 3.12(2) is given
by

a1 7→



1 0 0
0 −3/5 −4/5
0 4/5 −3/5




a2 7→


−3/5 0 4/5

0 1 0
−4/5 0 −3/5




a3 7→


−3/5 −4/5 0

4/5 −3/5 0
0 0 1
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b1 7→ 1

13



−3 4 12
12 −3 4

4 12 −3




b2 7→ 1

13



−3 12 −4

4 −3 −12
−12 −4 −3




b3 7→ 1

13



−3 −12 4
−4 −3 −12
12 −4 −3




b4 7→ 1

13



−3 −12 −4
−4 −3 12
−12 4 −3




b5 7→



1 0 0
0 5/13 −12/13
0 12/13 5/13




b6 7→



5/13 0 12/13
0 1 0

−12/13 0 5/13




b7 7→



5/13 −12/13 0
12/13 5/13 0

0 0 1


 .

(7) This follows from Proposition 1.12.

See Table 3.6 for the index [0 : U ] and the abelianization U ab , where U is of the
form U = 〈ai , b j〉, ai ∈ {a1, a2, a3}, b j ∈ {b1, b2, b3, b4, b5, b6, b7} and 0 = 05,13 is
the (6, 14)–group defined in Example 3.28:

b1, b2, b3, b4 b5 b6 b7

a1 16, [16, 32] ∞, [0, 0] 96, [16, 32] 96, [16, 32]
a2 16, [16, 32] 96, [16, 32] ∞, [0, 0] 96, [16, 32]
a3 16, [16, 32] 96, [16, 32] 96, [16, 32] ∞, [0, 0]

Table 3.6: Index [0 : U ] and group U ab, where U = 〈ai , b j〉 in Example 3.28

Observe that 〈a1, b5〉 ∼= 〈a2, b6〉 ∼= 〈a3, b7〉 ∼= Z2 in 05,13.
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3.3 Generalization to p, l ≡ 3 (mod 4)

The main goal of this section is to generalize the construction of 0 p,l of Section 3.2
to the case where p ≡ 3 (mod 4) and l ≡ 3 (mod 4) are distinct prime numbers.
Before giving the ultimate definitions, we discuss some possible approaches. If we
just naively define 0 as set

{ψ(x) : x ∈ H(Z) has type e0, |x |2 = pr ls; r, s ∈ N0} ,
then we have several problems:

(1) The condition “x has type e0” is not preserved under quaternion multiplication
(for example (i+ j+k)2 = −3 has type o0), so we better define 0 just as group
generated by a1, . . . , a p+1

2
, b1, . . . , b l+1

2
, where

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e0, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e0, |y|2 = l}

or (as will be explained in (3))

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e1, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e1, |y|2 = l} ,

i.e. we get

0 = {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e0, if |x |2 ≡ 3 (mod 4),

x has type o0, if |x |2 ≡ 1 (mod 4)}
= {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e0, if r + s is odd,

x has type o0, if r + s is even} ,
or

0 = {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e1, if |x |2 ≡ 3 (mod 4),

x has type o0, if |x |2 ≡ 1 (mod 4)}
= {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e1, if r + s is odd,

x has type o0, if r + s is even}
for a suitable map ψ , see (2) below.
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(2) What is a good definition for ψ? Since now p, l ≡ 3 (mod 4), there are no
elements i p ∈ Qp, il ∈ Ql anymore such that i 2

p + 1 = 0 and i2
l + 1 = 0. We

have two possibilities to generalize the map ψ of Section 3.2: Either we define

ψ : H(Z) \ {0} → PGL2(K p)× PGL2(Kl) ,

where x = x0 + x1i + x2 j + x3k is mapped to
([(

x0 + x1i p x2 + x3i p

−x2 + x3i p x0 − x1i p

)]
,

[(
x0 + x1il x2 + x3il

−x2 + x3il x0 − x1il

)])
,

and K p, Kl are quadratic extensions of Qp and Ql , respectively, containing
elements i p ∈ K p, il ∈ Kl such that i2

p + 1 = 0 and i2
l + 1 = 0, or we define

ψ : H(Z) \ {0} → PGL2(Qp)× PGL2(Ql) ,

x 7→
([(

x0 + x1cp + x3dp −x1dp + x2 + x3cp

−x1dp − x2 + x3cp x0 − x1cp − x3dp

)]
,

[(
x0 + x1cl + x3dl −x1dl + x2 + x3cl

−x1dl − x2 + x3cl x0 − x1cl − x3dl

)])
,

where cp, dp ∈ Qp, cl, dl ∈ Ql are elements satisfying

c2
p + d2

p + 1 = 0 and c2
l + d2

l + 1 = 0 .

Such elements exist since the equation x2 + y2 + 1 = 0 has solutions in
Zp and Zl (see [23, Proposition 2.5.3]) and then applying Hensel’s Lemma.
Both constructions of ψ are equivalent in the sense that they will give the
same defining relations, hence isomorphic groups 0. This mainly follows from
ψ(xy) = ψ(x)ψ(y) for both ψ . Therefore, we can always choose any of those
two definitions of ψ in the following constructions. In practice, we will choose
the second one, since we prefer to be inside PGL2(Qp) × PGL2(Ql) as in the
classical case of Section 3.2.

(3) If p ≡ 3 (mod 8), then p can be written as a sum of (0 and) three odd squares
(by Lemma 3.7(2),(3)). So if we take for example one generator a1 := ψ(x)
such that x = 0+ x1i + x2 j + x3k and |x |2 = x2

1 + x2
2 + x2

3 = p, then

a1 = ψ(x) = ψ(−x) = ψ(x̄) = ψ(x)−1 = a−1
1 ,

i.e. a2
1 = 1 in 0, in particular the group 0 is not torsion-free and therefore

certainly no (p + 1, l + 1)–group.
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We can easily avoid this problem by changing the type from e0 to e1 whenever
p ≡ 3 (mod 8) or l ≡ 3 (mod 8):

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e1, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e1, |y|2 = l} .

In the remaining case p, l ≡ 7 (mod 8), we essentially (we could replace e1 by
e2 or e3) have two possibilities: Either we again take

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e1, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e1, |y|2 = l} ,

or we take

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e0, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e0, |y|2 = l} .

These two constructions give different groups (we have different abelianizations
in our examples, see the list in Section 3.5), but the groups are quite similar (its
intersection has index 2 in both groups).

We always avoid type-mixing constructions, since if x has type eι, |x |2 = p
and y has type eκ 6= eι, |y|2 = l, then |xy|2 = pl ≡ 1 (mod 4). Hence, by
Lemma 3.7(2), |xy|2 can be written as a sum of three squares (one odd and two
even squares). By the following multiplication table (Table 3.7), xy has type
o1, o2 or o3, in particular <(xy) is even, so it can happen that <(xy) = 0, but
then xy = −xy, hence (xy)2 = xy(−xy) ∈ Z and (ψ(xy))2 is the identity in 0
which implies that 0 is not torsion-free.

· o0 o1 o2 o3 e0 e1 e2 e3

o0 o0 o1 o2 o3 e0 e1 e2 e3

o1 o1 o0 o3 o2 e1 e0 e3 e2

o2 o2 o3 o0 o1 e2 e3 e0 e1

o3 o3 o2 o1 o0 e3 e2 e1 e0

e0 e0 e1 e2 e3 o0 o1 o2 o3

e1 e1 e0 e3 e2 o1 o0 o3 o2

e2 e2 e3 e0 e1 o2 o3 o0 o1

e3 e3 e2 e1 e0 o3 o2 o1 o0

Table 3.7: Multiplication table of quaternion types
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After those preliminary considerations, we give now the final definitions for ψ and
the group 0p,l for this section: Let p, l ≡ 3 (mod 4) be distinct prime numbers, and

ψ : H(Z) \ {0} → PGL2(Qp)× PGL2(Ql) ,

mapping the quaternion x = x0 + x1i + x2 j + x3k to
([(

x0 + x1cp + x3dp −x1dp + x2 + x3cp

−x1dp − x2 + x3cp x0 − x1cp − x3dp

)]
,

[(
x0 + x1cl + x3dl −x1dl + x2 + x3cl

−x1dl − x2 + x3cl x0 − x1cl − x3dl

)])
,

where cp, dp ∈ Qp, cl , dl ∈ Ql are elements such that

c2
p + d2

p + 1 = 0 and c2
l + d2

l + 1 = 0 .

Then, we define the group

0p,l = {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e1, if r + s is odd,

x has type o0, if r + s is even}
= {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e1, if |x |2 ≡ 3 (mod 4),

x has type o0, if |x |2 ≡ 1 (mod 4)} ,
with subsets

Eh := {a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e1, |x |2 = p}

Ev := {b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e1, |y|2 = l} .

In the subcase p, l ≡ 7 (mod 8), we additionally define the group

0p,l,e0 = {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e0, if r + s is odd,

x has type o0, if r + s is even}
= {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e0, if |x |2 ≡ 3 (mod 4),

x has type o0, if |x |2 ≡ 1 (mod 4)} ,
with corresponding subsets

Eh := {a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e0, |x |2 = p}

Ev := {b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e0, |y|2 = l} .
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Our next goal is to prove that 0p,l and 0p,l,e0 are (p + 1, l + 1)–groups.

Theorem 3.30. Let 0 be either the group 0p,l , where p, l ≡ 3 (mod 4), or let 0 be
the group 0p,l,e0 , where p, l ≡ 7 (mod 8). In the first case, let

{α1, . . . , α p+1
2
, α p+1

2
, . . . , α1} = {x ∈ H(Z) of type e1 : |x |2 = p, <(x) > 0}

{β1, . . . , β l+1
2
, β l+1

2
, . . . , β1} = {y ∈ H(Z) of type e1 : |y|2 = l, <(y) > 0}

Eh = ψ
({α1, . . . , α p+1

2
, α p+1

2
, . . . , α1}

) = {a1, . . . , a p+1
2
}±1

Ev = ψ
({β1, . . . , β l+1

2
, β l+1

2
, . . . , β1}

) = {b1, . . . , b l+1
2
}±1 .

In the second case, we take the same definitions, but replace e1 by e0.
A word in {α1, . . . , α p+1

2
, α p+1

2
, . . . , α1} is called reduced, if it has no subword

of the form αiαi or αiαi . A reduced word in {β1, . . . , β l+1
2
, β l+1

2
, . . . , β1} is defined

analogously. Then in both cases the following statements hold.

(1) Any quaternion x ∈ H(Z) such that |x |2 = pr ls; r, s ∈ N0, can be uniquely
expressed in the form

x = εpr1ls1wr2(α)ws2(β) ,

where

• ε ∈ H(Z) is a unit, i.e. ε ∈ {±1,±i,± j,±k}
• r1, r2, s1, s2 ∈ N0 such that 2r1 + r2 = r and 2s1 + s2 = s

• wr2(α) is a reduced word in {α1, . . . , α p+1
2
, α p+1

2
, . . . , α1} of length r2

• ws2(β) is a reduced word in {β1, . . . , β l+1
2
, β l+1

2
, . . . , β1} of length s2.

(2) The group 0 is generated by the set {a1, . . . , a p+1
2
, b1, . . . , b l+1

2
}, i.e. by the set

{ψ(α1), . . . , ψ(α p+1
2
), ψ(β1), . . . , ψ(β l+1

2
)}.

(3) To any pair a ∈ Eh , b ∈ Ev, there are unique elements ã ∈ Eh , b̃ ∈ Ev such
that ba = ãb̃.

(4) The group 0 is torsion-free.

(5) The group 0 is a (p + 1, l + 1)–group.

Proof. (1) We follow the strategy of the proof of [45, Lemma 2.1.9], see also the
proof of [23, Theorem 2.6.13].

Existence: By Proposition 3.10, we can write

x = y(1) . . . y(r)z(1) . . . z(s)
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such that y(ι), z(κ) ∈ H(Z), |y(ι)|2 = p and |z(κ)|2 = l, where ι = 1, . . . , r
and κ = 1, . . . , s. Observe that all quaternions y(ι), z(κ) have type e by the
assumption p, l ≡ 3 (mod 4). Multiplying y(ι), z(κ) with suitable units, we can
achieve that x has the form

x = εy(1) . . . y(r)z(1) . . . z(s) ,

such that ε ∈ H(Z) is a unit, y(ι), z(κ) ∈ H(Z) have type e1, and <(y(ι)) > 0,
<(z(κ)) > 0; or we can achieve that y(ι), z(κ) have type e0 instead of type e1.
We get the desired expression if we replace all subwords

y(ι)y(ι+1) = y(ι)y(ι)

by p = |y(ι)|2, and all subwords

z(κ)z(κ+1) = z(κ)z(κ)

by l = |z(κ)|2.

Uniqueness: We adapt the counting argument given in [45, Lemma 2.1.9]. The
number of reduced words wr2(α) is

{
(p + 1)pr2−1 , if r2 ≥ 1

1 , if r2 = 0 .

Similarly as in [45], it follows that the number of expressions

εpr1ls1wr2(α)ws2(β)

is
8
(
1+ p + · · · + pr )(1+ l + · · · + ls) = 8

∑

d|pr ls

d ,

which is also the number of quaternions x ∈ H(Z), such that |x |2 = pr ls by the
Jacobi Theorem (see for example [45, Theorem 2.1.8] for a formulation and a
proof of the Jacobi Theorem).

(2) Let x ∈ H(Z) be a quaternion of norm |x |2 = pr ls; r, s ∈ N0. By part (1), we
can write

x = εpr1ls1wr2(α)ws2(β) .

Assume that we are in the first case 0 = 0p,l . If x has type e1 and r + s is odd,
then

r2 + s2 = r + s − 2(r1 + s1)
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is odd. By Table 3.7, the quaternion wr2(α)ws2(β) has type e1, hence ε has
type o0, i.e. ε ∈ {−1, 1} and it follows

ψ(x) = ψ(±pr1ls1wr2(α)ws2(β)) = ψ(wr2(α)ws2(β)) .

If x has type o0 and r+s is even, then r2+s2 is even, wr2(α)ws2(β) has type o0,
again ε ∈ {−1, 1} and ψ(x) = ψ(wr2(α)ws2(β)).

The proof in the second case 0 = 0p,l,e0 is completely analogous, we only have
to substitute e1 by e0 everywhere.

(3) Write a = ψ(α) and b = ψ(β) for some

α ∈ {α1, . . . , α p+1
2
, α p+1

2
, . . . , α1} and β ∈ {β1, . . . , β l+1

2
, β l+1

2
, . . . , β1} .

The quaternion βα has type o0 and norm |βα|2 = pl. By part (1), it can be
expressed as βα = εα̃β̃ with a uniquely determined unit ε and uniquely deter-
mined quaternions

α̃ ∈ {α1, . . . , α p+1
2
, α p+1

2
, . . . , α1} and β̃ ∈ {β1, . . . , β l+1

2
, β l+1

2
, . . . , β1} .

Since α̃β̃ has type o0, the unit ε also has type o0, i.e. ε ∈ {−1, 1} and we
conclude

ba = ψ(β)ψ(α) = ψ(βα) = ψ(εα̃β̃) = ψ(α̃β̃) = ψ(α̃)ψ(β̃) =: ãb̃ .

(4) We adapt the proof given in [54, Proposition 3.6]. Let ψ(x) be a non-trivial
element in 0. Assume that ψ(x)k = 1 for some k ∈ N. Then there is an
element µ ∈ Q×p such that

(
x0 + x1cp + x3dp −x1dp + x2 + x3cp

−x1dp − x2 + x3cp x0 − x1cp − x3dp

)k

=
(
µ 0
0 µ

)
∈ GL2(Qp) ,

hence µ = λk
1 = λk

2, where λ1, λ2 are the two eigenvalues

λ1,2 = x0 ±
√
−x2

1 − x2
2 − x2

3

of the matrix
(

x0 + x1cp + x3dp −x1dp + x2 + x3cp

−x1dp − x2 + x3cp x0 − x1cp − x3dp

)
,

using the identity c2
p + d2

p + 1 = 0 in Qp. We write

v := x2
1 + x2

2 + x2
3 ∈ N, λ1 = x0 +

√−v and λ2 = x0 −
√−v .
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By construction of 0p,l and 0p,l,e0 , there are only three possible types for the
quaternion x .

Case 1: x has type o0, in particular x0 is odd and v is positive even.

Case 2: x has type e1, and again x0 is odd and v is positive even.

Case 3: x has type e0 such that |x |2 ≡ 7 (mod 8), in particular x0 is non-zero
even and v is positive odd.

We will use the following facts which hold in all three cases:

v 6= 0, x0 6= 0, 3x2
0 − v 6= 0, x2

0 − v 6= 0 and x2
0 − 3v 6= 0 .

They follow directly looking at the parity. Since λ1/λ2 belongs to a quadratic
extension of Q, and (λ1/λ2)

k = 1, we can conclude that k ∈ {1, 2, 3, 4, 6}. But

• k 6= 1, since λ1 − λ2 = 2
√−v 6= 0

• k 6= 2, since λ2
1 − λ2

2 = 4x0
√−v 6= 0

• k 6= 3, since λ3
1 − λ3

2 = 2
√−v (3x2

0 − v) 6= 0

• k 6= 4, since λ4
1 − λ4

2 = 8x0
√−v (x2

0 − v) 6= 0

• k 6= 6, since λ6
1 − λ6

2 = 4x0
√−v (x2

0 − 3v)(3x2
0 − v) 6= 0 .

It follows that ψ(x)k 6= 1 and 0 is torsion-free.

(5) By part (2), the group 0 is generated by its subset

{a1, . . . , a p+1
2
, b1, . . . , b l+1

2
} ,

and by part (3) there are (p + 1)(l + 1) relators of the form ãb̃a−1b−1, where
a, ã ∈ Eh and b, b̃ ∈ Ev. These (p + 1)(l + 1) relators are represented by
exactly (p+ 1)(l + 1)/4 relators ãb̃a−1b−1 (geometric squares [ãb̃a−1b−1]), if
and only if the four squares

ãb̃a−1b−1, a−1b−1ãb̃, ã−1bab̃−1, ab̃−1ã−1b

are always distinct, i.e. if and only if there are no a ∈ Eh , b ∈ Ev such that
abab = 1. We want to exclude such “projective planes”, so let us assume that
abab = 1 for some a ∈ Eh , b ∈ Ev. Since 0 is torsion-free by part (4), it
follows that ab = 1, hence ψ(αβ) = 1 for some

α ∈ {α1, . . . , α p+1
2
, α p+1

2
, . . . , α1} and β ∈ {β1, . . . , β l+1

2
, β l+1

2
, . . . , β1} .

This implies (looking at the two eigenvalues λ1, λ2 of part (4) which have to
be equal here) that αβ = <(αβ) ∈ Z, contradicting |αβ|2 = pl. We conclude
that 0 is a quotient of a (p + 1, l + 1)–group

〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉 .
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This quotient is not proper (i.e. 0 is exactly this (p + 1, l + 1)–group), if and
only if any non-trivial relation which holds in 0 is a consequence of the square
relations ba = ãb̃ of part (3). So we assume that w is any relator in 0, i.e. any
word in the generators

{a1, . . . , a p+1
2
, b1, . . . , b l+1

2
}±1

which represents the identity in 0. Then, gradually using part (3), i.e. replacing
every ba by the corresponding ãb̃, and cancelling all subwords of the form

ai a
−1
i , a−1

i ai , b j b
−1
j , b−1

j b j ,

either w cancels to 1, which means that w is a consequence of the defining
relators in R p+1

2 · l+1
2

and we are done, or w is represented by an element in 0

of the form a(1) . . . a(r)b(1) . . . b(s), where (r, s) 6= (0, 0), such that a(1) . . . a(r)

and b(1) . . . b(s) are freely reduced words in 〈a1, . . . , a p+1
2
〉 and 〈b1, . . . , b l+1

2
〉,

respectively. Therefore,

ψ(α(1) . . . α(r)β(1) . . . β(s)) = 1

for some
α(1), . . . , α(r) ∈ {α1, . . . , α p+1

2
, α p+1

2
, . . . , α1}

and
β(1), . . . , β(s) ∈ {β1, . . . , β l+1

2
, β l+1

2
, . . . , β1} ,

where α(1) . . . α(r) and β(1) . . . β(s) are reduced words. This implies

α(1) . . . α(r)β(1) . . . β(s) = <(α(1) . . . α(r)β(1) . . . β(s)) =: x0 ∈ Z .
Taking the norm of the last expression, we get pr ls = x2

0 , hence r, s are even
and

x0 = ±pr/2ls/2,

which contradicts the uniqueness statement of part (1) for the quaternion

α(1) . . . α(r)β(1) . . . β(s) = ±pr/2ls/2 .

In both constructions of 0 = 0p,l and 0 = 0p,l,e0 , we have

00 = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = p2r l2s; r, s ∈ N0}
< PSL2(Qp)× PSL2(Ql)

as in Section 3.2. Note that in the case p, l ≡ 7 (mod 8), the common subgroup 00

has index 2 in 0p,l ∩ 0p,l,e0 .
We describe now (or in Appendix A) several explicit examples for the three cases

p, l ≡ 7 (mod 8), p, l ≡ 3 (mod 8) and p ≡ 3 (mod 8), l ≡ 7 (mod 8), where the
first case is again divided into the type e1 and type e0 subcase:
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Case p, l ≡ 7 (mod 8), type e1

Let p, l ≡ 7 (mod 8) be distinct prime numbers. Here, we take {a1, . . . , a p+1
2
} to be

the set

{ψ(x) : x = x0 + x1i + x2 j + x3k ∈ H(Z) has type e1, x0, x1 > 0, |x |2 = p} ,

and take {b1, . . . , b l+1
2
} to be the set

{ψ(y) : y = y0 + y1i + y2 j + y3k ∈ H(Z) has type e1, y0, y1 > 0, |y|2 = l} .

See Appendix A.7 for the explicit definition of the group0 = 07,23. It has for example
the following properties:

Ph
∼= PSL2(7) < S8, Pv ∼= PGL2(23) < S24.

0ab ∼= Z2 × Z2
8, [0, 0]ab ∼= Z3 × Z2

8 × Z64, 0
ab
0
∼= Z2 × Z3 × Z2

8.

In Appendix A.8 is the explicit definition of 0 = 07,31. We have computed

Ph
∼= PGL2(7) < S8, Pv ∼= PSL2(31) < S32.

0ab ∼= Z2 × Z3 × Z2
8, [0, 0]ab ∼= Z2

2 × Z2
8 × Z64, 0

ab
0
∼= Z2 × Z3 × Z2

8.

Case p, l ≡ 7 (mod 8), type e0

Again, let p, l ≡ 7 (mod 8) be distinct prime numbers, but now we take

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e0, |x |2 = p}

and

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type e0, |y|2 = l} .

As an example, the group 0 = 07,23,e0 is explicitly defined in Appendix A.9, and we
have

Ph
∼= PSL2(7) < S8, Pv ∼= PGL2(23) < S24.

0ab ∼= Z3
2 × Z4, [0, 0]ab ∼= Z3 × Z4 × Z2

16, 0
ab
0
∼= Z2 × Z3 × Z2

8.

Note that (07,23,e0)
ab 6= (07,23)

ab, in particular the groups 07,23,e0 and 07,23 are not
isomorphic.
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Case p, l ≡ 3 (mod 8)

Let p, l ≡ 3 (mod 8) be distinct prime numbers. We give the example 03,11, taking

a1 = ψ(1+ j + k), a−1
1 = ψ(1− j − k),

a2 = ψ(1+ j − k), a−1
2 = ψ(1− j + k),

b1 = ψ(1+ j + 3k), b−1
1 = ψ(1− j − 3k),

b2 = ψ(1+ j − 3k), b−1
2 = ψ(1− j + 3k),

b3 = ψ(1+ 3 j + k), b−1
3 = ψ(1− 3 j − k),

b4 = ψ(1+ 3 j − k), b−1
4 = ψ(1− 3 j + k),

b5 = ψ(3+ j + k), b−1
5 = ψ(3− j − k),

b6 = ψ(3+ j − k), b−1
6 = ψ(3− j + k).

Example 3.31.

R2·6 :=





a1b1a1b−1
6 , a1b2a1b−1

4 ,

a1b3a1b6, a1b4a−1
2 b−1

3 ,

a1b5a−1
1 b−1

5 , a1b−1
3 a−1

2 b4,

a1b−1
2 a2b−1

1 , a1b−1
1 a2b−1

2 ,

a2b1a2b−1
3 , a2b2a2b−1

5 ,

a2b4a2b5, a2b6a−1
2 b−1

6





.

Proposition 3.32. Let 0 = 03,11 be the (4, 12)–group defined in Example 3.31. Then

(1) Ph
∼= PGL2(3) ∼= S4, Pv ∼= PSL2(11) < S12.

(2) 0ab ∼= Z2 × Z2
8, [0, 0]ab ∼= Z2

8 × Z64, 0ab
0
∼= Z2 × Z2

8.

Proof. (1) We compute

ρv(b1) = ρv(b2) = (1, 3, 2, 4),

ρv(b3) = (1, 2, 3, 4),

ρv(b4) = (1, 4, 3, 2),

ρv(b5) = (2, 3),

ρv(b6) = (1, 4),
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ρh(a1) = (1, 11, 9, 10, 6)(2, 12, 7, 3, 4),

ρh(a2) = (1, 11, 8, 4, 3)(2, 12, 10, 9, 5).

(2) GAP ([29]).

See Table 3.8 for the index [0 : U ], the abelianization U ab and the structure
of the quotient 0/U (if U is normal in 0), where U = 〈ai , b j〉, ai ∈ {a1, a2} and
b j ∈ {b1, . . . , b6}.

b1, b3 b2, b4 b5 b6

a1 2, [8, 8],Z2 8, [8, 32],− ∞, [0, 0],− 2, [8, 8],Z2

a2 8, [8, 32],− 2, [8, 8],Z2 2, [8, 8],Z2 ∞, [0, 0],−

Table 3.8: [0 : U ], U ab and 0/U in Example 3.31, where U = 〈ai , b j〉

Case p ≡ 3 (mod 8), l ≡ 7 (mod 8)

Let p ≡ 3 (mod 8), l ≡ 7 (mod 8) be prime numbers, We construct the group 03,7

as follows:

a1 = ψ(1+ j + k), a−1
1 = ψ(1− j − k),

a2 = ψ(1+ j − k), a−1
2 = ψ(1− j + k),

b1 = ψ(1+ 2i + j + k), b−1
1 = ψ(1− 2i − j − k),

b2 = ψ(1+ 2i + j − k), b−1
2 = ψ(1− 2i − j + k),

b3 = ψ(1+ 2i − j + k), b−1
3 = ψ(1− 2i + j − k),

b4 = ψ(1+ 2i − j − k), b−1
4 = ψ(1− 2i + j + k).

Example 3.33.

R2·4 :=





a1b1a−1
2 b−1

2 , a1b2a−1
1 b3,

a1b3a−1
2 b−1

4 , a1b4a1b−1
1 ,

a1b−1
4 a2b2, a1b−1

3 a2b1,

a2b3a2b−1
2 , a2b4a−1

2 b1





.
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Proposition 3.34. Let 0 = 03,7 be the (4, 8)–group defined in Example 3.33. Then

(1) Ph
∼= PSL2(3) ∼= A4, Pv ∼= PGL2(7) < S8.

(2) 0ab ∼= Z2 × Z2
4, [0, 0]ab ∼= Z2

8 × Z16, 0ab
0
∼= Z2 × Z2

8.

(3) We have a quotient 0/〈〈a6
1, b4

1, (a1b1)
5, (b1b2)

5〉〉0 ∼= PGL2(5) ∼= S5, such that
〈〈a6

1, b4
1, (a1b1)

5, (b1b2)
5〉〉ab
0
∼= Z2 × Z3

20, and quotients

0/〈〈a5
1, (a1b1)

12, (b1b2)
5〉〉0 ∼= PGL2(11),

0/〈〈a7
1, (a1b1)

14, (b1b2)
3〉〉0 ∼= PGL2(13).

(4) The group U(H(Z[1/3, 1/7]))/ZU(H(Z[1/3, 1/7])) has a presentation with
generators a1, a2, b1, b2, b3, b4, i, j and relators

R2·4, a1ia1i−1, a1 ja−1
2 j−1, b1ib−1

4 i−1, b1 jb3 j−1, i2, j 2, [i, j ] .

(5) (U(H(Z[1/3, 1/7]))/ZU(H(Z[1/3, 1/7])))ab ∼= Z4
2.

(6) (U(H(Z[1/3, 1/7]))/ZU(H(Z[1/3, 1/7])))/00
∼= Z4

2.

(7) Aut(X) ∼= D4.

(8) 〈a2
2a2

1, b−1
2 b3b4b−1

1 〉 ∼= Z2.

Proof. (1) We compute

ρv(b1) = (1, 4, 3),

ρv(b2) = (1, 2, 3),

ρv(b3) = (2, 4, 3),

ρv(b4) = (1, 2, 4),

ρh(a1) = (1, 4, 3, 7, 5, 8, 6, 2),

ρh(a2) = (1, 5, 6, 7, 8, 4, 2, 3).

(2) GAP ([29]).

(3) Let q be an odd prime number distinct from p and l, and choose c, d ∈ Z
such that c2 + d2 + 1 ≡ 0 (mod q), then we can define exactly as described in
Theorem 3.12(3) a homomorphism τ = τc,d : 0p,l → PGL2(q) by

τc,d (γ ) =
[(

x0 + x1c + x3d + qZ −x1d + x2 + x3c + qZ
−x1d − x2 + x3c + qZ x0 − x1c − x3d + qZ

)]
,

where γ = ψ(x0 + x1i + x2 j + x3k).
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For q = 5 we have τ0,2 : 03,7 � PGL2(5) given by

a1 7→
[(

3+ 5Z 1+ 5Z
4+ 5Z 4+ 5Z

)]

a2 7→
[(

4+ 5Z 1+ 5Z
4+ 5Z 3+ 5Z

)]

b1 7→
[(

3+ 5Z 2+ 5Z
0+ 5Z 4+ 5Z

)]

b2 7→
[(

4+ 5Z 2+ 5Z
0+ 5Z 3+ 5Z

)]

b3 7→
[(

3+ 5Z 0+ 5Z
2+ 5Z 4+ 5Z

)]

b4 7→
[(

4+ 5Z 0+ 5Z
2+ 5Z 3+ 5Z

)]
.

We have used quotpic ([58]) to show that

〈〈a6
1, b4

1, (a1b1)
5, (b1b2)

5〉〉ab
0
∼= Z2 × Z3

20.

In the same way τ1,3 : 03,7 � PGL2(11) is defined by

a1 7→
[(

4+ 11Z 2+ 11Z
0+ 11Z 9+ 11Z

)]

a2 7→
[(

9+ 11Z 0+ 11Z
9+ 11Z 4+ 11Z

)]

b1 7→
[(

6+ 11Z 7+ 11Z
5+ 11Z 7+ 11Z

)]

b2 7→
[(

0+ 11Z 5+ 11Z
3+ 11Z 2+ 11Z

)]

b3 7→
[(

6+ 11Z 5+ 11Z
7+ 11Z 7+ 11Z

)]

b4 7→
[(

0+ 11Z 3+ 11Z
5+ 11Z 2+ 11Z

)]

and τ0,5 : 03,7 � PGL2(13) by

a1 7→
[(

6+ 13Z 1+ 13Z
12+ 13Z 9+ 13Z

)]

a2 7→
[(

9+ 13Z 1+ 13Z
12+ 13Z 6+ 13Z

)]
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b1 7→
[(

6+ 13Z 4+ 13Z
2+ 13Z 9+ 13Z

)]

b2 7→
[(

9+ 13Z 4+ 13Z
2+ 13Z 6+ 13Z

)]

b3 7→
[(

6+ 13Z 2+ 13Z
4+ 13Z 9+ 13Z

)]

b4 7→
[(

9+ 13Z 2+ 13Z
4+ 13Z 6+ 13Z

)]
.

(4) Same idea as in Proposition 3.29(4) using that the group

U(H(Z[1/p, 1/ l]))/ZU(H(Z[1/p, 1/ l]))

can be described as

{ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0} .

(5) and (6) follow from part (4) using GAP ([29]).

(7) GAP ([29]). The group Aut(X) is generated by the two automorphisms

(a1, a2, b1, b2, b3, b4) 7→ (a1, a−1
2 , b−1

4 , b−1
2 , b−1

3 , b−1
1 ),

(a1, a2, b1, b2, b3, b4) 7→ (a2, a−1
1 , b2, b4, b1, b3).

(8) This follows from Lemma 3.14, since the two elements a2
2a2

1 = ψ(1+ 8i − 4 j)
and b−1

2 b3b4b−1
1 = ψ(41− 24i + 12 j) commute.

See Table 3.9 for the index [0 : U ], the abelianization U ab and the structure of the
quotient 0/U , where U = 〈ai , b j〉, ai ∈ {a1, a2}, b j ∈ {b1, b2, b3, b4}.

b1, b4 b2, b3

a1 4, [8, 16],Z4 2, [8, 8],Z2

a2 2, [8, 8],Z2 4, [8, 16],Z4

Table 3.9: [0 : U ], U ab and 0/U in Example 3.33, where U = 〈ai , b j〉
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3.4 Mixed examples: p ≡ 3, l ≡ 1 (mod 4)

Let p ≡ 3 (mod 4), l ≡ 1 (mod 4) be two prime numbers. Similarly as in Section 3.2
or Section 3.3, we define a map

ψ : H(Z) \ {0} → PGL2(Qp)× PGL2(Ql) ,

which sends x = x0 + x1i + x2 j + x3k to
([(

x0 + x1cp + x3dp −x1dp + x2 + x3cp

−x1dp − x2 + x3cp x0 − x1cp − x3dp

)]
,

[(
x0 + x1il x2 + x3il

−x2 + x3il x0 − x1il

)])
,

where cp, dp ∈ Qp, il ∈ Ql are elements such that c2
p + d2

p + 1 = 0 and i2
l + 1 = 0.

Then we construct groups 0p,l generated by

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e1, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type o0, |y|2 = l} ,

that is

0p,l = {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e1, if |x |2 ≡ 3 (mod 4),

x has type o0, if |x |2 ≡ 1 (mod 4)}
= {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e1, if r is odd,

x has type o0, if r is even} ,
and, in the subcase p ≡ 7 (mod 8), l ≡ 1 (mod 8), also groups 0 p,l,e0 generated by

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e0, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type o0, |y|2 = l} ,

i.e. 0p,l,e0 is defined as

{ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e0, if |x |2 ≡ 7 (mod 8),

x has type o0, if |x |2 ≡ 1 (mod 8)}
= {ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0,

x has type e0, if r is odd,

x has type o0, if r is even} .
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Note that for both constructions 0 = 0p,l and 0 = 0p,l,e0 we have

00 = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = p2r l2s; r, s ∈ N0}
< PSL2(Qp)× PSL2(Ql)

as in Section 3.2 and 3.3.

Theorem 3.35. Let 0 be either the group0p,l , where p ≡ 3 (mod 4), l ≡ 1 (mod 4),
or let 0 be the group 0p,l,e0 , where p ≡ 7 (mod 8), l ≡ 1 (mod 8). Then 0 is a
(p + 1, l + 1)–group.

Proof. It is easy to adapt the proof of Theorem 3.30.

Now, we give some explicit constructions of 0 p,l for the two cases p ≡ 7 (mod 8)
and p ≡ 3 (mod 8). Moreover, we illustrate the type e0 construction in the subcase
p ≡ 7 (mod 8), l ≡ 1 (mod 8), and explain why this restriction makes sense to avoid
torsion in the group.

Case p ≡ 7 (mod 8), type e1

Let p ≡ 7 (mod 8), l ≡ 1 (mod 4) be prime numbers,

{a1, . . . , a p+1
2
} = {ψ(x) : x ∈ H(Z) has type e1, <(x) > 0, <(i x) < 0, |x |2 = p}

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type o0, <(y) > 0, |y|2 = l} .

We study two examples: the group 07,5 is generated by

a1 = ψ(1+ 2i + j + k), a−1
1 = ψ(1− 2i − j − k),

a2 = ψ(1+ 2i + j − k), a−1
2 = ψ(1− 2i − j + k),

a3 = ψ(1+ 2i − j + k), a−1
3 = ψ(1− 2i + j − k),

a4 = ψ(1+ 2i − j − k), a−1
4 = ψ(1− 2i + j + k),

b1 = ψ(1+ 2i), b−1
1 = ψ(1− 2i),

b2 = ψ(1+ 2 j), b−1
2 = ψ(1− 2 j),

b3 = ψ(1+ 2k), b−1
3 = ψ(1− 2k).

Example 3.36.

R4·3 :=





a1b1a3b−1
3 , a1b2a4b−1

2 , a1b3a−1
4 b2, a1b−1

3 a4b3,

a1b−1
2 a2b1, a1b−1

1 a4b−1
1 , a2b2a−1

3 b−1
3 , a2b3a4b1,

a2b−1
3 a3b3, a2b−1

2 a3b2, a2b−1
1 a3b−1

1 , a3b1a4b2




.
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Proposition 3.37. Let 0 = 07,5 be the (8, 6)–group defined in Example 3.36. Then

(1) Ph
∼= PGL2(7) < S8, Pv ∼= PGL2(5) < S6.

(2) 0ab ∼= Z2 × Z2
4, [0, 0]ab ∼= Z3 × Z2

8 × Z16, 0ab
0
∼= Z2 × Z3 × Z2

8.

(3) Aut(X) ∼= S4.

Proof. (1) We compute

ρv(b1) = (1, 5, 2, 6, 4, 8, 3, 7),

ρv(b2) = (1, 5, 3, 7, 6, 2, 8, 4),

ρv(b3) = (1, 6, 2, 3, 7, 4, 8, 5),

ρh(a1) = (1, 6, 5, 3),

ρh(a2) = (1, 6, 3, 2),

ρh(a3) = (1, 6, 4, 5),

ρh(a4) = (1, 6, 2, 4).

(2) and (3) are computed with GAP ([29]). The group Aut(X) is generated by the
two automorphisms

(a1, a2, a3, a4, b1, b2, b3) 7→ (a1, a3, a4, a2, b3, b1, b2),

(a1, a2, a3, a4, b1, b2, b3) 7→ (a2, a−1
4 , a1, a−1

3 , b1, b−1
3 , b−1

2 ).

See Table 3.10 for the index [0 : U ], the abelianization U ab and the structure of
the quotient 0/U , where U = 〈ai , b j〉, ai ∈ {a1, a2, a3, a4}, b j ∈ {b1, b2, b3}.

b1 b2, b3

a1, a2, a3, a4 4, [8, 16],Z4 2, [8, 8],Z2

Table 3.10: [0 : U ], U ab and 0/U in Example 3.36, where U = 〈ai , b j〉

Our second example is the group 07,13:

a1 = ψ(1+ 2i + j + k), a−1
1 = ψ(1− 2i − j − k),

a2 = ψ(1+ 2i + j − k), a−1
2 = ψ(1− 2i − j + k),

a3 = ψ(1+ 2i − j + k), a−1
3 = ψ(1− 2i + j − k),

a4 = ψ(1+ 2i − j − k), a−1
4 = ψ(1− 2i + j + k),
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b1 = ψ(1+ 2i + 2 j + 2k), b−1
1 = ψ(1− 2i − 2 j − 2k),

b2 = ψ(1+ 2i + 2 j − 2k), b−1
2 = ψ(1− 2i − 2 j + 2k),

b3 = ψ(1+ 2i − 2 j + 2k), b−1
3 = ψ(1− 2i + 2 j − 2k),

b4 = ψ(1− 2i + 2 j + 2k), b−1
4 = ψ(1+ 2i − 2 j − 2k),

b5 = ψ(3+ 2i), b−1
5 = ψ(3− 2i),

b6 = ψ(3+ 2 j), b−1
6 = ψ(3− 2 j),

b7 = ψ(3+ 2k), b−1
7 = ψ(3− 2k).

Example 3.38.

R4·7 :=





a1b1a1b−1
5 , a1b2a4b3, a1b3a−1

1 b−1
2 , a1b4a4b−1

1 ,

a1b5a2b6, a1b6a−1
2 b−1

3 , a1b7a3b5, a1b−1
7 a−1

3 b−1
4 ,

a1b−1
6 a−1

4 b−1
7 , a1b−1

4 a−1
2 b−1

6 , a1b−1
2 a−1

3 b7, a1b−1
1 a4b4,

a2b1a−1
2 b4, a2b2a2b−1

5 , a2b3a−1
4 b7, a2b5a4b−1

7 ,

a2b7a−1
3 b−1

6 , a2b−1
7 a−1

4 b−1
1 , a2b−1

4 a3b1, a2b−1
3 a3b−1

2 ,

a2b−1
2 a3b−1

3 , a3b3a3b−1
5 , a3b4a−1

3 b1, a3b6a−1
4 b2,

a3b−1
6 a4b5, a3b−1

1 a−1
4 b−1

6 , a4b2a−1
4 b−1

3 , a4b−1
5 a4b−1

4





.

Proposition 3.39. Let 0 = 07,13 be the (8, 14)–group defined in Example 3.38. Then

(1) Ph
∼= PGL2(7) < S8, Pv ∼= PGL2(13) < S14.

(2) 0ab ∼= Z2 × Z3 × Z2
4, [0, 0]ab ∼= Z2

2 × Z2
8 × Z16, 0ab

0
∼= Z2 × Z3 × Z2

8.

Proof. (1) We compute

ρv(b1) = (1, 5, 6, 2, 4, 8),

ρv(b2) = (2, 6, 8, 4, 3, 7),

ρv(b3) = (1, 2, 6, 3, 7, 5),

ρv(b4) = (1, 3, 7, 8, 4, 5),

ρv(b5) = (1, 8, 2, 7, 4, 5, 3, 6),

ρv(b6) = (1, 2, 3, 4, 6, 5, 8, 7),

ρv(b7) = (1, 4, 2, 5, 7, 6, 8, 3),
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ρh(a1) = (1, 4, 8, 13, 12, 2, 3, 6, 11, 14, 10, 7, 9, 5),

ρh(a2) = (1, 8, 3, 13, 10, 6, 7, 5, 2, 12, 9, 4, 14, 11),

ρh(a3) = (1, 11, 7, 2, 12, 10, 9, 8, 5, 3, 13, 6, 14, 4),

ρh(a4) = (1, 4, 10, 8, 6, 5, 11, 14, 7, 12, 13, 3, 2, 9).

(2) GAP ([29]).

Case p ≡ 7 (mod 8), type e0; l ≡ 1 (mod 8)

Let p ≡ 7 (mod 8), l ≡ 1 (mod 8) be prime numbers,

{a1, . . . , a p+1
2
}±1 = {ψ(x) : x ∈ H(Z) has type e0, <(x) > 0, |x |2 = p}

and

{b1, . . . , b l+1
2
}±1 = {ψ(y) : y ∈ H(Z) has type o0, <(y) > 0, |y|2 = l} .

Note that we have two major restrictions in this type e0 case. Firstly, we exclude the
case p ≡ 3 (mod 8) for the same reasons explained in Section 3.3. Secondly, we
exclude the case p ≡ 7 (mod 8), l ≡ 5 (mod 8). To motivate it, observe that if x has
type e0, |x |2 = p ≡ 7 (mod 8) and y has type o0, |y|2 = l ≡ 1 (mod 8), then xy has
type e0 such that |xy|2 = pl ≡ 7 (mod 8), in particular <(xy) 6= 0 by Lemma 3.7(2).
However, if x has type e0, |x |2 = p ≡ 7 (mod 8) and y has type o0, |y|2 = l ≡ 5
(mod 8), then xy has type e0 such that |xy|2 = pl ≡ 3 (mod 8) and it can happen
that <(xy) = 0. But this means that xy = −xy, hence (xy)2 = xy(−xy) ∈ Z. As a
consequence, ψ((xy)2) is the identity in 0 and 0 is therefore not torsion-free (we say
that x, y generate a projective plane). We will give an example for this phenomenon
later in this section (see Example 3.42).

First, we look at the (8, 18)–group 07,17,e0 having the following generators:

a1 = ψ(2+ i + j + k), a−1
1 = ψ(2− i − j − k),

a2 = ψ(2+ i + j − k), a−1
2 = ψ(2− i − j + k),

a3 = ψ(2+ i − j + k), a−1
3 = ψ(2− i + j − k),

a4 = ψ(2− i + j + k), a−1
4 = ψ(2+ i − j − k),

b1 = ψ(1+ 4i), b−1
1 = ψ(1− 4i),

b2 = ψ(1+ 4 j), b−1
2 = ψ(1− 4 j),

b3 = ψ(1+ 4k), b−1
3 = ψ(1− 4k),
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b4 = ψ(3+ 2i + 2 j), b−1
4 = ψ(3− 2i − 2 j),

b5 = ψ(3+ 2i − 2 j), b−1
5 = ψ(3− 2i + 2 j),

b6 = ψ(3+ 2i + 2k), b−1
6 = ψ(3− 2i − 2k),

b7 = ψ(3+ 2i − 2k), b−1
7 = ψ(3− 2i + 2k),

b8 = ψ(3+ 2 j + 2k), b−1
8 = ψ(3− 2 j − 2k),

b9 = ψ(3+ 2 j − 2k), b−1
9 = ψ(3− 2 j + 2k).

Example 3.40.

R4·9 :=





a1b1a2b4, a1b2a4b8, a1b3a3b6, a1b4a2b2,

a1b5a4b−1
6 , a1b6a3b1, a1b7a−1

3 b−1
2 , a1b8a4b3,

a1b9a3b−1
4 , a1b−1

9 a−1
4 b−1

1 , a1b−1
8 a3b−1

5 , a1b−1
7 a2b−1

8 ,

a1b−1
6 a2b−1

9 , a1b−1
5 a−1

2 b−1
3 , a1b−1

4 a4b7, a1b−1
3 a−1

2 b5,

a1b−1
2 a−1

3 b−1
7 , a1b−1

1 a−1
4 b9, a2b1a−1

4 b7, a2b6a−1
3 b−1

4 ,

a2b7a−1
4 b−1

3 , a2b8a3b−1
1 , a2b9a−1

3 b2, a2b−1
7 a−1

3 b5,

a2b−1
6 a4b−1

2 , a2b−1
5 a−1

4 b−1
9 , a2b−1

4 a−1
4 b8, a2b−1

3 a−1
3 b9,

a2b−1
2 a4b6, a2b−1

1 a3b−1
8 , a3b4a4b−1

3 , a3b5a−1
4 b1,

a3b8a−1
4 b−1

6 , a3b9a−1
4 b−1

7 , a3b−1
3 a4b−1

4 , a3b−1
2 a−1

4 b5





.

Proposition 3.41. Let 0 = 07,17,e0 be the (8, 18)–group defined in Example 3.40.
Then

(1) Ph
∼= PGL2(7) < S8, Pv ∼= PGL2(17) < S18.

(2) 0ab ∼= Z3
2 × Z4, [0, 0]ab ∼= Z3 × Z4 × Z2

16, 0ab
0
∼= Z2 × Z3 × Z2

8.

Proof. (1) We compute

ρv(b1) = (1, 4, 3, 7, 5, 8, 2, 6),

ρv(b2) = (1, 3, 2, 5, 6, 8, 4, 7),

ρv(b3) = (1, 2, 4, 6, 7, 8, 3, 5),

ρv(b4) = (1, 6, 4, 8, 2, 3, 5, 7),
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ρv(b5) = (1, 6, 5, 7, 8, 4, 3, 2),

ρv(b6) = (1, 5, 2, 8, 3, 4, 7, 6),

ρv(b7) = (1, 3, 4, 2, 8, 6, 7, 5),

ρv(b8) = (1, 7, 3, 8, 4, 2, 6, 5),

ρv(b9) = (1, 7, 6, 5, 8, 3, 2, 4),

ρh(a1) = (1, 10, 18, 6, 5, 11, 2, 7, 17, 4, 9, 13, 3, 14, 16, 8, 12, 15),

ρh(a2) = (1, 8, 18, 4, 6, 10, 16, 5, 3, 7, 11, 15, 2, 13, 17, 9, 14, 12),

ρh(a3) = (1, 11, 18, 5, 7, 9, 3, 4, 16, 6, 8, 14, 17, 12, 2, 10, 15, 13),

ρh(a4) = (1, 14, 13, 11, 3, 15, 16, 12, 10, 5, 2, 6, 17, 8, 4, 7, 18, 9).

(2) GAP ([29]).

We illustrate now, why the type e0 construction does not work in the excluded case
p ≡ 7 (mod 8), l ≡ 5 (mod 8). Take the smallest case p = 7, l = 5: if for example
a1 = ψ(2+ i + j + k) and b1 = ψ(1+ 2i), then

<((2+ i + j + k)(1+ 2i)) = <(5i + 3 j − k) = 0 ,

a1b1 = ψ(2+ i + j + k)ψ(1+ 2i) = ψ(5i + 3 j − k) ,

(a1b1)
2 = ψ((5i + 3 j − k)2) = ψ(−35) = 10 ,

i.e. we have a projective plane, 0 is not torsion-free and therefore no (8, 6)–group.
Nevertheless, we can do some computations: If we take

a1 = ψ(2+ i + j + k), a−1
1 = ψ(2− i − j − k),

a2 = ψ(2+ i + j − k), a−1
2 = ψ(2− i − j + k),

a3 = ψ(2+ i − j + k), a−1
3 = ψ(2− i + j − k),

a4 = ψ(2− i + j + k), a−1
4 = ψ(2+ i − j − k),

b1 = ψ(1+ 2i), b−1
1 = ψ(1− 2i),

b2 = ψ(1+ 2 j), b−1
2 = ψ(1− 2 j),

b3 = ψ(1+ 2k), b−1
3 = ψ(1− 2k),

then we get a group 0 with generators a1, a2, a3, a4, b1, b2, b3 and the following 18
(not 12 !) relators, where the twelve projective planes are printed bold:
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Example 3.42.




a1b1a1b1, a1b2a1b2, a1b3a1b3,

a1b−1
3 a4b−1

2 , a1b−1
2 a2b−1

1 , a1b−1
1 a3b−1

3 ,

a2b1a2b1, a2b2a2b2, a2b3a−1
4 b−1

1 ,

a2b−1
3 a2b−1

3 , a2b−1
2 a−1

3 b3, a3b1a3b1,

a3b3a3b3, a3b−1
2 a3b−1

2 , a3b−1
1 a−1

4 b2,

a4b2a4b2, a4b3a4b3, a4b−1
1 a4b−1

1





.

Note that also here, if Eh := {a1, a2, a3, a4}±1 and Ev := {b1, b2, b3}±1, then
given any a ∈ Eh , b ∈ Ev, there are unique ã ∈ Eh , b̃ ∈ Ev such that ab = b̃ã
by an analogon of Theorem 3.30(3). However, in strong contrast to what happens in
(2m, 2n)–groups, we sometimes have ã = a−1 and b̃ = b−1, i.e. abab = 1.

Proposition 3.43. Let 0 be the group with generators a1, a2, a3, a4, b1, b2, b3 and the
relators of Example 3.42. Let 00 be the kernel of the homomorphism

0→ Z2
2

ai 7→ (1+ 2Z, 0+ 2Z)
b j 7→ (0+ 2Z, 1+ 2Z) ,

generalizing the definition of the subgroup 00 of a (2m, 2n)–group 0. Then

(1) 0ab ∼= Z3
2 × Z4, [0, 0]ab ∼= Z3 × Z4 × Z2

16, 0ab
0
∼= Z2 × Z3 × Z2

8.

(2) 0 has the (vertical) amalgam decomposition

0 ∼= F3 ∗F17 (Z
∗12
2 ∗ F3) .

(3) 00 has the (vertical) amalgam decomposition

00
∼= F5 ∗F33 F5 ,

in particular 00 is torsion-free and 0 is virtually torsion-free.

Proof. (1) This follow from computations with GAP ([29]).

(2) and (3): See Appendix A.11 for the explicit amalgam decompositions and the
isomorphisms to 0 and 00, respectively.
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Remark. Taking an obvious generalized definition of ρh , ρv , Ph , Pv, we get

ρv(b1) = (1, 7, 2, 4, 5, 6, 3, 8),

ρv(b2) = (1, 5, 4, 3, 6, 7, 2, 8),

ρv(b3) = (1, 6, 3, 2, 7, 5, 4, 8),

ρh(a1) = (1, 5, 2, 4, 3, 6),

ρh(a2) = (1, 3, 4, 5, 2, 6),

ρh(a3) = (1, 4, 3, 2, 5, 6),

ρh(a4) = (1, 6, 4, 3, 5, 2),

generating Ph
∼= PGL2(7) < S8 and Pv ∼= PGL2(5) < S6, respectively.

We can take the six relators of 0 in Example 3.42 which are not projective planes
and embed them in a (PGL2(7), PGL2(5))–group as follows:

Example 3.44.

R4·3 :=





a1b1a−1
4 b1, a1b2a−1

3 b2, a1b3a−1
2 b3, a1b−1

3 a4b−1
2 ,

a1b−1
2 a2b−1

1 , a1b−1
1 a3b−1

3 , a2b1a3b1, a2b2a4b2,

a2b3a−1
4 b−1

1 , a2b−1
2 a−1

3 b3, a3b3a4b3, a3b−1
1 a−1

4 b2





.

Proposition 3.45. Let 0 be the (8, 6)–group defined in Example 3.44. Then

(1) Ph
∼= PGL2(7) < S8, Pv ∼= PGL2(5) < S6.

(2) 0ab ∼= Z2
2 × Z3

3, [0, 0]ab ∼= Z3 × Z3
9, 0ab

0
∼= Z4

3, in particular 0 is not
isomorphic to the group 07,5 of Example 3.36.

Proof. (1) We compute

ρv(b1) = (1, 7, 3, 8, 5, 6, 2, 4),

ρv(b2) = (1, 5, 2, 8, 6, 7, 4, 3),

ρv(b3) = (1, 6, 4, 8, 7, 5, 3, 2),

ρh(a1) = (1, 5, 2, 4, 3, 6),

ρh(a2) = (1, 3, 4, 5, 2, 6),

ρh(a3) = (1, 4, 3, 2, 5, 6),

ρh(a4) = (1, 6, 4, 3, 5, 2).

(2) GAP ([29]).
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Case p ≡ 3 (mod 8)

Let p ≡ 3 (mod 8), l ≡ 1 (mod 4) be prime numbers. The example 03,5 is given by

a1 = ψ(1+ j + k), a−1
1 = ψ(1− j − k),

a2 = ψ(1+ j − k), a−1
2 = ψ(1− j + k),

b1 = ψ(1+ 2i), b−1
1 = ψ(1− 2i),

b2 = ψ(1+ 2 j), b−1
2 = ψ(1− 2 j),

b3 = ψ(1+ 2k), b−1
3 = ψ(1− 2k).

Example 3.46.

R2·3 :=





a1b1a2b2, a1b2a2b−1
1 ,

a1b3a−1
2 b1, a1b−1

3 a1b−1
2 ,

a1b−1
1 a−1

2 b3, a2b3a2b−1
2




.

See Appendix B.8 for the GAP-program ([29]) constructing 03,5.

Proposition 3.47. Let 0 = 03,5 be the (4, 6)–group defined in Example 3.46 and let
G = U(H(Z[1/3, 1/5]))/ZU(H(Z[1/3, 1/5])). Then

(1) Ph
∼= PGL2(3) ∼= S4, Pv ∼= PGL2(5) < S6.

(2) 0ab ∼= Z2 × Z2
4, [0, 0]ab ∼= Z2

8 × Z16, 0ab
0
∼= Z2 × Z2

8.

(3) There are finite quotients

0/〈〈a8
1, (a1b1)

7, (b1b2)
3〉〉0 ∼= PGL2(7),

such that 〈〈a8
1, (a1b1)

7, (b1b2)
3〉〉ab
0
∼= Z14 × Z2

56.

0/〈〈a5
1, a5

2, b6
1, (a1b1)

3〉〉0 ∼= PSL2(11),

such that 〈〈a5
1, a5

2, b6
1, (a1b1)

3〉〉ab
0
∼= Z2 × Z22 × Z2

44.

0/〈〈a7
1, a7

2, (a1b1)
4〉〉0 ∼= PGL2(13).

(4) The group G has a presentation with generators a1, a2, b1, b2, b3, i, j and 13
relators

R2·3, a1ia1i−1, a1 ja−1
2 j−1, [b1, i ], b1 jb1 j−1, i2, j 2, [i, j ].
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(5) As in Proposition 3.29(5), we use for a group H the notation H (1) := [H, H ]
and H (2) := [H (1), H (1)]. Then there is a chain of normal subgroups of G

0(2)
64
C G(2) = 0(1)0

16
C 0(1)

8
C G(1) = 00

4
C 0

4
C G

such that

G/0 ∼= 0/00
∼= Z2

2 , G(1)/0(1) ∼= Z2 × Z4 , 0
(1)/0

(1)
0
∼= Z2

2 × Z4

and Gab ∼= G/00
∼= Z4

2.

Note that G(1) = 00 is the kernel of the homomorphism

G → Z4
2

a1, a2 7→ (1+ 2Z, 0+ 2Z, 0+ 2Z, 0+ 2Z)
b1, b2, b3 7→ (0+ 2Z, 1+ 2Z, 0+ 2Z, 0+ 2Z)

i 7→ (0+ 2Z, 0+ 2Z, 1+ 2Z, 0+ 2Z)
j 7→ (0+ 2Z, 0+ 2Z, 0+ 2Z, 1+ 2Z) .

(6) Aut(X) ∼= D4.

(7) 0 is commutative transitive.

(8) If a ∈ {a1, a2}±1 and b ∈ {b1, b2, b3}±1, then 〈a, b〉 is an “anti-torus” in 0.

(9) 〈a1, b1〉 6= F2.

(10) 0 < SO3(Q).

(11) Z0(ai ) = N0(〈ai〉) = 〈ai〉, if ai ∈ {a1, a2}, and
Z0(b j ) = N0(〈b j〉) = 〈b j〉, if b j ∈ {b1, b2, b3}.

(12) 0 has amalgam decompositions F3 ∗F9 F5
∼= 0 ∼= F2 ∗F7 F4.

Proof. (1) We compute

ρv(b1) = (1, 3, 4, 2),

ρv(b2) = (1, 4, 2, 3),

ρv(b3) = (1, 4, 3, 2),

ρh(a1) = (1, 2, 4, 6, 3, 5),

ρh(a2) = (1, 4, 5, 6, 2, 3).

(2) GAP ([29]).
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(3) Let q be an odd prime number distinct from p and l, and choose c, d ∈ Z
such that c2 + d2 + 1 ≡ 0 (mod q), then we can define exactly as described in
Theorem 3.12(3) a homomorphism τ = τc,d : 0p,l → PGL2(q) by

τc,d (γ ) =
[(

x0 + x1c + x3d + qZ −x1d + x2 + x3c + qZ
−x1d − x2 + x3c + qZ x0 − x1c − x3d + qZ

)]
,

where γ = ψ(x0 + x1i + x2 j + x3k) ∈ 0p,l .

For q = 7 we have τ2,3 : 03,5 � PGL2(7) given by

a1 7→
[(

4+ 7Z 3+ 7Z
1+ 7Z 5+ 7Z

)]

a2 7→
[(

5+ 7Z 6+ 7Z
4+ 7Z 4+ 7Z

)]

b1 7→
[(

5+ 7Z 1+ 7Z
1+ 7Z 4+ 7Z

)]

b2 7→
[(

1+ 7Z 2+ 7Z
5+ 7Z 1+ 7Z

)]

b3 7→
[(

0+ 7Z 4+ 7Z
4+ 7Z 2+ 7Z

)]
.

In the same way τ1,3 : 03,5 � PSL2(11) is defined by

a1 7→
[(

4+ 11Z 2+ 11Z
0+ 11Z 9+ 11Z

)]

a2 7→
[(

9+ 11Z 0+ 11Z
9+ 11Z 4+ 11Z

)]

b1 7→
[(

3+ 11Z 5+ 11Z
5+ 11Z 10+ 11Z

)]

b2 7→
[(

1+ 11Z 2+ 11Z
9+ 11Z 1+ 11Z

)]

b3 7→
[(

7+ 11Z 2+ 11Z
2+ 11Z 6+ 11Z

)]

and τ0,5 : 03,5 � PGL2(13) by

a1 7→
[(

6+ 13Z 1+ 13Z
12+ 13Z 9+ 13Z

)]

a2 7→
[(

9+ 13Z 1+ 13Z
12+ 13Z 6+ 13Z

)]
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b1 7→
[(

1+ 13Z 3+ 13Z
3+ 13Z 1+ 13Z

)]

b2 7→
[(

1+ 13Z 2+ 13Z
11+ 13Z 1+ 13Z

)]

b3 7→
[(

11+ 13Z 0+ 13Z
0+ 13Z 4+ 13Z

)]
.

We have used quotpic ([58]) to show that

〈〈a8
1, (a1b1)

7, (b1b2)
3〉〉ab
0
∼= Z14 × Z2

56

and

〈〈a5
1, a5

2, b6
1, (a1b1)

3〉〉ab
0
∼= Z2 × Z22 × Z2

44 .

(4) Same idea as in Proposition 3.29(4) using the isomorphism between

U(H(Z[1/p, 1/ l]))/ZU(H(Z[1/p, 1/ l]))

and

{ψ(x) : x ∈ H(Z), |x |2 = pr ls; r, s ∈ N0} .

(5) We have used GAP ([29]), quotpic ([58]) and the presentation of G given in
part (4).

(6) GAP ([29]). The group Aut(X) is generated by the two automorphisms

(a1, a2, b1, b2, b3) 7→ (a1, a−1
2 , b−1

1 , b3, b2),

(a1, a2, b1, b2, b3) 7→ (a2, a−1
1 , b1, b−1

3 , b2).

(7) We can adapt Lemma 3.19 and Proposition 3.20, using Lemma 3.4(2). This can
be done, sinceψ(x) ∈ 0 implies that x has type e1 or o0, in particular<(x) 6= 0.

(8) See Section 3.6 for the definition of an anti-torus in 0. The statement is an
application of Proposition 3.53 in Section 3.6 using part (7) of this proposition
and an adaption of Lemma 3.19.

(9) We have b1a3
1b2

1a1b−1
1 a−3

1 b−2
1 a−1

1 = 1 in 0 and yx3y2xy−1x−3 y−2x−1 = 1,
where x = 1 + j + k, y = 1 + 2i . There seems to be no smaller non-trivial
freely reduced relation in 〈x, y〉 than the one of length 14 given above. The
statement can also be deduced from Table 3.12.
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(10) A generalization of Theorem 3.12(2) gives an injective group homomorphism
0→ SO3(Q), defined by

a1 7→ 1

3



−1 −2 2

2 1 2
−2 2 1


 , a2 7→ 1

3



−1 2 2
−2 1 −2
−2 −2 1




b1 7→



1 0 0
0 −3/5 −4/5
0 4/5 −3/5




b2 7→


−3/5 0 4/5

0 1 0
−4/5 0 −3/5




b3 7→


−3/5 −4/5 0

4/5 −3/5 0
0 0 1


 .

(11) This follows from Proposition 1.12.

(12) Use Proposition 1.3. The explicit amalgam decompositions of 0 are described
in Appendix A.12.

See Table 3.11 for the orders of some 0/〈〈wk〉〉0, and see Table 3.12 for the index
[0 : U ], the abelianization U ab and the structure of the quotient 0/U (if U is normal
in 0), where U = 〈a, b〉, a ∈ {a1, a2

1, a2, a2
2}, b ∈ {b1, b2

1, b2, b2
2, b3, b2

3}.
∣∣0/〈〈wk〉〉0

∣∣ k = 1 2 3 4 5 6

w = a1, a2 8 64 8 512 10560 64
b1, b2, b3 16 128 16 1024 109440 168960

Table 3.11: Some orders of 0/〈〈wk〉〉0 in Example 3.46

b1 b2, b3 b2
1 b2

2, b2
3

a1, a2 4, [8, 16],Z4 2, [8, 8],Z2 16, [8, 64],− 88, [8, 32],−
a2

1, a2
2 16, [16, 32],− 8, [16, 16],− 896, [32, 64],− 352, [32, 32],−

Table 3.12: [0 : U ], U ab and 0/U in Example 3.46, where U = 〈a, b〉
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3.5 Some conjectures

Based on computations in the 130 examples described in the following list, we give
some conjectures afterwards. In this list, “G” and “S” in the column Ph stand for
PGL2(p) and PSL2(p), respectively. Similarly, “G” and “S” in the column Pv stand
for PGL2(l) and PSL2(l), respectively. Finally, “+” and “−” stand for 1 and −1.

p l types Ex. Ph ,
( l

p

)
, Pv,

( p
l

)
0ab [0, 0]ab 0ab

0

Case p, l ≡ 1 (mod 4)

5 13 (o0, o0) 3.28 G, −, G, − 2, 43 3, 163 2, 3, 82

5 17 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

5 29 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

5 37 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

5 41 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

5 53 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

5 61 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

5 73 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

5 89 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

5 97 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

13 17 (o0, o0) 3.26 S, +, S, + 2, 43 3, 163 2, 3, 82

13 29 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

13 37 (o0, o0) G, −, G, − 2, 3, 43 22, 163 2, 3, 82

13 41 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

13 53 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

13 61 (o0, o0) S, +, S, + 2, 3, 43 22, 163 2, 3, 82

13 73 (o0, o0) G, −, G, − 2, 3, 43 22, 163 2, 3, 82

13 89 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

13 97 (o0, o0) G, −, G, − 2, 3, 43 22, 163 2, 3, 82

17 29 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

17 37 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

17 41 (o0, o0) G, −, G, − 23, 82 3, 162, 64 2, 3, 82

17 53 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

17 61 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

29 37 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

29 41 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

29 53 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

29 61 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

29 73 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

29 89 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82
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29 97 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

37 41 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

37 53 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

37 61 (o0, o0) G, −, G, − 2, 3, 43 22, 163 2, 3, 82

37 73 (o0, o0) S, +, S, + 2, 3, 43 22, 163 2, 3, 82

37 89 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

41 53 (o0, o0) G, −, G, − 2, 43 3, 163 2, 3, 82

41 61 (o0, o0) S, +, S, + 2, 43 3, 163 2, 3, 82

73 97 (o0, o0) S, +, S, + 23, 3, 82 ? 2, 3, 82

Case p, l ≡ 7 (mod 8)

7 23 (e1, e1) A.31 S, +, G, − 2, 82 3, 82, 64 2, 3, 82

7 31 (e1, e1) A.32 G, −, S, + 2, 3, 82 22, 82, 64 2, 3, 82

7 47 (e1, e1) G, −, S, + 2, 82 3, 82, 64 2, 3, 82

23 31 (e1, e1) S, +, G, − 2, 82 3, 82, 64 2, 3, 82

23 47 (e1, e1) S, +, G, − 2, 82 3, 82, 64 2, 3, 82

31 47 (e1, e1) S, +, G, − 2, 82 3, 82, 64 2, 3, 82

Case p, l ≡ 7 (mod 8)

7 23 (e0, e0) A.33 S, +, G, − 23, 4 3, 4, 162 2, 3, 82

7 31 (e0, e0) G, −, S, + 23, 3, 4 22, 4, 162 2, 3, 82

7 47 (e0, e0) G, −, S, + 23, 4 3, 4, 162 2, 3, 82

23 31 (e0, e0) S, +, G, − 23, 4 3, 4, 162 2, 3, 82

23 47 (e0, e0) S, +, G, − 23, 4 3, 4, 162 2, 3, 82

31 47 (e0, e0) S, +, G, − 23, 4 3, 4, 162 2, 3, 82

Case p, l ≡ 3 (mod 8)

3 11 (e1, e1) 3.31 G, −, S, + 2, 82 82, 64 2, 82

3 19 (e1, e1) S, +, G, − 2, 82 82, 64 2, 82

3 43 (e1, e1) S, +, G, − 2, 82 82, 64 2, 82

3 59 (e1, e1) G, −, S, + 2, 82 82, 64 2, 82

11 19 (e1, e1) G, −, S, + 2, 82 3, 82, 64 2, 3, 82

11 43 (e1, e1) G, −, S, + 2, 82 3, 82, 64 2, 3, 82

11 59 (e1, e1) S, +, G, − 2, 82 3, 82, 64 2, 3, 82

19 43 (e1, e1) S, +, G, − 2, 3, 82 22, 82, 64 2, 3, 82

19 59 (e1, e1) G, −, S, + 2, 82 3, 82, 64 2, 3, 82

Case p ≡ 3 (mod 8), l ≡ 7 (mod 8)

3 7 (e1, e1) 3.33 S, +, G, − 2, 42 82, 16 2, 82

3 23 (e1, e1) G, −, S, + 2, 42 82, 16 2, 82
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3 31 (e1, e1) S, +, G, − 2, 42 82, 16 2, 82

3 47 (e1, e1) G, −, S, + 2, 42 82, 16 2, 82

11 7 (e1, e1) G, −, S, + 2, 42 3, 82, 16 2, 3, 82

11 23 (e1, e1) S, +, G, − 2, 42 3, 82, 16 2, 3, 82

11 31 (e1, e1) S, +, G, − 2, 42 3, 82, 16 2, 3, 82

11 47 (e1, e1) S, +, G, − 2, 42 3, 82, 16 2, 3, 82

19 7 (e1, e1) S, +, G, − 2, 3, 42 22, 82, 16 2, 3, 82

19 23 (e1, e1) S, +, G, − 2, 42 3, 82, 16 2, 3, 82

19 31 (e1, e1) G, −, S, + 2, 3, 42 22, 82, 16 2, 3, 82

19 47 (e1, e1) S, +, G, − 2, 42 3, 82, 16 2, 3, 82

43 7 (e1, e1) G, −, S, + 2, 3, 42 22, 82, 16 2, 3, 82

43 23 (e1, e1) S, +, G, − 2, 42 3, 82, 16 2, 3, 82

43 31 (e1, e1) S, +, G, − 2, 3, 42 22, 82, 16 2, 3, 82

43 47 (e1, e1) S, +, G, − 2, 42 3, 82, 16 2, 3, 82

Case p ≡ 7 (mod 8), l ≡ 1 (mod 4)

7 5 (e1, o0) 3.36 G, −, G, − 2, 42 3, 82, 16 2, 3, 82

7 13 (e1, o0) 3.38 G, −, G, − 2, 3, 42 22, 82, 16 2, 3, 82

7 17 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

7 29 (e1, o0) S, +, S, + 2, 42 3, 82, 16 2, 3, 82

7 37 (e1, o0) S, +, S, + 2, 3, 42 22, 82, 16 2, 3, 82

7 41 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

7 73 (e1, o0) G, −, G, − 2, 3, 82 22, 82, 64 2, 3, 82

23 5 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

23 13 (e1, o0) S, +, S, + 2, 42 3, 82, 16 2, 3, 82

23 17 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

23 29 (e1, o0) S, +, S, + 2, 42 3, 82, 16 2, 3, 82

23 37 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

23 41 (e1, o0) S, +, S, + 2, 82 3, 82, 64 2, 3, 82

23 73 (e1, o0) S, +, S, + 2, 82 3, 82, 64 2, 3, 82

31 5 (e1, o0) S, +, S, + 2, 42 3, 82, 16 2, 3, 82

31 13 (e1, o0) G, −, G, − 2, 3, 42 22, 82, 16 2, 3, 82

31 17 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

31 29 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

31 37 (e1, o0) G, −, G, − 2, 3, 42 22, 82, 16 2, 3, 82

31 41 (e1, o0) S, +, S, + 2, 82 3, 82, 64 2, 3, 82

Case p ≡ 7 (mod 8), l ≡ 1 (mod 8)

7 17 (e0, o0) 3.40 G, −, G, − 23, 4 3, 4, 162 2, 3, 82
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23 17 (e0, o0) G, −, G, − 23, 4 3, 4, 162 2, 3, 82

31 17 (e0, o0) G, −, G, − 23, 4 3, 4, 162 2, 3, 82

7 41 (e0, o0) G, −, G, − 23, 4 3, 4, 162 2, 3, 82

23 41 (e0, o0) S, +, S, + 23, 4 3, 4, 162 2, 3, 82

31 41 (e0, o0) S, +, S, + 23, 4 3, 4, 162 2, 3, 82

7 73 (e0, o0) G, −, G, − 23, 3, 4 22, 4, 162 2, 3, 82

Case p ≡ 3 (mod 8), l ≡ 1 (mod 4)

3 5 (e1, o0) 3.46 G, −, G, − 2, 42 82, 16 2, 82

3 13 (e1, o0) S, +, S, + 2, 42 82, 16 2, 82

3 17 (e1, o0) G, −, G, − 2, 82 82, 64 2, 82

3 29 (e1, o0) G, −, G, − 2, 42 82, 16 2, 82

3 37 (e1, o0) S, +, S, + 2, 42 82, 16 2, 82

3 41 (e1, o0) G, −, G, − 2, 82 82, 64 2, 82

3 73 (e1, o0) S, +, S, + 2, 82 82, 64 2, 82

11 5 (e1, o0) S, +, S, + 2, 42 3, 82, 16 2, 3, 82

11 13 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

11 17 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

11 29 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

11 37 (e1, o0) S, +, S, + 2, 42 3, 82, 16 2, 3, 82

11 41 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

11 73 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

19 5 (e1, o0) S, +, S, + 2, 42 3, 82, 16 2, 3, 82

19 13 (e1, o0) G, −, G, − 2, 3, 42 22, 82, 16 2, 3, 82

19 17 (e1, o0) S, +, S, + 2, 82 3, 82, 64 2, 3, 82

19 29 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

19 37 (e1, o0) G, −, G, − 2, 3, 42 22, 82, 16 2, 3, 82

19 41 (e1, o0) G, −, G, − 2, 82 3, 82, 64 2, 3, 82

19 73 (e1, o0) S, +, S, + 2, 3, 82 22, 82, 64 2, 3, 82

43 5 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

43 13 (e1, o0) S, +, S, + 2, 3, 42 22, 82, 16 2, 3, 82

43 17 (e1, o0) S, +, S, + 2, 82 3, 82, 64 2, 3, 82

43 29 (e1, o0) G, −, G, − 2, 42 3, 82, 16 2, 3, 82

43 37 (e1, o0) G, −, G, − 2, 3, 42 22, 82, 16 2, 3, 82

43 41 (e1, o0) S, +, S, + 2, 82 3, 82, 64 2, 3, 82

Table 3.13: List of properties of some 0p,l
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Conjecture 3.48. Let p, l be two odd distinct prime numbers and 0 = 0 p,l as in
Section 3.2, 3.3 or 3.4.

(1) (cf. Conjecture 3.16) Assume that p, l ≡ 1 (mod 4) (as in Section 3.2).
If p, l ≡ 1 (mod 8), then

(0ab, [0, 0]ab) ∼=
{
(Z3

2 × Z3 × Z2
8, Z

2
2 × Z2

16 × Z64) if p, l ≡ 1 (mod 3)

(Z3
2 × Z2

8, Z3 × Z2
16 × Z64) else .

If p ≡ 5 (mod 8) or l ≡ 5 (mod 8), then

(0ab, [0, 0]ab) ∼=
{
(Z2 × Z3 × Z3

4, Z
2
2 × Z3

16) if p, l ≡ 1 (mod 3)

(Z2 × Z3
4, Z3 × Z3

16) else .

(2) Assume that p, l ≡ 3 (mod 4) (as in Section 3.3).
If p (mod 8) = l (mod 8), then

(0ab, [0, 0]ab) ∼=





(Z2 × Z3 × Z2
8, Z

2
2 × Z2

8 × Z64) if p, l ≡ 1 (mod 3)

(Z2 × Z2
8, Z

2
8 × Z64) if p = 3 or l = 3

(Z2 × Z2
8, Z3 × Z2

8 × Z64) else .

If p (mod 8) 6= l (mod 8), then

(0ab, [0, 0]ab) ∼=





(Z2 × Z3 × Z2
4, Z

2
2 × Z2

8 × Z16) if p, l ≡ 1 (mod 3)

(Z2 × Z2
4, Z

2
8 × Z16) if p = 3 or l = 3

(Z2 × Z2
4, Z3 × Z2

8 × Z16) else .

(3) Assume that p ≡ 3 (mod 4) and l ≡ 1 (mod 4) (as in Section 3.4).
If l ≡ 1 (mod 8), then

(0ab, [0, 0]ab) ∼=





(Z2 × Z3 × Z2
8, Z

2
2 × Z2

8 × Z64) if p, l ≡ 1 (mod 3)

(Z2 × Z2
8, Z

2
8 × Z64) if p = 3

(Z2 × Z2
8, Z3 × Z2

8 × Z64) else .

If l ≡ 5 (mod 8), then

(0ab, [0, 0]ab) ∼=





(Z2 × Z3 × Z2
4, Z

2
2 × Z2

8 × Z16) if p, l ≡ 1 (mod 3)

(Z2 × Z2
4, Z

2
8 × Z16) if p = 3

(Z2 × Z2
4, Z3 × Z2

8 × Z16) else .
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Conjecture 3.49. Let 0 = 0p,l,e0 be as in Section 3.3 or 3.4, then

(0ab, [0, 0]ab) ∼=
{
(Z3

2 × Z3 × Z4, Z2
2 × Z4 × Z2

16) if p, l ≡ 1 (mod 3)

(Z3
2 × Z4, Z3 × Z4 × Z2

16) else .

Conjecture 3.50. Let 0 be any group 0p,l or 0p,l,e0 of Chapter 3, then

0ab
0
∼=
{
Z2 × Z2

8 , if p = 3 or l = 3

Z2 × Z3 × Z2
8 , else .

Remark. Note that in all cases of Chapter 3

00 = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = p2r l2s; r, s ∈ N0} .
Conjecture 3.51. Let 0 be any 0p,l or 0p,l,e0 of Chapter 3, and let k ∈ N. Then

(1)

Ph
∼=
{

PSL2(p) , if
( l

p

) = 1

PGL2(p) , if
( l

p

) = −1

and

Pv ∼=
{

PSL2(l) , if
( p

l

) = 1

PGL2(l) , if
( p

l

) = −1 .

(2) ∣∣P(k)h

∣∣ = |Ph | · p3(k−1)

and ∣∣P(k)v

∣∣ = |Pv| · l3(k−1) .

(3) As a consequence of part (1) and (2):

∣∣P(k)h

∣∣ =
{

p3k−2(p2 − 1)/2 , if
( l

p

) = 1

p3k−2(p2 − 1) , if
( l

p

) = −1

and
∣∣P(k)v

∣∣ =
{

l3k−2(l2 − 1)/2 , if
( p

l

) = 1

l3k−2(l2 − 1) , if
( p

l

) = −1 .

Conjecture 3.52. Let 0 be any group 0p,l or 0p,l,e0 of Chapter 3, then

|Kh | = p2 and |Kv| = l2 .

Remark. We have checked that the Conjectures 3.48(2),(3), 3.49, 3.50, 3.51(1), and
Conjecture 3.51(2) for k = 2 are true for all 130 examples in Table 3.13. The only
uncertainty in Conjecture 3.48(1) among those examples is the case (p, l) = (73, 97),
where we are not able to compute [0, 0]ab.
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3.6 Construction of anti-tori

Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group. Let a ∈ 〈a1, . . . , am〉,
b ∈ 〈b1, . . . , bn〉 be two elements. The subgroup 〈a, b〉 < 0 is called an anti-torus
in 0, if a and b have no commuting non-trivial powers, i.e. if ar bs 6= bsar for all
r, s ∈ Z \ {0}. If 〈a, b〉 ∼= F2, then 〈a, b〉 is called a free anti-torus in 0. Obviously, a
free anti-torus is an anti-torus.

A definition in a much more general context is given by Bridson-Wise. We quote
from [10, Definition 9.1]: “Let X be a compact non-positively curved space with
universal cover p : X̃ → X . Suppose that there is an isometrically embedded plane in
X̃ which contains an axis for each of δ, δ′ ∈ π1(X, x0) and that x̃0 ∈ p−1x0 lies in the
intersection of these axes. If δ and δ′ do not have powers that commute, then gp{δ, δ ′}
is called an anti-torus. If gp{δ, δ′} is free then it is called a free anti-torus.”

The first example of a (non-free) anti-torus was given by Wise [68] (it is 〈a2, b3〉
in Example 2.36). It was used to construct interesting non-residually finite groups. An
existence theorem for free anti-tori (in a class not including (2m, 2n)–groups) appears
in [10, Proposition 9.2], but no explicit example of a free anti-torus is given there or
elsewhere, as far as we know.

The construction of 0p,l in Chapter 3, based on the non-commutativity of quater-
nion multiplication, can be used to generate many anti-tori. Before giving examples,
we will first state some general criteria for the existence of anti-tori in commutative
transitive (2m, 2n)–groups.

Proposition 3.53. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a commutative tran-
sitive (2m, 2n)–group and let a ∈ 〈a1, . . . , am〉, b ∈ 〈b1, . . . , bn〉 be two elements.
Then 〈a, b〉 is an anti-torus in 0 if and only if a and b do not commute in 0.

Proof. Assume first that 〈a, b〉 is no anti-torus in0, i.e. ar bs = bsar for some r, s 6= 0.
Obviously, a commutes with ar , and b commutes with bs . Using the assumption that0
is commutative transitive, we conclude that a and b commute in 0. The other direction
follows immediately from the definition of an anti-torus.

Corollary 3.54. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a commutative transi-
tive (2m, 2n)–group and let a ∈ 〈a1, . . . , am〉, b ∈ 〈b1, . . . , bn〉 be two non-trivial
elements. Then either 〈a, b〉 ∼= Z2 or 〈a, b〉 is an anti-torus in 0.

Proof. If a and b do not commute, then 〈a, b〉 is an anti-torus in0 by Proposition 3.53.
If a 6= 1 and b 6= 1 commute, then we apply Lemma 3.14 to show that 〈a, b〉 ∼= Z2.

Corollary 3.55. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a commutative transitive
(2m, 2n)–group. Then 0 has an anti-torus if and only if (m, n) 6= (1, 1).
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Proof. Any (2, 2)–group is virtually abelian, hence has no anti-torus. For the other
direction, assume that (m, n) 6= (1, 1). There are elements a ∈ Eh and b ∈ Ev which
do not commute; otherwise the (2m, 2n)–group 0 would be

〈a1, . . . , am〉 × 〈b1, . . . , bn〉 ∼= Fm × Fn ,

which is not commutative transitive if (m, n) 6= (1, 1). By Proposition 3.53, 〈a, b〉 is
an anti-torus in 0.

Wise ([68]) showed that reducible (2m, 2n)–groups never have anti-tori:

Proposition 3.56. (Wise [68, Section II.4]) Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉
be a (2m, 2n)–group. If 0 has an anti-torus, then it is irreducible.

Proof. Let 〈a, b〉 be an anti-torus in 0, where a ∈ 〈a1, . . . , am〉, b ∈ 〈b1, . . . , bn〉.
Suppose that 0 is reducible. Then by [17, Proposition 1.2], the subgroup 31 × 32

has finite index in 0, in particular [〈a1, . . . , am〉 : 31] and [〈b1, . . . , bn〉 : 32] are
finite. It follows that ar ∈ 31, bs ∈ 32 for some r, s ∈ N. But then ar bs = bsar , a
contradiction.

Corollary 3.57. A commutative transitive (2m, 2n)–group is irreducible if and only if
(m, n) 6= (1, 1).

Proof. Any (2, 2)–group is reducible. If (m, n) 6= (1, 1), then we apply a combination
of Corollary 3.55 and Proposition 3.56.

Corollary 3.58. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a commutative transitive
(2m, 2n)–group and let b ∈ 〈b1, . . . , bn〉 be an element such that Z0(b) = 〈b〉. Then
〈a, b〉 is an anti-torus in 0 for each a ∈ 〈a1, . . . , am〉 \ {1}.
Proof. The assumption Z0(b) = 〈b〉 implies that b 6= 1 and that b does not commute
with any element a ∈ 〈a1, . . . , am〉 \ {1}. Now apply Proposition 3.53.

The groups 0p,l of Section 3.2 are commutative transitive by Proposition 3.20.
Therefore, we can restate the preceding results for 0 p,l :

Corollary 3.59. Let 0 = 0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉 be as in

Section 3.2 and let a ∈ 〈a1, . . . , a p+1
2
〉, b ∈ 〈b1, . . . , b l+1

2
〉 be two elements. Then

(1) 〈a, b〉 is an anti-torus in 0 if and only if a and b do not commute in 0.

(2) If a, b 6= 1, then either 〈a, b〉 ∼= Z2 or 〈a, b〉 is an anti-torus in 0.

(3) The group 0 has an anti-torus and is irreducible.

(4) If Z0(b) = 〈b〉 and a 6= 1, then 〈a, b〉 is an anti-torus in 0.
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We can also restate Proposition 3.53 for 0p,l in terms of quaternions:

Proposition 3.60. Let ψ and 0 = 0p,l be as in Section 3.2. Assume that x, y ∈ H(Z)
have type o0, |x |2 = pr , |y|2 = ls for some r, s ∈ N and xy 6= yx. Then 〈ψ(x), ψ(y)〉
is an anti-torus in 0.

Proof. By Lemma 3.19, ψ(x) and ψ(y) do not commute, hence 〈ψ(x), ψ(y)〉 is an
anti-torus in 0 by Proposition 3.53.

Proposition 3.60 can be applied for example to 05,17 and 013,17 or to any other
group 0p,l of Section 3.2, illustrating Corollary 3.59(3):

Corollary 3.61. Let ψ be as in Section 3.2. Then

(1) The group 〈ψ(1+ 2i), ψ(1+ 4k)〉 is an anti-torus in 05,17.

(2) The group 〈ψ(3+ 2i), ψ(1+ 4k)〉 is an anti-torus in 013,17.

(3) Fix two distinct prime numbers p, l ≡ 1 (mod 4). Choose by Lemma 3.7(1)
two quaternions x = x0 + x1i , y = y0 + y3k ∈ H(Z) such that x0, y0 are odd,
x1, y3 are non-zero even numbers and |x |2 = x2

0 + x2
1 = p, |y|2 = y2

0 + y2
3 = l.

Then 〈ψ(x), ψ(y)〉 is an anti-torus in 0p,l .

Proof. (1) We apply Proposition 3.60, taking x = 1 + 2i , y = 1 + 4k, p = 5,
l = 17, r = 1, s = 1.

(2) We apply Proposition 3.60, taking x = 3 + 2i , y = 1 + 4k, p = 13, l = 17,
r = 1, s = 1.

(3) We apply Proposition 3.60, taking r = 1, s = 1 and using the fact that x0 + x1i
and y0 + y3k do not commute.

Proposition 3.62. There are distinct prime numbers p, l ≡ 1 (mod 4), a group

0 = 0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉

as in Section 3.2, and an element b ∈ 〈b1, . . . , b l+1
2
〉, such that 〈a, b〉 is an anti-torus

in 0 for each a ∈ 〈a1, . . . , a p+1
2
〉 \ {1}.

We give two different proofs of Proposition 3.62:

First proof of Proposition 3.62. We choose p = 5, l = 13 and

b = b1 = ψ(1+ 2i + 2 j + 2k) ∈ 05,13 .

By Proposition 3.29(7), we have Z0(b) = 〈b〉 and apply now Corollary 3.58.
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Second proof of Proposition 3.62. We take p = 5, l = 29,

b = ψ(3+ 2 j + 4k) ∈ 05,29 and c = j + 2k ∈ H(Z) .

Assume that there is a non-trivial element a ∈ 〈a1, a2, a3〉 < 05,29 commuting with
some power bt , t ∈ N. Note that

bt = ψ((3+ 2 j + 4k)t) = ψ(x0 + λj + 2λk)

for some x0, λ 6= 0, depending on t . Then, applying Proposition 3.22 to the power
z = (3+ 2 j + 4k)t , there are x, y ∈ Z such that

gcd(x, y) = gcd(x, pl) = gcd(y, pl) = 1

and x2 + 4 · 5y2 = 5r 29s for some r, s ∈ N. But this implies x2 = 5(5r−129s − 4y2),
contradicting gcd(x, 5 · 29) = 1. (What we use here is that such a decomposition
x2 + 4 · |c|2 y2 = pr ls implies gcd(|c|2, pl) = 1, as already noted in [54].)

Proposition 3.63. There are distinct prime numbers p, l ≡ 1 (mod 4), a group

0 = 0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉

as in Section 3.2, and elements a ∈ 〈a1, . . . , a p+1
2
〉 \ {1}, b ∈ 〈b1, . . . , b l+1

2
〉 \ {1} such

that 〈a, b j〉 is an anti-torus in 0 for all b j ∈ {b1, . . . , b l+1
2
}, but 〈a, b〉 is no anti-torus

in 0, in particular Z0(a) 6= 〈a〉.
Proof. We take p = 29, l = 41, a = ψ(3+ 4i + 2 j) and

b = ψ(−31+ 24i + 12 j) = ψ(1+ 6 j − 2k)ψ(1+ 6 j + 2k) ,

which implies ab = ba. It is easy to check that a does not commute with any generator
b j ∈ {b1, . . . , b21}, in particular 〈a, b j〉 is an anti-torus in 0 by Proposition 3.53.

Also note the following easy corollary of Proposition 3.13, see Corollary 4.3 for a
generalization to all (2m, 2n)–groups:

Corollary 3.64. Let p, l ≡ 1 (mod 4) be distinct prime numbers and

0 = 0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉

as in Section 3.2. Then there are always non-trivial elements a ∈ 〈a1, . . . , a p+1
2
〉 and

b ∈ 〈b1, . . . , b l+1
2
〉 such that 〈a, b〉 is no anti-torus in 0.
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Free anti-tori

The following proposition gives sufficient conditions to generate free anti-tori in the
groups 0p,l of Section 3.2:

Proposition 3.65. Let p, l ≡ 1 (mod 4) be two distinct prime numbers and let ψ
and 0p,l be as in Section 3.2. Moreover, let x, y ∈ H(Z) be of type o0, such that
|x |2 = pr , |y|2 = ls for some r, s ∈ N. Suppose that x, y generate a free subgroup F2

in the multiplicative group U(H(Q)) = H(Q) \ {0} (or equivalently in the subgroup
U(H(Z[1/p, 1/ l])) < U(H(Q))). Then 〈ψ(x), ψ(y)〉 is a free anti-torus in 0 p,l .

Proof. Extending ψ from the integer to the rational quaternions, let

ψ̃ : U(H(Q))→ PGL2(Qp)× PGL2(Ql)

be the map which sends the quaternion x = x0 + x1i + x2 j + x3k to
([(

x0 + x1i p x2 + x3i p

−x2 + x3i p x0 − x1i p

)]
,

[(
x0 + x1il x2 + x3il

−x2 + x3il x0 − x1il

)])
,

where x0, x1, x2, x3 ∈ Q, x 6= 0. Recall that U(H(Q)) = H(Q) \ {0} equipped with
quaternion multiplication is a non-abelian group, ψ̃ is a group homomorphism such
that

ker(ψ̃) = ZU(H(Q)) = {x ∈ H(Q) \ {0} : x = x} ,
and ψ̃(x) = ψ(x), if x ∈ H(Z) \ {0}. Now, fix two integer quaternions x and y
satisfying the assumptions made in the proposition. We restrict ψ̃ to the free subgroup
F2
∼= 〈x, y〉 < U(H(Q)):

ψ̃ |〈x,y〉 : 〈x, y〉 ∼= F2 � 〈ψ̃(x), ψ̃(y)〉 = 〈ψ(x), ψ(y)〉 < 0p,l .

We have

ker
(
ψ̃ |〈x,y〉

) = 〈x, y〉 ∩ ZU(H(Q)) < Z(〈x, y〉) ∼= Z F2 = {1} ,

in particular ψ̃ |〈x,y〉 is an isomorphism, i.e. 〈ψ(x), ψ(y)〉 ∼= F2.
By construction, ψ(x) is an element in

〈a1, . . . , a p+1
2
〉 = {ψ(x) : x ∈ H(Z) has type o0, |x |2 = pr ; r ∈ N0} < 0p,l ,

and ψ(y) an element in

〈b1, . . . , b l+1
2
〉 = {ψ(y) : y ∈ H(Z) has type o0, |y|2 = ls; s ∈ N0} < 0p,l ,

where the (p+1, l+1)–group0p,l is generated by a1, . . . , a p+1
2
, b1, . . . , b l+1

2
as usual.

This shows that 〈ψ(x), ψ(y)〉 is a free anti-torus in 0p,l .
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For example, if 〈3+ 2i, 1+ 4k〉 ∼= F2 < U(H(Q)), then Proposition 3.65 would
give an explicit free anti-torus 〈ψ(3+ 2i), ψ(1+ 4k)〉 in 013,17. (However, we guess
that this group is not free.)

Question 3.66. Is 〈3+ 2i, 1+ 4k〉 ∼= F2?

More generally:

Problem 3.67. Let p, l be distinct odd prime numbers. Construct a pair x, y ∈ H(Z)
such that 〈x, y〉 ∼= F2 < U(H(Q)), where |x |2 = pr , |y|2 = ls for some r, s ∈ N.

The anti-tori constructed in Corollary 3.61(1) and Proposition 3.47(8) are not free:

Proposition 3.68. (1) Let ψ be as in Section 3.2, x = 1+2i , y = 1+4k, a = ψ(x)
and b = ψ(y). Then the anti-torus 〈a, b〉 in 05,17 is not free.

(2) Let ψ be as in Section 3.4, x = 1 + j + k, y = 1 + 2i , a = ψ(x), b = ψ(y).
Then the anti-torus 〈a, b〉 in 03,5 is not free.

Proof. (1) In 05,17, we have found the relation

a3b2ab−1a2b−1a2b−1a−4b−2a−1ba−2b−1a−8b−1ab2

ab−1a−2ba−1b−2a−2b−2a3ba−2b2a2b2ab−1a2ba−1b−2

a−1ba8ba2b−1ab2a4ba−2ba−2ba−1b−2a−5b−1a = 1 .

To get this relation of length 106, we have used the GAP-command ([29])

PresentationSubgroupMtc(G,U);

where G and U describe 0 and its subgroup 〈a, b〉, respectively. This command
gives 514 relations of lengths between 106 and 5270 and of total length 536176.

The relation in U(H(Q)) corresponding to the relation in 05,17 given above is

x3y2xy−1x2y−1x2y−1x−4 y−2x−1 yx−2y−1x−8y−1xy2

xy−1x−2yx−1 y−2x−2 y−2x3 yx−2y2x2 y2xy−1x2 yx−1y−2

x−1 yx8yx2y−1xy2x4yx−2yx−2 yx−1y−2x−5y−1x = 1 ,

in particular 〈x, y〉 6= F2. Note that GAP ([29]) can also be used to show that

[05,17 : 〈a, b〉] = 32 and 〈a, b〉ab ∼= Z16 × Z64 .



3.6. CONSTRUCTION OF ANTI-TORI 175

Moreover, 〈a, b〉 ∼= 〈x, y〉/Z〈x, y〉, where Z〈x, y〉 6= 1, since e.g.

xy−1xy2x8yx−3y−1xyx4y2xy−1x2 y−1x2 y−1x−4 y−2x−1 y

x−2 y−1x−8 y−1xy2xy−1x−2yx−1 y−2x−2 y−2x2y−1x2 y2

xy−1x2 yx−1y−2x−1yx8yx2y−1xy2x4yx−2 yx−2yx−1 y−2

x−4 y−1x−1 y−1x3 y2xy−1x2 y−1x2 y−1x−4 y−2x−1 yx−2y−1

x−8 y−1xy2xy−1x−2yx−1 y−2x−2 y−2x5 y2xy−1x2 y−1

x4y2xy−1x2y−1x2y−1x−4y−2x−1 yx−2y−1x−8y−1xy2

xy−1x−2 yx−1y−2x−2 y−2x2y−1 = 1

178
∈ Z〈x, y〉 \ {1} .

(2) See Proposition 3.47(9). Recall that the subgroups 〈a t , bt〉, t ∈ N, are never
abelian, and that [03,5 : 〈a, b〉] = 4. Also note that [03,5 : 〈a2, b2〉] = 896
is finite, using GAP ([29]). In particular 〈a2, b2〉 is not free by the following
general remark.

Remark. If 〈a, b〉 is a free subgroup in a (2m, 2n)–group0, then the index [0 : 〈a, b〉]
is infinite. Otherwise, 0 would be virtually free, but this is impossible since being
virtually free is a quasi-isometry invariant (see e.g. [32, IV.50]), and using the facts
that (2m, 2n)–groups are all quasi-isometric (to F2 × F2), if m, n ≥ 2 (see Propo-
sition 4.25(4)), and that there are (2m, 2n)–groups which obviously are not virtually
free, e.g. the virtually simple groups constructed in Chapter 2. Anyway, it is known
that finitely generated, torsion-free, virtually free groups are free ([65]).

The following interesting general question of Wise appears in Bestvina’s problem
list “Questions in Geometric Group Theory” ([6]):

Question 3.69. (Wise [6, Question 2.7]) “Let G act properly discontinuously and
cocompactly on a CAT(0) space (or let G be automatic). Consider two elements a, b
of G. Does there exist n > 0 such that either the subgroup 〈an, bn〉 is free or 〈an, bn〉
is abelian?”

Question 3.70. Let 0 = 03,5 be the group of Example 3.46 and a1 = ψ(1+ j + k),
b1 = ψ(1+ 2i).

(1) Is the index [0 : 〈a3
1, b3

1〉] infinite?

(2) Is 〈a3
1, b3

1〉 free?
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Free subgroups of U(H(Q)) also induce free subgroups in SO3(Q) < SO3(R)
via the group homomorphism ϑ : U(H(Q)) → SO3(Q), which maps the quaternion
x = x0 + x1i + x2 j + x3k ∈ U(H(Q)) to the (3× 3)–matrix

1

|x |2




x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3


 ,

see Section 3.2. The proof is similar to a part of the proof of Proposition 3.65: First
remember that

ker(ϑ) = ZU(H(Q)) = {x ∈ H(Q) \ {0} : x = x} .
Assume now that F2

∼= 〈x, y〉 < U(H(Q)). Then

ϑ |〈x,y〉 : 〈x, y〉� 〈ϑ(x), ϑ(y)〉 < SO3(Q)

is bijective, since it is surjective and

ker
(
ϑ |〈x,y〉

) = 〈x, y〉 ∩ ZU(H(Q)) < Z(〈x, y〉) ∼= Z F2 = {1} ,
in particular 〈ϑ(x), ϑ(y)〉 ∼= F2.

Note that if

0p,l = 〈a1, . . . , a p+1
2
, b1, . . . , b l+1

2
| R p+1

2 · l+1
2
〉

is the group of Section 3.2, then both free subgroups 〈a1, . . . , a p+1
2
〉 and 〈b1, . . . , b l+1

2
〉

of 0p,l induce free subgroups of SO3(Q) via the homomorphism ϑ (we can combine
Corollary 1.11(1) and Theorem 3.12(2), cf. [45, Corollary 2.1.11]). For example,
taking p = 5 and any distinct prime number l ≡ 1 (mod 4), the subgroup

〈a1, a2, a3〉 ∼= 〈ϑ(1+ 2i), ϑ(1+ 2 j), ϑ(1+ 2k)〉

=
〈


1 0 0
0 −3/5 −4/5
0 4/5 −3/5


 ,



−3/5 0 4/5

0 1 0
−4/5 0 −3/5


 ,



−3/5 −4/5 0

4/5 −3/5 0
0 0 1



〉

of SO3(Q) is isomorphic to F3.
However, by Proposition 3.68, the following two subgroups of SO3(Q) are not

free:

〈ϑ(1+ 2i), ϑ(1+ 4k)〉 =
〈


1 0 0
0 −3/5 −4/5
0 4/5 −3/5


 ,



−15/17 − 8/17 0

8/17 −15/17 0
0 0 1



〉
,

〈ϑ(1+ j + k), ϑ(1+ 2i)〉 =
〈

1

3



−3 −2 2

2 1 2
−2 2 1


 ,




1 0 0
0 −3/5 −4/5
0 4/5 −3/5



〉
.
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We can use the explicit amalgam decompositions of 0 p,l to construct two integer
quaternions x and y generating a non-abelian free group in U(H(Q)) such that |x |2 and
|y|2 are not both powers of the same prime number (cf. Problem 3.67). We illustrate
this with an example:

Proposition 3.71. Let ψ be as in Section 3.4, x = 1+2i+2 j+4k of norm |x |2 = 52,
y = 3− 2i + j − k of norm |y|2 = 3 · 5. Then 〈x, y〉 ∼= F2 < U(H(Q)).

Proof. We have

ψ(x) = ψ(1+ 2i)ψ(1+ 2 j) = b1b2 ∈ 03,5

and
ψ(y) = ψ(1+ j + k)ψ(1− 2k) = a1b−1

3 ∈ 03,5 .

By the vertical amalgam decomposition of 03,5 given in Appendix A.12

F2
∼= 〈s1, s4〉 = 〈b1b2, a1b−1

3 〉 = 〈ψ(x), ψ(y)〉 < 03,5 ,

hence 〈x, y〉 ∼= F2 < U(H(Q)).

3.7 A construction for (p, l) = (2, 5)

Let x = x0 + x1i + x2 j + x3k ∈ H(Z). Motivated by the three identities ([24])

(1+ i)(x0 + x1i + x2 j + x3k) = (x0 + x1i − x3 j + x2k)(1+ i)

(1+ j)(x0 + x1i + x2 j + x3k) = (x0 + x3i + x2 j − x1k)(1+ j)

(1+ k)(x0 + x1i + x2 j + x3k) = (x0 − x2i + x1 j + x3k)(1+ k)

we identify

a1
∼= 1+ i, a−1

1
∼= 1− i,

a2
∼= 1+ j, a−1

2
∼= 1− j,

a3
∼= 1+ k, a−1

3
∼= 1− k,

b1
∼= 1+ 2i, b−1

1
∼= 1− 2i,

b2
∼= 1+ 2 j, b−1

2
∼= 1− 2 j,

b3
∼= 1+ 2k, b−1

3
∼= 1− 2k,

and get the following (6, 6)–group:
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Example 3.72. Let 0 be the group 〈a1, a2, a3, b1, b2, b3 | R3·3〉, where

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a−1
1 b2,

a2b1a−1
2 b3, a2b2a−1

2 b−1
2 , a2b3a−1

2 b−1
1 ,

a3b1a−1
3 b−1

2 , a3b2a−1
3 b1, a3b3a−1

3 b−1
3




.

Note that there is no map ψ involved in this construction, in particular 0 behaves
completely differently than the groups 0p,l constructed before, e.g. 0 is reducible,
(1 + i)4 = −4, but a4

1 6= 10; 1 + i and 1 + 2 j do not commute, but 〈a1, b2〉 is no
anti-torus.

Proposition 3.73. Let 0 be the (6, 6)–group defined in Example 3.72. Then

(1) Ph = 1, Pv ∼= S4 < S6.

(2) 0 is reducible.

(3) 31 ×32
∼= F49 × F3 and [0 : 31 ×32] = 24.

Proof. (1) We compute

ρv(b1) = ρv(b2) = ρv(b3) = (),
ρh(a1) = (2, 4, 5, 3),

ρh(a2) = (1, 3, 6, 4),

ρh(a3) = (1, 5, 6, 2).

(2) This follows from the subsequent Lemma 3.74(1).

(3) Apply Lemma 3.74(3).

Lemma 3.74. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group such
that Ph = 1. Then

(1) 0 is reducible and P (k)h = 1 for all k ∈ N.

(2) 31
∼= ker ρh and 32

∼= ker ρ(k)v = 〈b1, . . . , bn〉 for all k ∈ N.

(3) 31 ×32
∼= F(m−1)|Pv |+1 × Fn has index |Pv| in 0.

Proof. (1) To prove that 0 is reducible, it is enough by Proposition 1.2(2a) to show
that P(2)h = 1. Let b ∈ Ev, a = â · ã ∈ E (2)h , where â, ã ∈ Eh , â 6= ã−1. Then

ρv(b)(â) = â and ρv(ρh(â)(b))(ã) = ã, i.e. ρ(2)v (b)(a) = a. See Figure 3.1 for
an illustration of this fact. The proof of Proposition 1.2(2a) shows that P (k)h = 1
for all k ∈ N.
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â

ã

ρh(â)(b)

â

ã

b

Figure 3.1: Illustrating P (2)h = 1 in Lemma 3.74

(2) Since ker ρ(k+1)
h < ker ρ(k)h for all k ∈ N, and

31
∼=
⋂

k∈N
kerρ(k)h ,

we always have 31 < ker ρh .
Conversely, ker ρh < 31 follows from Lemma 1.1(1a) using Ph = 1.

To show the second part, observe that kerρ(k)v = 〈b1, . . . , bn〉 for all k ∈ N,
since P(k)h = 1 for all k ∈ N. This implies

32
∼=
⋂

k∈N
kerρ(k)v = kerρ(k)v = 〈b1, . . . , bn〉 for all k ∈ N .

(3) This follows from [〈a1, . . . , am〉 : 31] = |Pv|, which is a direct consequence of
part (2) and Pv ∼= 〈a1, . . . , am〉/kerρh .
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Chapter 4

Miscellanea

This chapter consists of six independent sections which we briefly describe now.
Given any (2m, 2n)–group 0, we construct in Section 4.1 doubly periodic tilings of
the Euclidean plane, where the tiles are the 4mn squares corresponding to 0. It follows
that 0 always has free abelian subgroups Z2. We apply a criterion of Burger-Mozes
in Section 4.2 to prove that certain (2m, 2n)–groups are not linear. In Section 4.3, we
investigate possible relations between reducibility, transitivity properties of the local
groups, and finiteness of the abelianization of a (2m, 2n)–group. Following Mozes,
we associate in Section 4.4 to any (2m, 2n)–group two infinite families of finite regu-
lar graphs. In Section 4.5, we show that any (2m, 2n)–group is quasi-isometric to the
group F2 × F2, if m, n ≥ 2, and compute its growth series. We prove in Section 4.6
that (2m, 2n)–groups are efficient and compute their deficiency.

4.1 Periodic tilings and Z2-subgroups

For the moment, let X be a locally compact complete CAT(0)-space and 0 a properly
discontinuous and cocompact group of isometries. Then, in this general context, it
is an open question if certain free abelian subgroups of 0 exist. We quote from an
article of Ballmann [1, Question 2.3]: “Is hyperbolicity equivalent to the non-existence
of a subgroup of 0 isomorphic to Z2? More generally, does 0 contain a subgroup
isomorphic to Zk if X contains a k-flat? By the work of Bangert and Schroeder [2] the
answer is positive in the case of compact, real analytic Riemannian manifolds. Except
for this, the answers to these questions are completely open, even in the case where X
is a geodesically complete and piecewise Euclidean complex of dimension two!”

We will give in Proposition 4.2(3) an elementary proof that (2m, 2n)–groups al-
ways contain a Z2-subgroup. The idea of this proof (and the fact that this result holds)
was explained to me by Guyan Robertson.

Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group and let T (0) be
the “tile set” consisting of the 4mn squares which represent a geometric square in the

181
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corresponding (2m, 2n)–complex X .

T (0) :=
⋃

aba′b′∈Rm·n

{aba′b′, a′b′ab, a−1b′−1a′−1b−1, a′−1b−1a−1b′−1} .

It is easy to check that the definition of T (0) only depends on the group 0, but not
on the choice of the relators in Rm·n . Recall that the four squares aba′b′, a′b′ab,
a−1b′−1a′−1b−1 and a′−1b−1a−1b′−1 represent the same geometric square [aba ′b′].
We always visualize them in the Euclidean plane as in Figure 4.1.

a′

b

a

b′

a′ a a′

a a′ a

b b b′b′ b′ b

Figure 4.1: Tiles in T (0) induced by the geometric square [aba ′b′]

Moreover, we assume that each edge of such an element in T (0) has length 1. Unit
squares like this are usually called Wang tiles (named after Hao Wang [66]). We define
“south-”, “east-”, “north-” and “west-functions”

S, E, N ,W : T (0)→ Eh t Ev

as follows:

S(aba′b′) := a, E(aba′b′) := b, N (aba′b′) := a′−1
, W (aba′b′) := b′−1

.

A tiling (of the Euclidean plane) is a map f : Z2 → T (0). We are only interested in
valid tilings, i.e. tilings where all edges match. To be precise, this means that for each
point (x, y) ∈ Z2

S( f (x, y)) = N ( f (x, y − 1)) and W ( f (x, y)) = E( f (x − 1, y)) .

A valid tiling f : Z2 → T (0) is said to satisfy the adjacency condition (AC) if for
each (x, y) ∈ Z2

S( f (x, y)) 6= N ( f (x − 1, y − 1))−1

W ( f (x, y)) 6= E( f (x − 1, y − 1))−1
(AC)

i.e. the two situations illustrated in Figure 4.2 are nowhere allowed in the plane.
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a

b

b

a

Figure 4.2: Violating (AC)

Note that (AC) is equivalent to the conditions

S( f (x − 1, y))−1 6= S( f (x, y)) 6= S( f (x + 1, y))−1

N ( f (x − 1, y))−1 6= N ( f (x, y)) 6= N ( f (x + 1, y))−1

E( f (x, y − 1))−1 6= E( f (x, y)) 6= E( f (x, y + 1))−1

W ( f (x, y − 1))−1 6= W ( f (x, y)) 6= W ( f (x, y + 1))−1

for each (x, y) ∈ Z2 and it requires that any word consisting of consecutive horizontal
or consecutive vertical edges in the tiling f is freely reduced, where the words of
edges are seen as elements in the free groups 〈a1, . . . , am〉 < 0 or 〈b1, . . . , bn〉 < 0,
respectively.

We say that a valid tiling f : Z2 → T (0) satisfies the condition (AC j ) for some
fixed j ∈ Z, if for each i ∈ Z

S( f (i, i + j)) 6= N ( f (i − 1, i − 1+ j))−1

W ( f (i, i + j)) 6= E( f (i − 1, i − 1+ j))−1 .
(AC j )

Note that if (AC j ) holds in a valid tiling f : Z2 → T (0) for each j ∈ Z, then also
(AC) holds for f .

A valid tiling f : Z2 → T (0) is called periodic with period (ã, b̃) ∈ Z2 \ {(0, 0)},
if f (x, y) = f (x + ã, y + b̃) for each (x, y) ∈ Z2. Observe that if (ã, b̃) is a period
of f then so is (−ã,−b̃).

The following lemma guarantees the unique extension of any T (0)–valued map f
on the main diagonal in Z2 to a valid tiling of the whole plane satisfying (AC), pro-
vided f satisfies the inequalities of condition (AC0).

Lemma 4.1. Let 0 be a (2m, 2n)–group and f : {(i, i) : i ∈ Z} → T (0) a map such
that for each i ∈ Z

S( f (i, i)) 6= N ( f (i − 1, i − 1))−1 and W ( f (i, i)) 6= E( f (i − 1, i − 1))−1 .

Then f uniquely extends to a valid tiling Z2 → T (0). Moreover, this valid tiling
satisfies (AC).
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Proof. The existence and uniqueness of a valid tiling Z2 → T (0) extending the given
map f follows directly from the link condition in the (2m, 2n)–group 0. We call this
extension again f . By assumption, this f satisfies (AC0). If n ∈ N0, we prove now
that condition (ACn) implies condition (ACn+1). In the same way, one can prove that
(AC−n) implies (AC−n−1). By induction, we conclude that f : Z2 → T (0) satisfies
condition (AC).

Fix any i ∈ Z and assume that (ACn) holds. To show (ACn+1), we have to prove
that

S( f (i, i + n + 1)) 6= N ( f (i − 1, i + n))−1

W ( f (i, i + n + 1)) 6= E( f (i − 1, i + n))−1 .

Assume first that

N ( f (i − 1, i + n))−1 = S( f (i, i + n + 1)) (= N ( f (i, i + n))) .

Since W ( f (i, i + n)) = E( f (i − 1, i + n)), it follows from the link condition in 0
that

S( f (i, i + n)) = S( f (i − 1, i + n))−1 = N ( f (i − 1, i + n − 1))−1 ,

contradicting (ACn). Similarly, assume that

W ( f (i, i + n + 1)) = E( f (i − 1, i + n))−1 (= W ( f (i, i + n))−1) .

Then S( f (i, i + n + 1)) = N ( f (i, i + n)) implies

E( f (i, i + n)) = E( f (i, i + n + 1))−1 = W ( f (i + 1, i + n + 1))−1 ,

again contradicting (ACn).

Proposition 4.2. Fix a (2m, 2n)–group 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 and the
corresponding tile set T (0) defined as above. Then

(1) There is a periodic valid tiling f : Z2 → T (0) satisfying (AC).

(2) There is a valid tiling f : Z2 → T (0) satisfying (AC), and a number ã ∈ N
such that f (x, y) = f (x + ã, y) = f (x, y + ã) for each (x, y) ∈ Z, i.e. f has
the two periods (ã, 0) and (0, ã) and therefore is doubly periodic.

(3) There are commuting elements a ∈ 〈a1, . . . , am〉 < 0, b ∈ 〈b1, . . . , bn〉 < 0

such that
0 < |a| = |b| ≤ 64m2n2,

in particular 〈a, b〉 is a subgroup of 0 isomorphic to Z2.
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Proof. (1) Given 0, our goal is to construct a valid tiling f : Z2 → T (0), such that
f (x, y) = f (x + 2, y + 2) for each (x, y) ∈ Z2. Fix any square

t := aba′b′ ∈ T (0)

and define f periodic along the diagonal {(i, i) : i ∈ Z} as follows. If a 6= a ′
and b 6= b′, then we define f (i, i) = t for each i ∈ Z. If a = a′, then we define

f (2i, 2i) = t, f (2i + 1, 2i + 1) = a−1b′−1a−1b−1 ∈ T (0), i ∈ Z .
Note that [a−1b′−1a−1b−1] = [t]. If b = b′, then we define

f (2i, 2i) = t, f (2i + 1, 2i + 1) = a′−1b−1a−1b−1 ∈ T (0), i ∈ Z .
Also here, [a′−1b−1a−1b−1] = [t]. See Figure 4.3 for an illustration of these
three cases.

b

b′ b

b′ b

b′ b

b b′

b′ b

b b

b b

b b

a 6= a′, b 6= b′ a = a′ b = b′

b′

a′

aa′

aa′

a

a

aa

aa

a

a′

aa

a′a′

a

Figure 4.3: Definition of f (i, i) in Proposition 4.2

Now we can apply Lemma 4.1 to the map f : {(i, i) : i ∈ Z} → T (0). The
obtained unique extension f : Z2 → T (0) satisfies (AC) and is obviously
periodic with period (2, 2) (in the first case where a 6= a ′ and b 6= b′, there is in
fact a smaller period (1, 1)).

(2) We use an idea probably going back to Robinson ([60]). It was explained to
me by Guyan Robertson. Let f : Z2 → T (0) be the periodic valid tiling with
period (2, 2) satisfying (AC) obtained in part (1). Since |T (0)| = 4mn is finite,
we have

|{( f (i,−i), f (i + 1,−i + 1)) : i ∈ Z}| ≤ |T (0)× T (0)| = (4mn)2 <∞,
in particular there are i 6= j , such that | j − i | ≤ (4mn)2 and

f (i,−i) = f ( j,− j) and f (i + 1,−i + 1) = f ( j + 1,− j + 1) .
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It follows that
f (x, y) = f (x + j − i, y + i − j)

for each (x, y) ∈ Z2. Now, we compute

f (x, y) = f (x + j − i, y + i − j) = f (x + 2 j − 2i, y + 2i − 2 j)

= f (x, y + 4i − 4 j) = f (x, y + 4 j − 4i)

and

f (x, y) = f (x + j − i, y + i − j) = f (x + 2 j − 2i, y + 2i − 2 j)

= f (x + 4 j − 4i, y) = f (x + 4i − 4 j, y) .

Note that 0 < |4 j − 4i | ≤ 4(4mn)2 = 64m2n2.

(3) We use the doubly periodic valid tiling f : Z2 → T (0) satisfying (AC) of
part (2), i.e.

f (x, y) = f (x + ã, y) = f (x, y + ã)

for each (x, y) ∈ Z, where ã > 0. Since any closed edge-path (i.e. any circuit)
in this tiling describes a relator in the group 0, we obviously have two commut-
ing elements a ∈ 〈a1, . . . , am〉, b ∈ 〈b1, . . . , bn〉 corresponding to the periods
(ã, 0) and (0, ã). Because of condition (AC), a and b are freely reduced and
we therefore have |a| = |b| = ã ∈ N. The upper bound 64m2n2 for the length
of |a| and |b| can be obtained by the explicit construction in (2). The statement
〈a, b〉 ∼= Z2 follows from Lemma 3.14.

Remark. The set T (0) is a reflection-closed 4-way deterministic tile set (using the
terminology of [38]), but T (0) is never aperiodic by Proposition 4.2(1).

We want to illustrate the constructions made in the proof of Proposition 4.2 with a
concrete example and take the group 0 = 03,5 of Example 3.46 with five generators
a1, a2, b1, b2, b3 and the six relators in R2·3

a1b1a2b2, a1b2a2b−1
1 , a1b3a−1

2 b1, a1b−1
3 a1b−1

2 , a1b−1
1 a−1

2 b3, a2b3a2b−1
2 .

This defines the tile set

T (03,5) ={a1b1a2b2, a2b2a1b1, a−1
1 b−1

2 a−1
2 b−1

1 , a−1
2 b−1

1 a−1
1 b−1

2 }
∪ {a1b2a2b−1

1 , a2b−1
1 a1b2, a−1

1 b1a−1
2 b−1

2 , a−1
2 b−1

2 a−1
1 b1}

∪ {a1b3a−1
2 b1, a−1

2 b1a1b3, a−1
1 b−1

1 a2b−1
3 , a2b−1

3 a−1
1 b−1

1 }
∪ {a1b−1

3 a1b−1
2 , a1b−1

2 a1b−1
3 , a−1

1 b2a−1
1 b3, a−1

1 b3a−1
1 b2}

∪ {a1b−1
1 a−1

2 b3, a−1
2 b3a1b−1

1 , a−1
1 b−1

3 a2b1, a2b1a−1
1 b−1

3 }
∪ {a2b3a2b−1

2 , a2b−1
2 a2b3, a−1

2 b2a−1
2 b−1

3 , a−1
2 b−1

3 a−1
2 b2} .
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In Figure 4.4, we recognize a finite part of a periodic valid tiling f : Z2 → T (03,5)

satisfying (AC) induced by t = a1b1a2b2 ∈ T (03,5), with periods

(1, 1), (−2, 2), (4, 0), (0, 4) ∈ Z(1, 1)+ Z(−2, 2)

and commuting elements a1a2a1a−1
2 , b−1

2 b−1
1 b−1

3 b1, generating the free abelian group

Z2 ∼= 〈a1a2a1a−1
2 , b−1

2 b−1
1 b−1

3 b1〉 < 03,5 .

Note that the two generators a1a2a1a−1
2 and b−1

2 b−1
1 b−1

3 b1 of Z2 correspond to the
two commuting quaternions 5+ 4i + 6 j − 2k and −11− 12i − 18 j + 6k of norm 34

and 54, respectively.

a1 a2 a1 a2 a1 a2

a2 a1 a2 a1 a2 a1

a2a1a2a1a2a1

a2 a1 a2 a1 a2 a1

a2a1a2a1a2a1

b1b3 b2 b1 b3 b1 b2

b2

b2b2

b1b1b1b1

b1 b1 b1

b1b1b1b1

b3b3

b3 b3

b3

b2

b2

Figure 4.4: Illustration of Proposition 4.2 taking Example 3.46 and t = a1b1a2b2

However, recall that 〈a1, b1〉 is an anti-torus in 03,5 (see Proposition 3.47(8)), in
particular there are also valid non-periodic tilings of the Euclidean plane using the tile
set T (03,5).
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See Figure 4.5 for an illustration of a finite part of the non-periodic valid tiling
determined by 〈a1, b1〉. Note that all 24 squares of T (03,5) appear in this picture. To
illustrate this, we have equipped the tiles with numbers from 1 to 24.

b1

b1

b1

b1

b1

b1

b2

b3

b2

b3 b3 b2 b3 b1 b3

b1b2b3b1b2

b2 b1 b2 b3

b2b3b1b3

b1b3

b2 b3 b2 b1

b2 b3 b1

b2

b2

b3

a1 a1 a1 a1 a1 a1 a1 a1

a2 a2 a1 a2 a2 a1

a2a2a1a2a1a1

a2 a1 a1 a1

a1a2a2a1a2a2

a1 a1 a2 a1 a2 a2

a2 a2 a2 a1 a1

3

5 9

9

15

18

161220

19 22

231810

24

10

b2

b3

a2 a2

a1

7

3

15

17

112111

13 17

13

4 8

2

1 14

84

7 6 6b1

b1

Figure 4.5: A non-periodic tiling in Example 3.46

Corollary 4.3. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group. Then
there are always non-trivial elements a ∈ 〈a1, . . . , am〉 and b ∈ 〈b1, . . . , bn〉 such that
〈a, b〉 is no anti-torus.

Proof. This follows directly from Proposition 4.2(3).
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4.2 A criterion for non-linearity

Applying a criterion of Burger-Mozes ([17]), we give here examples of very small
irreducible non-linear (2m, 2n)–groups 0, where both Ph and Pv are primitive but not
alternating groups.

Proposition 4.4. (Burger-Mozes, [17, Proposition 1.3, Theorem 1.4]) Let 0 be a
(2m, 2n)–group such that Ph and Pv are primitive permutation groups. If either Kh

or Kv is not a p-group, then 0 is irreducible and not linear over any field.

Remark. There is no (2, 2)–, (2, 4)– and (4, 4)–group satisfying the assumptions of
Proposition 4.4.

Remark. If m ≥ 3 and 0 is an irreducible (A2m, Pv)–group, i.e. if

∣∣P(2)h

∣∣ = |A2m |
( |A2m |

2m

)2m

by Proposition 1.2(1a), then Kh is not a p-group, since |Kh | = |A2m−1|2m−1.

We apply now Proposition 4.4 to a (4, 6)–group which is moreover a candidate for
having a simple subgroup of index 4.

Example 4.5.

R2·3 :=





a1b1a−1
1 b−1

2 , a1b2a−1
2 b−1

1 ,

a1b3a−1
2 b1, a1b−1

3 a2b3,

a1b−1
2 a−1

2 b−1
3 , a2b1a−1

2 b2




.

Proposition 4.6. Let 0 be the (4, 6)–group defined in Example 4.5. Then

(1) Ph
∼= PGL2(3) ∼= S4, Pv = S6.

(2) |Kv| = 12441600000 = 214 · 35 · 55.

(3) 0 is irreducible and not linear over any field.

(4) [0, 0] = 00 and 00 is perfect.

(5) Z0(b3) = N0(〈b3〉) = 〈b3〉.

(6) Aut(X) ∼= Z2.
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Proof. (1) We compute

ρv(b1) = (1, 2),

ρv(b2) = (3, 4),

ρv(b3) = (1, 2, 4, 3),

ρh(a1) = (1, 2)(3, 5, 6),

ρh(a2) = (1, 4, 2, 6, 5).

(2) GAP ([29]).

(3) Apply Proposition 4.4, using part (1) and (2).

(4) It is an easy computation.

(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), we see that Aut(X) is generated by

(a1, a2, b1, b2, b3) 7→ (a−1
1 , a−1

2 , b2, b1, b3).

Conjecture 4.7. The (4, 6)–group 0 of Example 4.5 is non-residually finite and
⋂

N
f.i.
C0

N = 00 .

Example 4.8.

R2·3 :=





a1b1a−1
1 b−1

2 , a1b2a−1
1 b−1

3 ,

a1b3a−1
2 b1, a1b−1

3 a2b−1
1 ,

a2b1a2b−1
2 , a2b2a2b3




.

Proposition 4.9. Let 0 be the (4, 6)–group defined in Example 4.8. Then

(1) Ph
∼= PGL2(3) ∼= S4, Pv ∼= PGL2(5) < S6.

(2) |Kv| = 50000 = 24 · 55.

(3) 0 is irreducible and not linear over any field.

(4) [0, 0] = 00, 0ab
0
∼= Z2, 0/[00, 00] ∼= D4 and [00, 00] is perfect.

(5) Z0(ai ) = N0(〈ai〉) = 〈ai〉, if ai ∈ {a1, a2}.
(6) Aut(X) ∼= Z2.
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Proof. (1) We compute

ρv(b1) = (1, 3, 2),

ρv(b2) = (2, 3),

ρv(b3) = (2, 4, 3),

ρh(a1) = (1, 4, 5, 6, 3, 2),

ρh(a2) = (1, 4, 2)(3, 6, 5).

(2) GAP ([29]).

(3) Apply Proposition 4.4.

(4) This is an easy computation.

(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), we have checked that the group Aut(X) is generated by the
permutation

(a1, a2, b1, b2, b3) 7→ (a1, a−1
2 , b−1

1 , b−1
2 , b−1

3 )

of order 2.

Conjecture 4.10. Let 0 be the (4, 6)–group defined in Example 4.8. Then 0 is non-
residually finite such that ⋂

N
f.i.
C0

N = [00, 00] .

Question 4.11. Let 0 be the (4, 6)–group defined in Example 4.8. Is the index 8
subgroup [00, 00] simple?

We also apply Proposition 4.4 to a (6, 6)–group:

Example 4.12.

R3·3 :=





a1b1a−1
1 b−1

2 , a1b2a−1
2 b−1

3 , a1b3a−1
2 b1,

a1b−1
3 a−1

3 b3, a1b−1
2 a−1

2 b−1
1 , a2b1a−1

2 b−1
2 ,

a2b3a−1
3 b−1

3 , a3b1a3b2, a3b−1
2 a3b−1

1




.
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Proposition 4.13. Let 0 be the (6, 6)–group defined in Example 4.12. Then

(1) Ph
∼= PSL2(5) < S6, Pv ∼= PSL2(5) < S6.

(2) |Kv| = 100000 = 25 · 55.

(3) 0 is irreducible and not linear over any field.

(4) [0, 0] = 00 and 00 is perfect.

(5) Z0(b3) = N0(〈b3〉) = 〈b3〉.
(6) Aut(X) ∼= Z2

2.

Proof. (1) We compute

ρv(b1) = (1, 2)(3, 4),

ρv(b2) = (3, 4)(5, 6),

ρv(b3) = (1, 2, 3)(4, 6, 5),

ρh(a1) = (1, 5, 6, 3, 2),

ρh(a2) = (1, 4, 5, 6, 2),

ρh(a3) = (1, 5)(2, 6).

(2) GAP ([29]).

(3) Apply Proposition 4.4.

(4) This is an easy computation.

(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), Aut(X) is generated by the two automorphisms

(a1, a2, a3, b1, b2, b3) 7→ (a2, a1, a3, b−1
1 , b−1

2 , b−1
3 ),

(a1, a2, a3, b1, b2, b3) 7→ (a−1
2 , a−1

1 , a−1
3 , b2, b1, b−1

3 ).

Conjecture 4.14. Let 0 be the (6, 6)–group defined in Example 4.12. Then 0 is non-
residually finite such that ⋂

N
f.i.
C0

N = 00 .

Question 4.15. Let 0 be the (6, 6)–group defined in Example 4.12. Is the subgroup00

simple?
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4.3 Local groups, irreducibility, abelianization

Two naive attempts to characterize irreducibility for (2m, 2n)–groups 0 could be as
follows: 0 is irreducible if and only if its abelianization is finite; 0 is irreducible if
and only if the local groups Ph and Pv are transitive. Both turn out to be false by small
counter-examples given in Proposition 4.16. By [17, Proposition 1.2], any reducible
(2m, 2n)–group satisfies 31 6= 1 and 32 6= 1. We give in Proposition 4.16(6) also
an irreducible example with this property. Finally, we show that it is not enough to
compute for example P (2)h and Ph , in order to decide by Proposition 1.2(2) that 0 is
reducible, even if it is reducible.

Proposition 4.16. There exist examples of (2m, 2n)–groups which are

(1) reducible such that their local groups Ph and Pv are transitive.

(2) irreducible such that Ph and Pv are not transitive.

(3) reducible and have finite abelianization.

(4) irreducible and have infinite abelianization.

(5) irreducible such that Pv is transitive and 32 6= 1.

(6) irreducible such that 31, 32 6= 1.

(7) reducible but |Ph | < |P(2)h | and |Pv| < |P(2)v |.

(8) reducible but |P (3)h | < |P(4)h |.
Proof. (1) Take

R2·2 :=




a1b1a−1
2 b1, a1b2a−1

2 b2,

a1b−1
2 a1b−1

1 , a2b1a2b2



 .

Then, we have

ρv(b1) = (1, 4, 3, 2),

ρv(b2) = (1, 4, 3, 2),

ρh(a1) = (1, 3, 2, 4),

ρh(a2) = (1, 4, 2, 3)

for the corresponding (4, 4)–group.

It is reducible, since |P (2)h | = |Ph | = 4.
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(2) Embed any irreducible (2m, 2n)–complex into a (2m + 2, 2n + 2)–complex Y
by adding the m + n + 1 geometric squares (geometric tori)

[a1bn+1a−1
1 b−1

n+1], . . . , [ambn+1a−1
m b−1

n+1] ,

[am+1b1a−1
m+1b−1

1 ], . . . , [am+1bna−1
m+1b−1

n ] ,
[am+1bn+1a−1

m+1b−1
n+1]

and apply Proposition 1.9(3) to show that Y is irreducible. See the example
described in part (6) for an explicit realization of this idea.

(3) Taking

R2·2 :=




a1b1a−1
1 b1, a1b2a1b−1

2 ,

a2b1a2b−1
1 , a2b2a−1

2 b2



 ,

we have |Ph | = |P(2)h | = 4, which shows that the corresponding (4, 4)–group 0
is reducible. A simple computation gives 0ab ∼= Z4

2 of order 16.

(4) Take the subsequent Example 4.18.

Note that if we add to the non-residually finite (4, 12)–complex of Example 2.26
the two geometric tori [a1b7a−1

1 b−1
7 ] and [a2b7a−1

2 b−1
7 ], then we even get a non-

residually finite (4, 14)–group0 having an infinite abelianization0ab ∼= Z×Z2
2.

(5) We take the (6, 4)–group 0 given by

R3·2 :=




a1b1a−1
1 b−1

2 , a1b2a3b−1
1 , a1b−1

2 a−1
3 b1,

a2b1a3b1, a2b2a2b−1
1 , a2b−1

2 a3b−1
2



 .

Then

ρv(b1) = (1, 4, 2, 5, 3),

ρv(b2) = (2, 4, 6, 3, 5),

ρh(a1) = (1, 2)(3, 4),

ρh(a2) = ρh(a3) = (1, 2, 3, 4),

in particular Pv ∼= D4 < S4 is transitive. Moreover, we compute Ph
∼= A6

and |P(2)h | = 360 · 606. By Proposition 1.2(1a), 0 is irreducible. Using
Lemma 1.1(1b), B := {(b1b2)

3, (b2b1)
3, (b1b2)

−3, (b2b1)
−3} is a subset of 32,

since for each b ∈ B and a ∈ Eh we have ρv(b)(a) = a and ρh(a)(b) ∈ B.
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(6) Embedding the irreducible (6, 4)–complex just described in the proof of part (5),
we construct an irreducible (8, 6)–group such that 31 6= 1 6= 32.

R4·3 :=





a1b1a−1
1 b−1

2 , a1b2a3b−1
1 , a1b3a−1

1 b−1
3 , a1b−1

2 a−1
3 b1,

a2b1a3b1, a2b2a2b−1
1 , a2b3a−1

2 b−1
3 , a2b−1

2 a3b−1
2 ,

a3b3a−1
3 b−1

3 , a4b1a−1
4 b−1

1 , a4b2a−1
4 b−1

2 , a4b3a−1
4 b−1

3





.

It is irreducible by Proposition 1.9(3) and we have a4 ∈ 31, b3 ∈ 32, applying
Lemma 1.1. Note that Ph and Pv are not transitive, since

ρv(b1) = (1, 6, 2, 7, 3),

ρv(b2) = (2, 6, 8, 3, 7),

ρv(b3) = (),
ρh(a1) = (1, 2)(5, 6),

ρh(a2) = ρh(a3) = (1, 2, 5, 6),

ρh(a4) = ().

(7) For the (4, 6)–group given by

R2·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 ,

a1b3a−1
1 b2, a2b1a−1

2 b−1
2 ,

a2b2a−1
2 b1, a2b3a2b−1

3




,

we compute |Ph | = 2, |P(2)h | = 4, |Pv| = 24, |P (2)v | = 48. It is reducible by

Proposition 1.2(2b), since |P (3)v | = 48. Note that |P (3)h | = |P(4)h | = 8.

(8) Take the (4, 6)–group defined by

R2·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b2,

a1b3a1b−1
3 , a2b1a2b−1

2 ,

a2b2a2b−1
3 , a2b3a2b−1

1




.

We compute |Ph | = 4, |P(2)h | = 8, |P(3)h | = 16, |P (4)h | = 32. Note that

|P(5)h | = 32 and |Pv| = |P(2)v | = 24, in particular the (4, 6)–group is reducible
by Proposition 1.2(2).
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Question 4.17. (1) Is there a reducible (Ph, Pv)–group 0 such that Ph is transitive
and Pv is 2-transitive?

(2) Does there exist a reducible (Ph, Pv)–group 0 such that Ph is transitive and Pv
is primitive?

(3) Is there a reducible (Ph, Pv)–group 0 such that Ph is transitive and Pv is quasi-
primitive?

(4) Is there a (2m, 2n)–group 0 such that Ph and Pv are transitive and 0ab is
infinite?

The (6, 6)–group in the following example not only illustrates Proposition 4.16(4),
but has other interesting properties.

Example 4.18.

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a−1
2 b−1

2 ,

a1b−1
3 a2b2, a2b1a−1

3 b−1
1 , a2b3a2b−1

2 ,

a2b−1
1 a−1

3 b1, a3b2a−1
3 b−1

2 , a3b3a−1
3 b−1

3




.

Proposition 4.19. Let 0 be the (6, 6)–group defined in Example 4.18. Then

(1) Ph = A6, Pv ∼= Z2 < S6 and 0 is irreducible.

(2) H2(xv) is a pro-2 group, where xv is any vertex of T2n .

(3) 32 6= 1, in particular QZ(H2) 6= 1.

(4) We have

〈a1, a2, a3〉 ∼= pr2(〈a1, a2, a3〉)
∼= pr2(〈a1, a2, a3〉)(xv)
∼= pr2(0)(xv) < Aut(T2n)(xv) .

This group stabilizes pointwise a bi-infinite geodesic in T2n = T6 through the
vertex xv .

(5) 0ab ∼= Z2 × Z2, in particular it is an infinite group.

Proof. (1) We compute

ρv(b1) = (2, 3)(4, 5),

ρv(b2) = (1, 2, 5),

ρv(b3) = (2, 6, 5),
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ρh(a1) = (2, 3)(4, 5),

ρh(a2) = (2, 3)(4, 5),

ρh(a3) = ().
To see that 0 is irreducible, compute |P (2)h | = 360 · 606.

(2) This follows directly from the subsequent Proposition 4.20.

(3) Using Lemma 1.1(1b), the set {b2
1, b3

2, b3
3} is a subset of 32. Note that 32 is

a normal subgroup of 〈b1, . . . , bn〉 of infinite index, since 0 is irreducible. In
particular, 32 is a non-finitely generated free normal subgroup of 0.

(4) The map pr2 : 0 → Aut(T2n) is injective because we know that QZ(H1) = 1
by [16, Proposition 3.1.2, 1)]. This gives the first claimed isomorphism. The
two other isomorphisms are based on the identification

〈a1, a2, a3〉 ∼= {γ ∈ 0 : pr2(γ )(xv) = xv}
proved in [17, Chapter 1]. Since ρh(a)(b1) = b1 for each a ∈ Eh , the bi-infinite
geodesic (bk

1)k∈Z through xv is fixed.

(5) This is an easy computation.

Proposition 4.20. Let 0 be a (Ph, Pv)–group such that |Pv| = 2. Then H2(xv) is a
pro-2 group (an infinite group if and only if 0 is irreducible).

Proof. Consider the following commutative diagram, where pk , k ∈ N, is the obvious
restriction map.

〈a1, . . . , am〉
ρ
(k+1)
h // //

ρ
(k)
h $$ $$IIIIIIIIIIIIII P(k+1)

v < Sym(E (k+1)
v )

pk
����

P(k)v < Sym(E (k)v )

We want to show that P (k)v is a 2-group for each k ∈ N. Since |Pv| = 2 and
P(k)v
∼= P(k+1)

v /ker(pk), it is enough to show that ker(pk) is a 2-group (or trivial). This
follows, if any element σ ∈ ker(pk) has order 1 or 2 in P (k+1)

v . Given σ ∈ ker(pk),
write σ = ρ

(k+1)
h (a) for an appropriate element a in 〈a1, . . . , am〉. Let b be any el-

ement in E (k+1)
v . Decompose b = b′ · b′′, such that b′ ∈ E (k)v , b′′ ∈ Ev and define

ã := ρ(|a|)v (b′)(a) (see Figure 4.6). Then

σ 2(b) = ρ(k+1)
h (a2)(b′ · b′′) = b′ · ρh(ã

2)(b′′) = b′ · b′′ = b,

where the second equation uses the commutativity of the diagram above and the third
equation follows from the assumption |Pv| = 2.
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a a

ã ã

b′′

b′ b′ b′

b′′

Figure 4.6: Illustration in the proof of Proposition 4.20

The following conjecture is true at least for k ≤ 6, because we have computed
|P(2)v | = 4, |P(3)v | = 16, |P (4)v | = 32, |P (5)v | = 128, |P (6)v | = 256.

Conjecture 4.21. For 0 defined in Example 4.18 and l ∈ N
∣∣P(k)v

∣∣ =
{

23l−1 , if k = 2l

23l−2 , if k = 2l − 1 .

A very natural question is to ask if there is a criterion in terms of properties of
the local groups Ph and Pv to decide whether a given (2m, 2n)–group is reducible or
not. The answer to this question is “no” as shown in the first part of the following
proposition.

Proposition 4.22. (1) In general, it is not possible to determine whether a given
(2m, 2n)–group is reducible or irreducible only by knowing its local groups Ph

and Pv .

(2) There exist (2m, 2n)–groups 01 and 02 having isomorphic local groups, but
different local transitivity properties. More precisely, there are examples such
that Pv(01) and Ph(02) are transitive, Ph(01) and Pv(02) are not transitive,
although Ph(01) ∼= Ph(02) and Pv(01) ∼= Pv(02).

Proof. (1) The idea is to find two (2m, 2n)–groups 01 and 02 with permutation
isomorphic local groups such that 01 is irreducible but 02 is reducible. We
take the (6, 6)–group of Example 4.18 as 01, and 02 as (6, 6)–group defined as
follows:

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a−1
2 b−1

2 ,

a1b−1
3 a2b2, a2b1a−1

3 b−1
1 , a2b3a2b−1

2 ,

a2b−1
1 a−1

3 b1, a3b2a−1
3 b−1

3 , a3b3a−1
3 b−1

2





.
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Note that it has seven (of nine) defining relators in common with those of Exam-
ple 4.18. The two different relators are underlined. They can be obtained from
the corresponding two relators a3b2a−1

3 b−1
2 and a3b3a−1

3 b−1
3 in Example 4.18

by a single “surgery” operation indicated in Figure 4.7. For a more general
description of surgery techniques in square complexes, see [17, Section 6.2.2].

a3 a3

a3 a3

a3 a3

a3 a3

b2

b3

b2

b3

b3

b2

b2

b3

Figure 4.7: “Surgery” on Example 4.18 (on the left)

We compute for 02:

ρv(b1) = (2, 3)(4, 5),

ρv(b2) = (1, 2, 5),

ρv(b3) = (2, 6, 5),

ρh(a1) = ρh(a2) = ρh(a3) = (2, 3)(4, 5),

in particular it follows that Ph = A6 and Pv ∼= Z2 < S6. Moreover, we have
|P(2)h | = 360 = |Ph |, hence 02 is reducible by Proposition 1.2(2a). Observe

that |P(k)v | = 2 for all k ∈ N.

(2) The reason for this phenomenon is that the local groups are isomorphic, but not
permutation isomorphic. Let the (4, 6)–group 01 be defined by

R2·3 :=





a1b1a−1
1 b−1

2 , a1b2a−1
2 b−1

3 ,

a1b3a−1
2 b−1

1 , a1b−1
3 a−1

2 b1,

a1b−1
2 a−1

2 b3, a2b1a−1
2 b2




.
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Then

ρv(b1) = (1, 2),

ρv(b2) = (3, 4),

ρv(b3) = (1, 2)(3, 4),

ρh(a1) = (1, 3, 2)(4, 5, 6),

ρh(a2) = (1, 3, 2, 6, 4, 5),

hence Ph
∼= Z2

2 < S4 is not transitive, Pv ∼= Z2 × A4 < S6 is transitive.

Define the (4, 6)–group 02 by

R2·3 :=





a1b1a−1
2 b−1

2 , a1b2a−1
2 b2,

a1b3a2b3, a1b−1
3 a2b−1

3 ,

a1b−1
2 a−1

2 b−1
1 , a1b−1

1 a−1
2 b1




.

We compute

ρv(b1) = (1, 2)(3, 4),

ρv(b2) = (1, 2)(3, 4),

ρv(b3) = (1, 3)(2, 4),

ρh(a1) = (1, 5, 2)(3, 4),

ρh(a2) = (2, 5, 6)(3, 4)

and see that Ph
∼= Z2

2 < S4 is transitive, but Pv ∼= Z2 × A4 < S6 is not
transitive.

4.4 Graphs associated to a (2m, 2n)–group

Following an idea of Mozes ([52]), we associate to any (2m, 2n)–group 0 two infinite
families of finite regular graphs (Xk(0))k∈N and (Yk(0))k∈N. The vertex set of Xk(0)

is identified with the set E (k)h and the vertex set of Yk(0) is identified with E (k)v . Two

vertices a, ã ∈ E (k)h are connected in Xk(0) by an edge if and only if ρv(b)(a) = ã
holds for some b ∈ Ev . In this case, b and b−1 are edges in Xk(0) such that o(b) = a,
t (b) = ã and b = b−1. Similarly, two vertices b, b̃ ∈ E (k)v are connected in Yk(0) by
an edge if and only if ρv(a)(b) = b̃ for some a ∈ Eh .

See Figure 4.8 and 4.9 for a visualization of Y1(03,5) and X2(03,5), respectively,
where 03,5 is the (4, 6)–group of Example 3.46.
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b−1
2 b2

b3b−1
3

b1b−1
1

a1

a1

a1

a2

a2

a2

a2

a1

a2

a2

a1

a1

Figure 4.8: The graph Y1(03,5)

We list now some obvious general properties of the graph Xk(0) (the properties
of Yk(0) are analogous):

• Xk(0) has exactly 2m(2m − 1)k−1 vertices.

• Xk(0) is 2n-regular.

• Xk(0) is connected if and only if P (k)h is transitive on E (k)h .

• Xk(0) is connected for each k ∈ N if and only if pr1(0) is locally∞-transitive.

• If Xk(0) is not connected, then X l(0) is not connected for each l ≥ k.

• If Xk(0) has no loops, then Xl(0) has no loops for each l ≥ k.

Less obvious is the following result of Mozes:

Proposition 4.23. (Mozes, [52, Theorem, p.323]) If 0 = 0 p,l is as in Section 3.2, then
(Xk(0))k∈N and (Yk(0))k∈N are Ramanujan graphs, i.e. for every k ∈ N and every
eigenvalue λ of the adjacency matrix of Xk(0), either λ = ±(l + 1) or |λ| ≤ 2

√
l,

and for every eigenvalue λ of the adjacency matrix of Yk(0), either λ = ±(p + 1) or
|λ| ≤ 2

√
p.

Problem 4.24. Construct other (2m, 2n)–groups 0 such that the graphs (X k(0))k∈N
and (Yk(0))k∈N are Ramanujan graphs.
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a−2
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1 a−1
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1
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2 a1 a−1

1 a2

Figure 4.9: Geometric realization of X2(03,5)

4.5 Growth of (2m, 2n)–groups

Let 0 be a finitely generated group and S a finite subset generating 0. Following [32],
we define the word length `S(γ ) of an element γ ∈ 0 \ {1} with respect to S:

`S(γ ) := min{i : γ = s1 . . . si ; s1, . . . , si ∈ S ∪ S−1} , (and `S(1) := 0) ,

for k ∈ N0 the growth function

k 7→ β(0, S; k) := |{γ ∈ 0 : `S(γ ) ≤ k}| ,
the corresponding growth series

B(0, S; z) :=
∞∑

k=0

β(0, S; k)zk ,

the spherical growth function

k 7→ σ(0, S; k) := |{γ ∈ 0 : `S(γ ) = k}| ,
and the corresponding spherical growth series

6(0, S; z) :=
∞∑

k=0

σ(0, S; k)zk = (1− z)B(0, S; z) .

Observe that σ(0, S; k) = β(0, S; k)− β(0, S; k − 1), if k ∈ N.
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Proposition 4.25. Let 0 = 〈a1, . . . , am, b1, . . . , bn | Rm·n〉 be a (2m, 2n)–group and
S := {a1, . . . , am, b1, . . . , bn} the set of standard generators of 0.

(1) The Cayley graph of (0, S) can be identified with the 1-skeleton of the product
of regular trees T2m × T2n , in particular the growth functions of (0, S) only
depend on m and n.

(2) The spherical growth series is

6(0, S; z) =
(1+z

1−z

)2
(
m − (m − 1)1+z

1−z

)(
n − (n − 1)1+z

1−z

)

= 1+ z

1− (2m − 1)z
· 1+ z

1− (2n − 1)z

= 1+ (2m + 2n)z + (4m2 + 4n2 + 4mn − 2m − 2n)z2 + O(z3) .

(3) If (m, n) 6= (1, 1), then 0 is of exponential growth. If m = n = 1, then 0 is of
polynomial growth.

(4) If m, n ≥ 2, then 0 is quasi-isometric to F2 × F2.

Proof. (1) See [9, Section I.8A.2] for an explicit identification. Observe that the
product T2m × T2n is the universal covering space of the “Cayley complex” of
([9, Section I.8A.2]), which is exactly our (2m, 2n)–complex X .

(2) By part (1) we have 6(0, S; z) = 6(Fm × Fn, S; z). Note that

6(Z, {1}; z) = 1+ z

1− z
.

The claim follows now from the behaviour of the spherical growth series with
respect to taking free and direct products (see [32, Proposition VI.A.4]). As an
intermediate step, we have for example

6(Fm, {a1, . . . , am}; z) = 1+ z

1− (2m − 1)z
.

(3) If (m, n) 6= (1, 1), then the statement follows from the obvious fact that Fm×Fn

contains a non-abelian free subgroup (namely Fm × {1} if m ≥ 2, or {1} × Fn

if n ≥ 2). If m = n = 1, then 0 is virtually abelian, hence is of polynomial
growth.

(4) The group Fm × Fn is isomorphic to a finite index subgroup of F2 × F2 (the
index is (m−1)(n−1)), hence the groups are quasi-isometric by part (1). (Note
that for `, `′ ≥ 3, the tree T` is quasi-isometric to T`′ , see [9, Exercise I.8.20(2)].
This is a more general result than (4), since `, `′ are allowed to be odd.)
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Example. Let 0 be a (6, 6)–group. Then

6(0, S; z) = 1+ 12z + 96z2 + 660z3 + 4200z4 + 25500z5 + O(z6)

B(0, S; z) = 1+ 13z + 109z2 + 769z3 + 4969z4 + 30469z5 + O(z6) .

4.6 Deficiency of (2m, 2n)–groups

Let G be a finitely presented group. The deficiency of a finite presentation P of G is
the number of generators minus the number of relations in P . The deficiency def(G)
of the group G is the maximum of the deficiency of P taken over all possible finite
presentations of G. It is well-known (see [27, Lemma 1.2]) that

def(G) ≤ rank(H1(G;Z))− d(H2(G;Z)) , (4.1)

where d(H2(G;Z)) denotes the minimal number of generators of the second homo-
logy group of G with integer coefficients. The group G is called efficient if equality
holds in (4.1).

Proposition 4.26. Let 0 be a (2m, 2n)–group. Then 0 is efficient and

def(0) = m + n − mn .

Proof. Since 0 has the finite presentation 〈a1, . . . , am, b1, . . . , bn | Rm·n〉, we have

def(0) ≥ m + n − mn .

On the other hand

def(0) ≤ rank(H1(0;Z))− d(H2(0;Z))
= rank(H1(0;Z))− rank(H2(0;Z))
= 1− χ(0)
= m + n − mn .

The inequality is (4.1), and the equalities above are described in [41, Section 6], where
χ(0) is the Euler characteristic of the (2m, 2n)–complex X (or the alternating sums
of the ranks of the homology groups of 0, which is the same here).

Remark. The deficiency def(0) for a (2m, 2n)–group 0 is attained by its standard
presentation

〈a1, . . . , am, b1, . . . , bn | Rm·n〉
as well as by the natural presentations of their amalgams (provided they exist, see
Proposition 1.3)

Fn ∗F1−2m+2mn F1−m+mn and Fm ∗F1−2n+2mn F1−n+mn .
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Similarly as in Proposition 4.26, one can prove that the deficiency of 00 is

def(00) = 4n + 4m − 4mn − 3 .

Remark. There are non-efficient torsion-free groups, see [47].
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Appendix A

More examples

A.1 Irreducible (A6, Pv)–groups

In Appendix C.1, we will give a list of all primitive permutation groups in S2n , where
n ≤ 7. There are 33 different such groups (up to isomorphism). Our goal now is to
construct for each such primitive group Pv an irreducible (A6, Pv)–group. We already
have constructed an (A6, A6)–group in Example 2.2, an (A6, M12)–group in Exam-
ple 2.18, an (A6,ASL3(2))–group in Example 2.21 and an (A6, S5 < S10)–group in
Example 2.58. There are no (A6, S2)–groups and no (A6, A4)–groups, and we have
not found an (A6, A5 < S10)–group or an (A6, M11 < S12)–group. In this section,
we construct the 25 remaining (A6, Pv)–groups and give the generators of the local
groups Ph = A6 and Pv. All these examples are irreducible by Proposition 1.2(1a),
since we always have |P (2)h | = 360 · 606.

Example A.1. (A6, S4)–group:

R3·2 :=




a1b1a−1
1 b−1

2 , a1b2a−1
2 b1, a1b−1

2 a2b−1
1 ,

a2b1a−1
3 b1, a2b2a−1

3 b2, a3b1a3b2



 .

ρv(b1) = (1, 5, 4, 3, 2),

ρv(b2) = (2, 6, 5, 4, 3),

ρh(a1) = (1, 3, 4, 2),

ρh(a2) = (1, 3, 2, 4),

ρh(a3) = (1, 4, 2, 3).

207
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Example A.2. (A6, PSL2(5))–group:

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
2 b−1

3 , a1b3a1b−1
2 ,

a1b−1
3 a−1

3 b2, a2b1a3b−1
2 , a2b2a3b2,

a2b3a3b−1
1 , a2b−1

3 a3b−1
3 , a2b−1

1 a3b1




.

ρv(b1) = (2, 4)(3, 5),

ρv(b2) = (1, 6, 5, 3)(2, 4),

ρv(b3) = (1, 2, 4, 6)(3, 5),

ρh(a1) = (2, 3)(4, 5),

ρh(a2) = (1, 3, 4, 5, 2),

ρh(a3) = (2, 3, 4, 6, 5).

Example A.3. (A6, PGL2(5))–group:

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a−1
2 b2,

a1b−1
3 a2b−1

2 , a2b1a−1
3 b−1

1 , a2b2a−1
3 b1,

a2b3a3b3, a2b−1
1 a−1

3 b2, a3b2a3b−1
3




.

ρv(b1) = (2, 3)(4, 5),

ρv(b2) = (1, 5, 4, 3, 2),

ρv(b3) = (2, 6, 5, 3, 4),

ρh(a1) = (2, 4, 5, 3),

ρh(a2) = (2, 4, 3, 5, 6),

ρh(a3) = (1, 5, 4, 3, 2).
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Example A.4. (A6, S6)–group:

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

2 , a1b3a−1
2 b−1

3 ,

a1b−1
3 a−1

3 b3, a2b1a−1
2 b−1

2 , a2b2a−1
3 b−1

3 ,

a2b3a−1
3 b1, a2b−1

2 a3b−1
1 , a3b1a3b2




.

ρv(b1) = (2, 4, 3),

ρv(b2) = (3, 5, 4),

ρv(b3) = (1, 2, 3)(4, 6, 5),

ρh(a1) = (),
ρh(a2) = (1, 5, 6, 3, 2),

ρh(a3) = (1, 4, 5)(2, 6).

Example A.5. (A6,AGL1(8))–group:

R3·4 :=





a1b1a−1
2 b−1

1 , a1b2a−1
2 b−1

3 , a1b3a−1
2 b−1

4 ,

a1b4a−1
2 b4, a1b−1

4 a−1
2 b2, a1b−1

3 a3b−1
2 ,

a1b−1
2 a−1

2 b1, a1b−1
1 a−1

2 b3, a2b3a−1
3 b2,

a3b1a−1
3 b−1

4 , a3b2a3b3, a3b4a−1
3 b−1

1





.

ρv(b1) = (1, 2)(5, 6),

ρv(b2) = (1, 4, 3, 2)(5, 6),

ρv(b3) = (1, 2)(3, 6, 5, 4),

ρv(b4) = (1, 2)(5, 6),

ρh(a1) = (2, 6, 8, 7, 5, 4, 3),

ρh(a2) = (1, 2, 4, 5, 6, 7, 3),

ρh(a3) = (1, 4)(2, 6)(3, 7)(5, 8).
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Example A.6. (A6,A0L1(8))–group:

R3·4 :=





a1b1a−1
2 b−1

3 , a1b2a2b3, a1b3a−1
2 b−1

4 ,

a1b4a−1
2 b4, a1b−1

4 a−1
2 b2, a1b−1

3 a3b−1
2 ,

a1b−1
2 a−1

2 b1, a1b−1
1 a−1

2 b−1
1 , a2b−1

2 a−1
3 b−1

3 ,

a3b1a−1
3 b−1

1 , a3b3a−1
3 b−1

4 , a3b4a−1
3 b2





.

ρv(b1) = (1, 2)(5, 6),

ρv(b2) = (1, 4, 5, 6, 2),

ρv(b3) = (1, 2, 3, 6, 5),

ρv(b4) = (1, 2)(5, 6),

ρh(a1) = (1, 8, 7, 5, 4, 3)(2, 6),

ρh(a2) = (1, 2, 4, 5, 6, 8)(3, 7),

ρh(a3) = (2, 5, 6)(3, 7, 4).

Example A.7. (A6, PSL2(7))–group:

R3·4 :=





a1b1a−1
2 b−1

1 , a1b2a−1
2 b1, a1b3a−1

2 b−1
3 ,

a1b4a−1
2 b4, a1b−1

4 a−1
2 b2, a1b−1

3 a3b−1
2 ,

a1b−1
2 a−1

2 b−1
4 , a1b−1

1 a−1
2 b3, a2b3a−1

3 b2,

a3b1a−1
3 b4, a3b2a3b3, a3b4a−1

3 b1





.

ρv(b1) = (1, 2)(5, 6),

ρv(b2) = (1, 4, 3, 2)(5, 6),

ρv(b3) = (1, 2)(3, 6, 5, 4),

ρv(b4) = (1, 2)(5, 6),

ρh(a1) = (2, 6, 8)(4, 7, 5),

ρh(a2) = (1, 7, 3)(2, 4, 5),

ρh(a3) = (1, 5)(2, 6)(3, 7)(4, 8).
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Example A.8. (A6, PGL2(7))–group:

R3·4 :=





a1b1a−1
2 b−1

3 , a1b2a−1
2 b1, a1b3a−1

2 b−1
4 ,

a1b4a−1
2 b4, a1b−1

4 a−1
2 b2, a1b−1

3 a3b−1
2 ,

a1b−1
2 a−1

2 b3, a1b−1
1 a−1

3 b−1
1 , a2b1a−1

3 b1,

a2b3a−1
3 b2, a3b2a3b3, a3b4a−1

3 b−1
4





.

ρv(b1) = (1, 3, 2)(4, 6, 5),

ρv(b2) = (1, 4, 3, 2)(5, 6),

ρv(b3) = (1, 2)(3, 6, 5, 4),

ρv(b4) = (1, 2)(5, 6),

ρh(a1) = (1, 8, 2, 6, 7, 5, 4, 3),

ρh(a2) = (1, 7, 3, 2, 4, 5, 6, 8),

ρh(a3) = (1, 8)(2, 6)(3, 7).

Example A.9. (A6, A8)–group:

R3·4 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

2 , a1b3a−1
1 b−1

3 ,

a1b4a−1
2 b−1

4 , a1b−1
4 a−1

2 b4, a2b1a−1
3 b−1

2 ,

a2b2a−1
3 b2, a2b3a3b1, a2b−1

3 a2b−1
1 ,

a2b−1
2 a−1

3 b3, a3b3a−1
3 b−1

4 , a3b4a−1
3 b1





.

ρv(b1) = (2, 5, 4),

ρv(b2) = (2, 3)(4, 5),

ρv(b3) = (2, 5, 3),

ρv(b4) = (1, 2)(5, 6),

ρh(a1) = (),
ρh(a2) = (1, 6, 7, 2)(3, 8),

ρh(a3) = (1, 5, 6)(2, 7, 8, 4, 3).
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Example A.10. (A6, S8)–group:

R3·4 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b2, a1b3a−1

1 b−1
3 ,

a1b4a−1
2 b−1

4 , a1b−1
4 a−1

2 b4, a2b1a−1
3 b−1

2 ,

a2b2a−1
3 b2, a2b3a3b1, a2b−1

3 a2b−1
1 ,

a2b−1
2 a−1

3 b3, a3b3a−1
3 b−1

4 , a3b4a−1
3 b1





.

ρv(b1) = (2, 5, 4),

ρv(b2) = (2, 3)(4, 5),

ρv(b3) = (2, 5, 3),

ρv(b4) = (1, 2)(5, 6),

ρh(a1) = (2, 7),

ρh(a2) = (1, 6, 7, 2)(3, 8),

ρh(a3) = (1, 5, 6)(2, 7, 8, 4, 3).

Example A.11. (A6, PSL2(9))–group:

R3·5 :=





a1b1a−1
1 b−1

1 , a1b2a−1
3 b−1

3 , a1b3a−1
1 b−1

2 ,

a1b4a−1
1 b−1

5 , a1b5a−1
2 b−1

4 , a1b−1
5 a2b4,

a1b−1
2 a−1

3 b3, a2b1a2b−1
2 , a2b2a2b3,

a2b5a2b−1
1 , a2b−1

4 a2b−1
3 , a3b1a3b−1

1 ,

a3b3a−1
3 b−1

2 , a3b4a−1
3 b−1

5 , a3b5a−1
3 b−1

4





.

ρv(b1) = (2, 5)(3, 4),

ρv(b2) = (2, 5)(4, 6),

ρv(b3) = (1, 3)(2, 5),

ρv(b4) = (1, 2, 5),

ρv(b5) = (2, 6, 5),

ρh(a1) = (2, 3)(4, 5)(6, 7)(8, 9),

ρh(a2) = (1, 5, 4, 8, 2)(3, 7, 6, 10, 9),

ρh(a3) = (2, 3)(4, 5)(6, 7)(8, 9).
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Example A.12. (A6, S6 < S10)–group:

R3·5 :=





a1b1a−1
1 b−1

2 , a1b2a−1
1 b5, a1b3a−1

1 b3,

a1b4a−1
1 b1, a1b5a−1

2 b−1
4 , a1b−1

5 a2b4,

a2b1a−1
3 b3, a2b2a−1

2 b−1
2 , a2b3a3b1,

a2b5a2b−1
1 , a2b−1

4 a2b−1
3 , a3b2a−1

3 b−1
4 ,

a3b3a−1
3 b−1

2 , a3b4a−1
3 b1, a3b5a−1

3 b5





.

ρv(b1) = (2, 5, 4), ρv(b2) = (),
ρv(b3) = (2, 5, 3),

ρv(b4) = (1, 2, 5),

ρv(b5) = (2, 6, 5),

ρh(a1) = (1, 7, 6, 2)(3, 8)(4, 5, 9, 10),

ρh(a2) = (1, 5, 4, 8)(3, 7, 6, 10),

ρh(a3) = (1, 7, 9, 8)(2, 3, 10, 4)(5, 6).

Example A.13. (A6, PGL2(9))–group:

R3·5 :=





a1b1a−1
1 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
1 b3,

a1b4a−1
1 b−1

5 , a1b5a−1
2 b−1

4 , a1b−1
5 a2b4,

a2b1a−1
3 b3, a2b2a−1

2 b−1
2 , a2b3a3b1,

a2b5a2b−1
1 , a2b−1

4 a2b−1
3 , a3b2a−1

3 b5,

a3b3a−1
3 b−1

2 , a3b4a−1
3 b1, a3b5a−1

3 b−1
4





.

ρv(b1) = (2, 5, 4), ρv(b2) = (),
ρv(b3) = (2, 5, 3),

ρv(b4) = (1, 2, 5),

ρv(b5) = (2, 6, 5),

ρh(a1) = (1, 2)(3, 8)(4, 5)(6, 7)(9, 10),

ρh(a2) = (1, 5, 4, 8)(3, 7, 6, 10),

ρh(a3) = (1, 7, 6, 2, 3, 10, 4, 5, 9, 8).
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Example A.14. (A6, M10)–group:

R3·5 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a−1
1 b−1

2 ,

a1b4a−1
1 b−1

5 , a1b5a−1
2 b−1

4 , a1b−1
5 a2b4,

a2b1a−1
3 b−1

2 , a2b2a2b3, a2b5a2b−1
1 ,

a2b−1
4 a2b−1

3 , a2b−1
2 a3b1, a3b2a−1

3 b−1
5 ,

a3b3a3b−1
3 , a3b4a−1

3 b−1
1 , a3b5a−1

3 b−1
4





.

ρv(b1) = (2, 5, 4), ρv(b2) = (2, 3, 5),

ρv(b3) = (2, 5)(3, 4),

ρv(b4) = (1, 2, 5), ρv(b5) = (2, 6, 5),

ρh(a1) = (2, 3)(4, 5)(6, 7)(8, 9),

ρh(a2) = (1, 5, 4, 8, 2)(3, 7, 6, 10, 9),

ρh(a3) = (1, 4, 5, 2)(6, 9, 10, 7).

Example A.15. (A6, P0L2(9))–group:

R3·5 :=





a1b1a−1
1 b1, a1b2a−1

1 b−1
3 , a1b3a−1

1 b−1
2 ,

a1b4a−1
1 b−1

5 , a1b5a−1
2 b−1

4 , a1b−1
5 a2b4,

a2b1a−1
3 b−1

2 , a2b2a2b3, a2b5a2b−1
1 ,

a2b−1
4 a2b−1

3 , a2b−1
2 a3b1, a3b2a−1

3 b4,

a3b3a3b−1
3 , a3b4a−1

3 b5, a3b5a−1
3 b−1

1





.

ρv(b1) = (2, 5, 4),

ρv(b2) = (2, 3, 5),

ρv(b3) = (2, 5)(3, 4),

ρv(b4) = (1, 2, 5),

ρv(b5) = (2, 6, 5),

ρh(a1) = (1, 10)(2, 3)(4, 5)(6, 7)(8, 9),

ρh(a2) = (1, 5, 4, 8, 2)(3, 7, 6, 10, 9),

ρh(a3) = (1, 5, 7, 2)(4, 9, 10, 6).
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Example A.16. (A6, A10)–group:

R3·5 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

4 , a1b3a−1
2 b−1

3 ,

a1b4a−1
1 b−1

2 , a1b5a−1
1 b−1

5 , a1b−1
3 a−1

2 b3,

a2b1a−1
3 b−1

1 , a2b2a−1
3 b2, a2b4a−1

3 b−1
5 ,

a2b5a2b−1
4 , a2b−1

5 a3b4, a2b−1
2 a−1

3 b1,

a2b−1
1 a−1

3 b−1
2 , a3b3a−1

3 b−1
4 , a3b5a−1

3 b−1
3





.

ρv(b1) = ρv(b2) = (2, 3)(4, 5),

ρv(b3) = (1, 2)(5, 6),

ρv(b4) = (2, 5, 4),

ρv(b5) = (2, 3, 5),

ρh(a1) = (2, 4)(7, 9),

ρh(a2) = (2, 10, 9)(4, 5)(6, 7),

ρh(a3) = (1, 2, 9)(3, 5, 4)(6, 7, 8).

Example A.17. (A6, S10)–group:

R3·5 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b4, a1b3a−1

2 b−1
3 ,

a1b4a−1
1 b−1

2 , a1b5a−1
1 b−1

5 , a1b−1
3 a−1

2 b3,

a2b1a−1
3 b−1

1 , a2b2a−1
3 b2, a2b4a−1

3 b−1
5 ,

a2b5a2b−1
4 , a2b−1

5 a3b4, a2b−1
2 a−1

3 b1,

a2b−1
1 a−1

3 b−1
2 , a3b3a−1

3 b−1
4 , a3b5a−1

3 b−1
3





.

ρv(b1) = ρv(b2) = (2, 3)(4, 5),

ρv(b3) = (1, 2)(5, 6),

ρv(b4) = (2, 5, 4),

ρv(b5) = (2, 3, 5),

ρh(a1) = (2, 4, 9, 7),

ρh(a2) = (2, 10, 9)(4, 5)(6, 7),

ρh(a3) = (1, 2, 9)(3, 5, 4)(6, 7, 8).
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Example A.18. (A6, PSL2(11))–group:

R3·6 :=





a1b1a−1
3 b−1

2 , a1b2a−1
1 b−1

1 , a1b3a−1
1 b−1

4 ,

a1b4a−1
1 b−1

3 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

5 ,

a1b−1
1 a2b2, a2b1a2b−1

3 , a2b3a2b−1
5 ,

a2b4a−1
2 b−1

4 , a2b5a2b6, a2b−1
6 a2b−1

2 ,

a2b−1
1 a3b2, a3b1a3b−1

3 , a3b3a3b−1
5 ,

a3b4a−1
3 b−1

4 , a3b5a3b6, a3b−1
6 a3b−1

2





.

ρv(b1) = (2, 6, 4, 3, 5), ρv(b2) = (1, 3, 4, 2, 5),

ρv(b3) = ρv(b5) = ρv(b6) = (2, 5)(3, 4),

ρv(b4) = (),
ρh(a1) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12),

ρh(a2) = ρh(a3) = (1, 2, 7, 5, 3)(6, 11, 12, 10, 8).

Example A.19. (A6, PGL2(11))–group:

R3·6 :=





a1b1a−1
1 b−1

2 , a1b2a−1
1 b−1

4 , a1b3a−1
2 b1,

a1b4a−1
1 b−1

6 , a1b5a−1
1 b−1

3 , a1b6a−1
1 b−1

5 ,

a1b−1
3 a3b−1

1 , a2b1a2b2, a2b3a2b−1
5 ,

a2b4a−1
2 b−1

4 , a2b5a2b6, a2b−1
6 a2b−1

2 ,

a2b−1
1 a3b−1

3 , a3b1a3b2, a3b3a3b−1
5 ,

a3b4a−1
3 b−1

4 , a3b5a3b6, a3b−1
6 a3b−1

2





.

ρv(b1) = (1, 4, 3, 5, 2),

ρv(b2) = ρv(b5) = ρv(b6) = (2, 5)(3, 4),

ρv(b3) = (2, 4, 3, 6, 5), ρv(b4) = (),
ρh(a1) = (1, 10, 8, 7, 9, 11, 12, 3, 5, 6, 4, 2),

ρh(a2) = ρh(a3) = (1, 10, 8, 6, 11)(2, 7, 5, 3, 12).
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Example A.20. (A6, A12)–group:

R3·6 :=





a1b1a−1
3 b−1

1 , a1b2a−1
3 b1, a1b3a−1

1 b−1
4 ,

a1b4a−1
1 b−1

3 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

5 ,

a1b−1
2 a−1

3 b−1
2 , a1b−1

1 a2b2, a2b1a2b−1
3 ,

a2b3a2b−1
5 , a2b4a−1

2 b−1
4 , a2b5a2b6,

a2b−1
6 a2b−1

2 , a2b−1
1 a−1

3 b2, a3b3a3b−1
3 ,

a3b4a−1
3 b−1

4 , a3b5a3b−1
5 , a3b6a3b−1

6





.

ρv(b1) = (1, 3)(2, 6, 4, 5), ρv(b2) = (1, 3, 2, 5)(4, 6),

ρv(b3) = ρv(b5) = ρv(b6) = (2, 5)(3, 4), ρv(b4) = (),
ρh(a1) = (2, 11, 12)(3, 4)(5, 6)(7, 8)(9, 10),

ρh(a2) = (1, 2, 7, 5, 3)(6, 11, 12, 10, 8),

ρh(a3) = (1, 11, 2).

Example A.21. (A6, S12)–group:

R3·6 :=





a1b1a−1
1 b2, a1b2a3b−1

1 , a1b3a−1
1 b−1

4 ,

a1b4a−1
1 b−1

3 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

5 ,

a1b−1
2 a−1

2 b1, a2b1a2b−1
3 , a2b3a2b−1

5 ,

a2b4a−1
2 b−1

4 , a2b5a2b6, a2b−1
6 a2b−1

2 ,

a2b−1
1 a3b2, a3b1a3b−1

3 , a3b3a3b−1
5 ,

a3b4a−1
3 b−1

4 , a3b5a3b6, a3b−1
6 a3b−1

2





.

ρv(b1) = (1, 4, 3, 5, 2), ρv(b2) = (2, 5, 6, 3, 4),

ρv(b3) = ρv(b5) = ρv(b6) = (2, 5)(3, 4), ρv(b4) = (),
ρh(a1) = (1, 2, 12, 11)(3, 4)(5, 6)(7, 8)(9, 10),

ρh(a2) = ρh(a3) = (1, 2, 7, 5, 3)(6, 11, 12, 10, 8).
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Example A.22. (A6, PSL2(13))–group:

R3·7 :=





a1b1a−1
1 b−1

2 , a1b2a3b−1
1 , a1b3a−1

1 b−1
4 ,

a1b4a−1
1 b−1

3 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

5 ,

a1b7a−1
1 b−1

7 , a1b−1
2 a−1

2 b1, a2b1a2b−1
7 ,

a2b3a2b−1
5 , a2b4a−1

2 b−1
4 , a2b5a2b6,

a2b7a2b−1
3 , a2b−1

6 a2b−1
2 , a2b−1

1 a3b2,

a3b1a3b−1
7 , a3b3a3b−1

5 , a3b4a−1
3 b−1

4 ,

a3b5a3b6, a3b7a3b−1
3 , a3b−1

6 a3b−1
2





.

ρv(b1) = (1, 4, 3, 5, 2), ρv(b2) = (2, 5, 6, 3, 4),

ρv(b3) = ρv(b5) = ρv(b6) = ρv(b7) = (2, 5)(3, 4), ρv(b4) = (),
ρh(a1) = (1, 2)(3, 4)(5, 6)(9, 10)(11, 12)(13, 14),

ρh(a2) = ρh(a3) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10).

Example A.23. (A6, PGL2(13))–group:

R3·7 :=





a1b1a−1
1 b−1

2 , a1b2a3b−1
1 , a1b3a−1

1 b7,

a1b4a−1
1 b−1

6 , a1b5a−1
1 b5, a1b6a−1

1 b−1
4 ,

a1b7a−1
1 b3, a1b−1

2 a−1
2 b1, a2b1a2b−1

7 ,

a2b3a2b−1
5 , a2b4a−1

2 b−1
4 , a2b5a2b6,

a2b7a2b−1
3 , a2b−1

6 a2b−1
2 , a2b−1

1 a3b2,

a3b1a3b−1
7 , a3b3a3b−1

5 , a3b4a−1
3 b−1

4 ,

a3b5a3b6, a3b7a3b−1
3 , a3b−1

6 a3b−1
2





.

ρv(b1) = (1, 4, 3, 5, 2), ρv(b2) = (2, 5, 6, 3, 4),

ρv(b3) = ρv(b5) = ρv(b6) = ρv(b7) = (2, 5)(3, 4), ρv(b4) = (),
ρh(a1) = (1, 2)(3, 8)(4, 6)(5, 10)(7, 12)(9, 11)(13, 14),

ρh(a2) = ρh(a3) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10).
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Example A.24. (A6, A14)–group:

R3·7 :=





a1b1a−1
1 b−1

2 , a1b2a3b−1
1 , a1b3a−1

1 b−1
4 ,

a1b4a−1
1 b−1

3 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

5 ,

a1b7a−1
1 b−1

7 , a1b−1
2 a−1

2 b1, a2b1a2b−1
7 ,

a2b3a2b−1
5 , a2b4a−1

2 b−1
4 , a2b5a2b6,

a2b7a2b−1
3 , a2b−1

6 a2b−1
2 , a2b−1

1 a3b2,

a3b1a3b−1
3 , a3b3a3b−1

5 , a3b4a−1
3 b−1

4 ,

a3b5a3b6, a3b7a3b−1
7 , a3b−1

6 a3b−1
2





.

ρv(b1) = (1, 4, 3, 5, 2),

ρv(b2) = (2, 5, 6, 3, 4),

ρv(b3) = (2, 5)(3, 4),

ρv(b4) = (),
ρv(b5) = (2, 5)(3, 4),

ρv(b6) = (2, 5)(3, 4),

ρv(b7) = (2, 5)(3, 4),

ρh(a1) = (1, 2)(3, 4)(5, 6)(9, 10)(11, 12)(13, 14),

ρh(a2) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10),

ρh(a3) = (1, 2, 9, 5, 3)(6, 13, 14, 12, 10).
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Example A.25. (A6, S14)–group:

R3·7 :=





a1b1a−1
1 b−1

2 , a1b2a3b−1
1 , a1b3a−1

1 b−1
4 ,

a1b4a−1
1 b−1

3 , a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

5 ,

a1b7a−1
1 b7, a1b−1

2 a−1
2 b1, a2b1a2b−1

7 ,

a2b3a2b−1
5 , a2b4a−1

2 b−1
4 , a2b5a2b6,

a2b7a2b−1
3 , a2b−1

6 a2b−1
2 , a2b−1

1 a3b2,

a3b1a3b−1
3 , a3b3a3b−1

5 , a3b4a−1
3 b−1

4 ,

a3b5a3b6, a3b7a3b−1
7 , a3b−1

6 a3b−1
2





.

ρv(b1) = (1, 4, 3, 5, 2),

ρv(b2) = (2, 5, 6, 3, 4),

ρv(b3) = (2, 5)(3, 4),

ρv(b4) = (),
ρv(b5) = (2, 5)(3, 4),

ρv(b6) = (2, 5)(3, 4),

ρv(b7) = (2, 5)(3, 4),

ρh(a1) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14),

ρh(a2) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10),

ρh(a3) = (1, 2, 9, 5, 3)(6, 13, 14, 12, 10).
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A.2 Amalgam decompositions of Example 2.2

Vertical decomposition

We first give the vertical decomposition of the (6, 6)–group 0 of Example 2.2:

0 ∼= F (v,b)3 ∗F(v,b)13
∼=F(v,s)13

F (v,s)7 ,

where the factors are defined as follows:

F (v,b)3 = 〈b1, b2, b3〉, F (v,s)7 = 〈s1, s2, s3, s4, s5, s6, s7〉 .
The injective homomorphism F (v,b)13 ↪→ F (v,b)3 is given by the description of F (v,b)13 as

a subgroup of F (v,b)3 of index 6:

F (v,b)13 = 〈b1, b3, b2b−1
3 b2, b−1

2 b−1
3 b2

2, b−1
2 b1b2

2, b−1
2 b−1

1 b2
2, b2b−2

1 b−1
2 , b2b3b−1

1 b−1
2 ,

b2
2b−1

1 b−1
2 , b−3

2 b−1
1 b−1

2 , b2b1b2
3b2

2, b−2
2 b−1

3 b1b3b2
2, b−2

2 b−1
3 b2b3b2

2〉 ,
the inclusion F (v,s)13 ↪→ F (v,s)7 by

F (v,s)13 = 〈s1, s2, s6, s−1
4 s3, s−1

5 s3, s−1
7 s3, s7s−1

3 , s5s−1
3 ,

s4s−1
3 , s−1

3 s6s−1
3 , s2

3 , s−1
3 s1s3, s−1

3 s2s3〉 .
The identification

F (v,b)13

∼=←→ F (v,s)13

b1 ←→ s1

b3 ←→ s2

b2b−1
3 b2 ←→ s6

b−1
2 b−1

3 b2
2 ←→ s−1

4 s3

b−1
2 b1b2

2 ←→ s−1
5 s3

b−1
2 b−1

1 b2
2 ←→ s−1

7 s3

b2b−2
1 b−1

2 ←→ s7s−1
3

b2b3b−1
1 b−1

2 ←→ s5s−1
3

b2
2b−1

1 b−1
2 ←→ s4s−1

3

b−3
2 b−1

1 b−1
2 ←→ s−1

3 s6s−1
3

b2b1b2
3b2

2 ←→ s2
3

b−2
2 b−1

3 b1b3b2
2 ←→ s−1

3 s1s3

b−2
2 b−1

3 b2b3b2
2 ←→ s−1

3 s2s3
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in the amalgam leads to a finite presentation of 0 with 10 generators

{b1, b2, b3, s1, s2, s3, s4, s5, s6, s7}

and 13 relations

b1 = s1, b3 = s2, b2b−1
3 b2 = s6, b−1

2 b−1
3 b2

2 = s−1
4 s3, b−1

2 b1b2
2 = s−1

5 s3,

b−1
2 b−1

1 b2
2 = s−1

7 s3, b2b−2
1 b−1

2 = s7s−1
3 , b2b3b−1

1 b−1
2 = s5s−1

3 ,

b2
2b−1

1 b−1
2 = s4s−1

3 , b−3
2 b−1

1 b−1
2 = s−1

3 s6s−1
3 , b2b1b2

3b2
2 = s2

3 ,

b−2
2 b−1

3 b1b3b2
2 = s−1

3 s1s3, b−2
2 b−1

3 b2b3b2
2 = s−1

3 s2s3 .

Horizontal decomposition

In a similar way, we can describe the horizontal decomposition of

0 ∼= F (h,a)3 ∗F(h,a)13
∼=F(h,u)13

F (h,u)7

by a finite presentation with generators

{a1, a2, a3, u1, u2, u3, u4, u5, u6, u7} ,

and relations

a1 = u1, a4
3 = u5u7, a2a−3

3 = u7u−1
5 , a3

3a1a−3
3 = u5u1u−1

5 , a3a1a−2
3 = u2u−1

5 ,

a3a2a−2
3 = u−1

3 u−1
5 , a2

3a1a−1
3 = u5u4, a2

3a2a−1
3 = u5u6, a3

3a2a1a2 = u5u2,

a3
3a2a3a2 = u5u−1

6 , a3
3a3

2 = u2
5, a−1

2 a3a−1
2 a−3

3 = u4u−1
5 , a−1

2 a1a−1
2 a−3

3 = u3u−1
5 .

Isomorphisms

We recall the set of relators R3·3 of Example 2.2:

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a2b−1
2 ,

a1b−1
3 a−1

3 b2, a2b1a−1
3 b−1

2 , a2b2a−1
3 b−1

3 ,

a2b3a−1
3 b1, a2b−1

3 a3b2, a2b−1
1 a−1

3 b−1
1




.



A.2. AMALGAM DECOMPOSITIONS OF EXAMPLE 2.2 223

Explicit isomorphisms between the three given finite presentations of 0 are:

0(v)
∼=←→ 〈a1, . . . , b3 | R3·3〉

∼=←→ 0(h)

s3b−2
2 b−1

3 ←→ a1 ←→ a1 = u1

b3b2s−1
4 b2 ←→ a2 ←→ a2

b2s−1
4 b2

2 ←→ a3 ←→ a3

s1 = b1 ←→ b1 ←→ u−1
7 a2

b2 ←→ b2 ←→ a2u−1
5 a2

3
s2 = b3 ←→ b3 ←→ a2

2u−1
5 a3

s3 ←→ a1b3b2
2

s4 ←→ a1b2
3b2

s5 ←→ a1b3b−1
1 b2

s6 ←→ b2b−1
3 b2

s7 ←→ a1b3b1b2

a3a1a3b−1
1 ←→ u2

a−1
2 a1a−1

2 b−1
1 ←→ u3

a−1
2 a3a−1

2 b−1
1 ←→ u4

a3
3b−1

1 ←→ u5

(b1a2a3a2)
−1 ←→ u6

a2b−1
1 ←→ u7 ,

where
0(v) = F (v,b)3 ∗F(v,b)13

∼=F(v,s)13
F (v,s)7

and
0(h) = F (h,a)3 ∗F(h,a)13

∼=F(h,u)13
F (h,u)7 .

Observe that with this identification, the abelianization map 0 → 0ab ∼= Z2
2 is now

given by

a1, a2, a3 7→ (1+ 2Z, 0+ 2Z)
b1, b2, b3 7→ (0+ 2Z, 1+ 2Z)
s1, s2, s6 7→ (0+ 2Z, 1+ 2Z)

s3, s4, s5, s7 7→ (1+ 2Z, 1+ 2Z)
u1 7→ (1+ 2Z, 0+ 2Z)

u2, u3, u4, u5, u6, u7 7→ (1+ 2Z, 1+ 2Z) .
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Local action on trees

The vertical amalgam decomposition of 0 described above gives a natural action of 0
on the first barycentric subdivision T ′6 of T2m = T6. See [64, Chapter 4] for the general
theory about amalgams and their action on the corresponding tree. Let P be the vertex
of T ′6 stabilized by F (v,b)3 = 〈b1, b2, b3〉. The local action of 0 ∼= pr1(0) < Aut(T2m)

on S(xh, 1) in T6, i.e. the homomorphism ρv : 〈b1, b2, b3〉 � Ph < S2m determined
in the proof of Theorem 2.3(1), can be reconstructed by the action of F (v,b)

3 on the

set of edges of T ′6 originating at P . These edges are labelled by right cosets F (v,b)
13 gi ,

i = 1, . . . , 6, gi ∈ F (v,b)3 , such that

F (v,b)3 =
6⊔

i=1

F (v,b)13 gi .

The group F (v,b)3 = 〈b1, b2, b3〉 acts by right multiplication on the set of right cosets

{F (v,b)13 gi}i=1,...,6. If we choose g1 = 1, g2 = b2b1b2, g3 = (b2b1)
2, g4 = b2b1,

g5 = b2, g6 = b2b1b3 and make the identification F (v,b)13 gi ↔ i for i = 1, . . . , 6, then
we exactly get back our homomorphism ρv:

ρv(b1) = (2, 3)(4, 5),

ρv(b2) = (1, 5, 4, 2, 3),

ρv(b3) = (2, 3, 5, 4, 6),

generating Ph = A6. In the same way, we compute the action of F (h,a)3 = 〈a1, a2, a3〉
by right multiplication on right cosets

F (h,a)3 = F (h,a)13 t F (h,a)13 a2
2a1 t F (h,a)13 a2

2 t F (h,a)13 a3 t F (h,a)13 a3a1 t F (h,a)13 a2

and recover ρh : 〈a1, a2, a3〉� Pv < S2n = S6:

ρh(a1) = (2, 3)(4, 5),

ρh(a2) = (1, 6, 3, 2)(4, 5),

ρh(a3) = (1, 4, 5, 6)(2, 3),

generating Pv = A6.

Vertical decompositions of 00

The cell complex X0 of Example 2.2 corresponding to the subgroup 00 < 0 is given
by the 4 · 9 = 36 geometric squares illustrated on the next two pages.



A.2. AMALGAM DECOMPOSITIONS OF EXAMPLE 2.2 225

α

γ

β

δ a1,δ

a1,α

b3,α b2,β

a1,α

b3,βb2,α

b2,α

b2,δ

b2,α

b1,α

b3,δ

b1,β

b3,γ

b3,β

b2,β

b2,γ

a3,δ

a3,γ

a1,γ

a3,γ

a3,δ

a2,α

a2,α

a1,β

a2,β

a2,β

a2,α

a2,α

a2,β

a2,β

b2,β

b1,γ

b3,β

b1,β

a3,δ

a3,δ

a2,δ

a2,γ

a3,γ

b3,α

b1,α

b3,α

b2,α

b1,δ

a3,γ

a1,β

b2,β

b1,βb1,α

a1,δ

a1,α

a3,δ

a3,δ

a1,γ

a3,γ

a3,γ

a1,α

a2,α

a1,β

a1,β

a2,β

b2,δ

b1,δ

b3,δ

b3,α

b3,β

b1,β

b3,γ

b2,γ

b1,γ

b1,α

Figure A.1: Complex X0 of Example 2.2, part I
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α

γ

β

δ a1,δ

a1,α a2,β

b2,δ

b2,α

b2,δ

b1,δ

b3,α

b1,γ

b3,β

b3,γ

b2,γ

b2,β

a2,δ

a2,δ

a1,γ

a2,γ

a2,γ

a3,α

a3,β

a1,β

a3,β

a3,α

a3,α

a3,α

a3,β

a3,β

b2,γ

b1,β

b3,γ

b1,γ

a2,δ

a2,δ

a1,γ

a1,δ

a2,γ

b3,δ

b1,δ

b3,δ

b2,δ

b1,α

a2,γ

a2,α

b2,γ

a1,δ

a1,α

a1,δ

a2,δ

a1,γ

a1,γ

a2,γ

a3,α

a3,α

a1,β

a3,β

a3,β

b1,α

b3,α

b3,δ

b3,γ

b1,γ

b3,β

b2,β

b1,β

b1,δ

b1,δ b1,γ b3,δ b2,γ b2,δ b3,γ

b2,α

Figure A.2: Complex X0 of Example 2.2, part II
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The amalgam decompositions of 00 are:

F (v,r)5 ∗
F(v,r)25

∼=F(v,q)25
F (v,q)5

∼= 00
∼= F (h,t)5 ∗F(h,t)25

∼=F(h,w)25
F (h,w)5 ,

where
F (v,r)5 = 〈r1, r2, r3, r4, r5〉 , F (v,q)5 = 〈q1, q2, q3, q4, q5〉 .

The inclusion F (v,r)25 ↪→ F (v,r)5 is defined by

F (v,r)25 = 〈r2, r5, r3, r1r5r−1
3 r−1

1 , r1r4r−1
3 r−1

1 , r1r3r−1
1 , r−1

1 r5r1, r−1
1 r3r1,

r−1
1 r4r1, r−1

1 r2r−1
1 , r−1

4 r−1
1 r4, r−1

4 r5r1r4, r−1
4 r−1

1 r2r4, r4r1r−1
4 ,

r4r2r−1
4 , r4r5r−1

4 , r4r−1
3 r4, r4r3r2r1, r4r3r4r−1

3 r−1
4 , r4r3r5r−1

3 r−1
4 ,

r4r3r1r−1
3 r−1

4 , r2
4r1r4, r1r3r2

1 , r1r3r2r−1
3 r−1

4 , r4r2
3r1r4〉

and the other inclusion F (v,q)25 ↪→ F (v,q)5 by

F (v,q)25 = 〈q1, q5, q4, q2q4q−1
2 , q2q3q−1

2 , q2q−1
5 q−1

2 , q−1
2 q−1

3 q2, q−1
2 q−1

3 q4q2,

q−1
2 q−1

3 q5q2, q−1
2 q1q−1

2 , q−1
3 q−1

5 q3, q−1
3 q−1

2 q3, q−1
3 q1q3,

q3q2q−1
1 q−1

3 , q3q−1
5 q−1

1 q−1
3 , q3q1q−1

3 , q3q−1
4 q3, q3q1q4q1q3q2,

q3q1q4q3q−1
4 q−1

1 q−1
3 , q3q1q4q5q−1

4 q−1
1 q−1

3 , q3q1q4q2q−1
4 q−1

1 q−1
3 ,

q3q1q2
3 , q2

2 q3q2, q2q1q−1
4 q−1

1 q−1
3 , q3q1q2

4 q3〉 .
We obtain a finite presentation for the vertical decomposition of 00 with generators

{r1, r2, r3, r4, r5, q1, q2, q3, q4, q5}
and 25 relations

r2 = q1, r5 = q5, r3 = q4, r1r5r−1
3 r−1

1 = q2q4q−1
2 , r1r4r−1

3 r−1
1 = q2q3q−1

2 ,

r1r3r−1
1 = q2q−1

5 q−1
2 , r−1

1 r5r1 = q−1
2 q−1

3 q2, r−1
1 r3r1 = q−1

2 q−1
3 q4q2,

r−1
1 r4r1 = q−1

2 q−1
3 q5q2, r−1

1 r2r−1
1 = q−1

2 q1q−1
2 , r−1

4 r−1
1 r4 = q−1

3 q−1
5 q3,

r−1
4 r5r1r4 = q−1

3 q−1
2 q3, r−1

4 r−1
1 r2r4 = q−1

3 q1q3, r4r1r−1
4 = q3q2q−1

1 q−1
3 ,

r4r2r−1
4 = q3q−1

5 q−1
1 q−1

3 , r4r5r−1
4 = q3q1q−1

3 , r4r−1
3 r4 = q3q−1

4 q3,

r4r3r2r1 = q3q1q4q1q3q2, r4r3r4r−1
3 r−1

4 = q3q1q4q3q−1
4 q−1

1 q−1
3 ,

r4r3r5r−1
3 r−1

4 = q3q1q4q5q−1
4 q−1

1 q−1
3 , r4r3r1r−1

3 r−1
4 = q3q1q4q2q−1

4 q−1
1 q−1

3 ,

r2
4r1r4 = q3q1q2

3 , r1r3r2
1 = q2

2 q3q2, r1r3r2r−1
3 r−1

4 = q2q1q−1
4 q−1

1 q−1
3 ,

r4r2
3r1r4 = q3q1q2

4 q3 .
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Horizontal decompositions of 00

The horizontal decomposition of00 is given by the generators {w1, . . . , w5, t1, . . . , t5}
and 25 relations

w1w5 = t2t4, w1w
2
4 = t2t2

5 , w3 = t3, w1w3w
−1
1 = t2t3t−1

2 , w4w
−1
1 = t5t−1

2 ,

w1w2 = t2t1, w
−1
4 w1w4 = t−1

5 t2t5, w
−1
4 w−1

3 w4 = t−1
5 t1t5, w

−1
4 w5w4 = t−1

5 t3t5,

w−1
4 w−1

2 w4 = t−1
5 t4t5, w1w

−2
2 = t2t−1

1 t2t−1
1 , w2w

−1
1 w2w

−1
1 = t1t5t1t−1

2 ,

w1w
−1
2 w−1

4 w−1
2 = t2t−2

1 , w2w3w2w
−1
1 = t1t3t1t−1

2 , w2w5w2w
−1
1 = t1t4t1t−1

2 ,

w1w
−1
5 w3w

−1
5 = t2t−1

4 t5t−1
4 , w5w

−1
4 w5w

−1
1 = t4t2t4t−1

2 , w2
5w
−1
1 = t2

4 t−1
2 ,

w5w2w5w
−1
1 = t4t1t4t−1

2 , w1w
−1
5 w−1

1 w−1
5 = t2t−1

4 t3t−1
4 ,

w−1
1 w−1

5 w−2
1 = t−1

2 t1t−2
2 , w−1

1 w2w
−2
1 = t−3

2 , w2
1w4w1 = t2

2 t5t2,

w2
1w3w1 = t2

2 t3t2, w
3
1 = t2

2 t4t2 .

Isomorphisms

Explicit isomorphisms between the two amalgams of 00 described above, and 00 as a
subgroup of 0 are given as follows

0

∨
0
(v)
0

∼=←→ 00
∼=←→ 0

(h)
0

r1 ←→ b2b−1
1 ←→ w1t−1

2
r2 = q1 ←→ b3b−1

1 ←→ w4t−1
5

r3 = q4 ←→ b1b3 ←→ t−1
4 w5

r4 ←→ b1b2 ←→ t−1
1 w2w4

r5 = q5 ←→ b2
1 ←→ t−1

5 w4

q2 ←→ a1a−1
3 b2b−1

1 ←→ w−1
2 w1t−1

2
q3 ←→ a1a−1

2 b2
2 ←→ t−1

2 t−1
1 w2w4

r1r4q−1
3 ←→ a2a−1

1 ←→ w1

r1q−1
2 ←→ a3a−1

1 ←→ w2

q−1
1 q−1

2 r1r3r2 ←→ a2
1 ←→ w3 = t3

q−1
3 r4 ←→ a1a2 ←→ w4

q−1
2 r1r3 ←→ a1a3 ←→ w5

r1q−1
2 q−1

3 ←→ a3a2b−1
2 b−1

1 ←→ t1
r1r4q−1

3 q−1
5 ←→ a2a−1

1 b−2
1 ←→ t2

q−1
2 r1 ←→ a1a3b−1

3 b−1
1 ←→ t4

q−1
3 r4r−1

5 ←→ a1a2b−2
1 ←→ t5 ,



A.3. AN EXAMPLE ILLUSTRATING PROPOSITION 2.4 229

using the notation

0
(v)
0 = F (v,r)5 ∗

F(v,r)25
∼=F(v,q)25

F (v,q)5 , 0
(h)
0 = F (h,t)5 ∗F(h,t)25

∼=F(h,w)25
F (h,w)5 .

A.3 An example illustrating Proposition 2.4

In the notation of the proof of [17, Proposition 6.1] we have n = 0, (0)X is the
(A6, A6)–complex X of Example 2.2 and k = ` = 4. Let Ck,` be the (4, 4)–complex
given by

{a4b4a−1
5 b−1

5 , a4b−1
4 a−1

5 b5, a4b5a−1
5 b−1

4 , a4b−1
5 a−1

5 b4}
and C4,4 (a disjoint copy of Ck,`) be given by

{a6b6a−1
7 b−1

7 , a6b−1
6 a−1

7 b7, a6b7a−1
7 b−1

6 , a6b−1
7 a−1

7 b6} .

We choose (0)a := a1, (0)b := b1, â1 := a4, â2 := a5, b̂1 := b4, b̂2 := b5, ã1 := a6,
ã2 := a7, b̃1 := b6 and b̃2 := b7. The surgery operations which are described in the
proof of [17, Proposition 6.1] lead to the irreducible (A14, A14)–complex given by the
following set R7·7 (the relators of the embedded Example 2.2 are underlined)





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a2b−1
2 , a1b4a−1

7 b−1
4 , a1b5a−1

1 b−1
5 ,

a1b6a−1
5 b−1

6 , a1b7a−1
1 b−1

7 , a1b−1
6 a−1

5 b6, a1b−1
4 a−1

7 b4, a1b−1
3 a−1

3 b2,

a2b1a−1
3 b−1

2 , a2b2a−1
3 b−1

3 , a2b3a−1
3 b1, a2b4a−1

2 b−1
4 , a2b5a−1

2 b−1
5 ,

a2b6a−1
2 b−1

6 , a2b7a−1
2 b−1

7 , a2b−1
3 a3b2, a2b−1

1 a−1
3 b−1

1 , a3b4a−1
3 b−1

4 ,

a3b5a−1
3 b−1

5 , a3b6a−1
3 b−1

6 , a3b7a−1
3 b−1

7 , a4b1a−1
4 b−1

7 , a4b2a−1
4 b−1

2 ,

a4b3a−1
4 b−1

3 , a4b4a−1
5 b−1

5 , a4b5a−1
5 b−1

4 , a4b6a−1
4 b−1

6 , a4b7a−1
4 b−1

1 ,

a4b−1
5 a−1

5 b4, a4b−1
4 a−1

5 b5, a5b1a−1
5 b−1

1 , a5b2a−1
5 b−1

2 , a5b3a−1
5 b−1

3 ,

a5b7a−1
5 b−1

7 , a6b1a−1
6 b−1

5 , a6b2a−1
6 b−1

2 , a6b3a−1
6 b−1

3 , a6b4a−1
6 b−1

4 ,

a6b5a−1
6 b−1

1 , a6b6a−1
7 b−1

7 , a6b7a−1
7 b−1

6 , a6b−1
7 a−1

7 b6, a6b−1
6 a−1

7 b7,

a7b1a−1
7 b−1

1 , a7b2a−1
7 b−1

2 , a7b3a−1
7 b−1

3 , a7b5a−1
7 b−1

5
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and local groups determined by

ρv(b1) = ρh(a1) = (2, 3)(12, 13),

ρv(b2) = (1, 13, 12, 2, 3),

ρv(b3) = (2, 3, 13, 12, 14),

ρv(b4) = ρh(a4) = (1, 7)(4, 5)(8, 14)(10, 11),

ρv(b5) = ρh(a5) = (4, 5)(10, 11),

ρv(b6) = ρh(a6) = (1, 5)(6, 7)(8, 9)(10, 14),

ρv(b7) = ρh(a7) = (6, 7)(8, 9),

ρh(a2) = (1, 14, 3, 2)(12, 13),

ρh(a3) = (1, 12, 13, 14)(2, 3).

A.4 A virtually simple (A8, A14)–group

Example A.26.

R4·7 :=





a1b1a−1
1 b−1

1 , a1b2a−1
2 b−1

3 , a1b3a−1
1 b−1

4 , a1b4a−1
1 b−1

5 ,

a1b5a−1
1 b−1

6 , a1b6a−1
1 b−1

2 , a1b7a−1
2 b−1

7 , a1b−1
7 a3b7,

a1b−1
2 a2b3, a2b1a−1

2 b−1
5 , a2b2a2b−1

3 , a2b4a−1
2 b4,

a2b5a−1
2 b−1

1 , a2b6a−1
2 b6, a2b7a−1

4 b−1
7 , a3b1a4b−1

3 ,

a3b2a4b−1
1 , a3b3a4b2, a3b4a−1

3 b5, a3b5a4b4,

a3b6a−1
3 b−1

6 , a3b−1
7 a4b3, a3b−1

5 a−1
4 b−1

4 , a3b−1
3 a4b7,

a3b−1
2 a4b−1

2 , a3b−1
1 a4b1, a4b6a−1

4 b−1
6 , a4b−1

5 a4b−1
4





.

ρv(b1) = (3, 5)(4, 6),

ρv(b2) = (2, 8, 7)(3, 5)(4, 6),

ρv(b3) = (1, 2, 7)(3, 5)(4, 6),

ρv(b4) = (3, 4, 5),

ρv(b5) = (4, 5, 6),

ρv(b6) = (),
ρv(b7) = (1, 2, 4, 6)(3, 8, 7, 5),



A.5. SUPPLEMENT TO EXAMPLE 2.58 231

ρh(a1) = (2, 6, 5, 4, 3)(9, 10, 11, 12, 13),

ρh(a2) = (1, 5)(2, 3)(4, 11)(6, 9)(10, 14)(12, 13),

ρh(a3) = (1, 2, 13, 3)(4, 10)(5, 11)(8, 12),

ρh(a4) = (2, 13, 14, 12)(3, 7)(4, 10)(5, 11).

A.5 Supplement to Example 2.58

Let 0 be the (6, 10)–group defined in Example 2.58. We first give a finite presentation
of the horizontal decomposition 00

∼= F5 ∗F41 F5 in Example 2.58 with generators

{s1, s2, s3, s4, s5, u1, u2, u3, u4, u5}
and 41 relations

s−1
1 s3s−1

4 s3 = u−1
4 u1u4u3

s−1
3 s2

4 s−1
3 s4s−1

1 = u−1
3 u1u3u1u3u1

s−1
3 s2

4s3
3s−2

4 s3 = u−1
3 u1u3u−1

4 u3u1u4u−1
1 u−1

3 u−1
1 u3

s3s1s3s−2
4 s3 = u−1

4 u−1
1 u2u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4s−2
3 s1s3 = u−1

3 u1u3u1u−1
4 u−1

1 u2u3

s3s2s3s−2
4 s3 = u−1

4 u−1
1 u−1

5 u−1
1 u−1

3 u−1
1 u3

s−1
3 s2s2

3s−2
4 s3 = u−1

3 u−1
1 u2u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s4s2s4s2

3s−2
4 s3 = u−1

3 u−1
5 u1u4u−1

1 u−1
3 u−1

1 u3

s−1
1 s2s3s−1

4 s3 = u−1
4 u2u4u3

s−1
3 s2

4 s−2
3 s−1

4 s−1
3 s−1

4 s3 = u−1
3 u1u3u1u−1

4 u−2
1 u−1

4 u−1
1 u3

s−1
1 s−1

3 s4s2
3s−2

4 s3 = u−2
4 u1u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4s−1
3 s4s−1

3 s−1
1 = u−1

3 u1u3u1u3u−1
4

s−1
4 s3

3s−2
4 s3 = u−1

5 u3u1u4u−1
1 u−1

3 u−1
1 u3

s−1
3 s2

4 s−1
3 s−1

4 s2
3 = u−1

3 u1u3u1u−1
5 u4u1u3

s−1
5 s3

3s−2
4 s3 = u2u3u1u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s−1

5 s2
3s−2

4 s3 = u−1
3 u−1

1 u−1
5 u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s4s−1

5 s4s2
3s−2

4 s3 = u−1
3 u2u1u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4 s−2
3 s−1

4 s−1
5 s−1

4 s3 = u−1
3 u1u3u1u−1

4 u−2
1 u−1

5 u−1
1 u3

s3s−1
4 s−1

1 = u−1
4 u−1

1 u−1
3
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s−1
1 s−1

4 s3s−1
4 s3 = u−1

4 u−1
3 u4u3

s−1
3 s2

4s−2
3 s−1

4 s−1
4 = u−1

3 u1u3u1u−1
4 u−2

1 u−1
3 u4

s−1
3 s4s1s2

3 = u−1
3 u−1

3 u4u1u3

s−1
3 s−1

4 s2
3s−2

4 s3 = u−1
3 u−1

1 u−1
3 u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4s−1
3 s1s4s2

3s−2
4 s3 = u−1

3 u1u3u1u−1
3 u1u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4 s−2
3 s−1

5 s3 = u−1
3 u1u3u1u−1

4 u−1
1 u−1

4 u3

s3s−1
5 s3s−2

4 s3 = u−1
4 u−1

1 u−1
4 u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4s−2
3 s2s3 = u−1

3 u1u3u1u−1
4 u−1

1 u−1
5 u3

s−1
3 s2

4s−1
3 s4s−1

5 s−1
1 = u−1

3 u1u3u1u3u−1
5

s−1
3 s2

4 s2 = u−1
3 u1u3u−1

5 u4

s−1
1 s−1

5 s3s−1
4 s3 = u−1

4 u−1
5 u4u3

s3
3 = u−1

4 u−1
1 u4u1u3

s−1
3 s2

4s−1
3 s4s1s3

3s−2
4 s3 = u−1

3 u1u3u1u2
3u1u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4s−2
3 s−1

4 s1s−1
4 s3 = u−1

3 u1u3u1u−1
4 u−2

1 u−1
1 u3

s−1
3 s2

4 s1s3s−1
4 s3 = u−1

3 u1u3u4u3

s−1
3 s1s2

3s−2
4 s3 = u−1

3 u−1
1 u4u−1

1 u−1
3 u−1

1 u3

s−1
3 s2

4s−1
3 s2s2

3 = u−1
3 u1u3u2

1u4u1u3

s2s3
3s−2

4 s3 = u1u3u1u4u−1
1 u−1

3 u−1
1 u3

s−1
3 s2

4 s−1
3 s−1

5 s2
3 = u−1

3 u1u3u1u2u4u1u3

s−1
3 s2

4s−1
3 s4s2s−1

1 = u−1
3 u1u3u1u3u2

s−1
3 s2

4s−1
5 = u−1

3 u1u3u2u4

s−1
3 s2

4s−2
3 s−1

4 s2s−1
4 s3 = u−1

3 u1u3u1u−1
4 u−2

1 u2u−1
1 u3 .

In the following table, we have computed
∣∣ρ(k)v (w)

∣∣, if |w| = 2 and k ≤ 5. Observe
that if b, b̃ ∈ {b1, . . . , b5}±1, then

|ρ(k)v (bb̃)| = |ρ(k)v (b̃b)| = |ρ(k)v (bb̃)−1| = |ρ(k)v (b̃b)−1| .

If
∣∣ρ(k)v (w)

∣∣ = ∣∣ρ(k+1)
v (w)

∣∣ for some k and w in the table, then we have printed

bold the number
∣∣ρ(k+1)
v (w)

∣∣.
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∣∣ρ(k)v (w)
∣∣ k = 1 2 3 4 5

w = b2
1 5 5 50 300 1500

b1b2 3 15 75 150 2250
b1b3 5 10 150 900 9000
b1b4 3 15 30 450 4500
b1b5 5 30 300 900 5400
b1b−1

5 5 15 450 4500 4500
b1b−1

4 5 15 150 900 1800
b1b−1

3 5 25 50 500 3000
b1b−1

2 3 9 54 54 1620
b2

2 5 5 50 300 1500
b2b3 5 25 50 500 3000
b2b4 5 15 150 900 1800
b2b5 5 30 300 900 5400
b2b−1

5 5 15 450 4500 4500
b2b−1

4 3 15 30 450 4500
b2b−1

3 5 10 150 900 9000
b2

3 1 5 25 50 500
b3b4 2 6 90 180 2700
b3b5 1 30 30 450 4500
b3b−1

5 1 30 30 450 4500
b3b−1

4 2 20 60 600 1800
b2

4 2 4 20 100 500
b4b5 2 10 20 600 6000
b4b−1

5 2 10 20 600 6000
b2

5 1 2 10 20 600

Table A.1: Orders of some ρ(k)v (w) in Example 2.58

A.6 Some 4-vertex examples

We give now several examples in a certain class of 4-vertex square complexes. In all
examples, the complex will be denoted by Y .

The 1-skeleton of Y is illustrated in Figure A.3, and a typical geometric square
of Y is illustrated in Figure A.4, i.e. we always have four vertices α, β, γ , δ, horizontal
edges a1, a2, a3 (oriented from α to β), c1, c2, c3 (oriented from δ to γ ), and vertical
edges b1, . . . , b6 (oriented from β to γ ), d1, . . . , d6 (oriented from α to δ).
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d6

β

γδ
c3

a3

α
a1

d1 b1 b6

c1

Figure A.3: The 1-skeleton of Y

γ

β

b j

δ ck

ai

dl

α

Figure A.4: A typical geometric square of Y

Each of the 18 geometric squares is of the form ai b j = dlck (see Figure A.4), and
the universal covering space Ỹ is T3 × T6. By construction of the 1-skeleton and the
geometric squares of Y , we have for each k ∈ N:

P(k)h (α) ∼= P(k)h (δ) , P(k)h (β) ∼= P(k)h (γ ) , P(k)v (α) ∼= P(k)v (β) , P(k)v (γ ) ∼= P(k)v (δ) .

Example A.27. ((1, A6), reducible)
Let Y be given by its geometric squares

a1b1 = d1c1, a1b2 = d2c1, a1b3 = d3c1,

a1b4 = d4c1, a1b5 = d5c1, a1b6 = d6c1,

a2b1 = d1c2, a2b2 = d2c2, a2b3 = d3c2,

a2b4 = d5c2, a2b5 = d6c2, a2b6 = d4c2,

a3b1 = d2c3, a3b2 = d3c3, a3b3 = d4c3,

a3b4 = d1c3, a3b5 = d6c3, a3b6 = d5c3.

Then

Ph(α) = 1, Ph(β) = 1, Pv(α) = A6, Pv(γ ) = A6,

P(2)h (α) = 1, P(2)h (β) = 1, P(2)v (α) ∼= A6, P(2)v (γ ) ∼= A6.
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Example A.28. ((Z2, A6), irreducible)
Let Y be given by its geometric squares

a1b1 = d1c1, a1b2 = d2c1, a1b3 = d3c1,

a1b4 = d4c1, a1b5 = d5c1, a1b6 = d6c1,

a2b1 = d1c2, a2b2 = d2c2, a2b3 = d3c2,

a2b4 = d5c2, a2b5 = d6c2, a2b6 = d4c3,

a3b1 = d2c3, a3b2 = d3c3, a3b3 = d5c3,

a3b4 = d6c3, a3b5 = d1c3, a3b6 = d4c2.

Then

Ph(α) ∼= Z2, Ph(β) ∼= Z2, Pv(α) = A6, Pv(γ ) = A6,

|P(2)h (α)| = 4, |P(2)h (β)| = 4, |P(2)v (α)| = 360 · 606, |P(2)v (γ )| = 360 · 606.

Example A.29. (Ph(α) 6= Ph(β), |P(2)h (α)| = |Ph(α)|, irreducible)
Let Y be given by its geometric squares

a1b1 = d1c1, a1b2 = d2c1, a1b3 = d3c1,

a1b4 = d4c1, a1b5 = d5c2, a1b6 = d6c3,

a2b1 = d1c2, a2b2 = d3c2, a2b3 = d4c2,

a2b4 = d6c2, a2b5 = d2c3, a2b6 = d5c1,

a3b1 = d3c3, a3b2 = d1c3, a3b3 = d5c3,

a3b4 = d4c3, a3b5 = d6c1, a3b6 = d2c2.

Then

|Ph(α)| = 6, |Ph(β)| = 3, Pv(α) = A6, Pv(γ ) = A6,

|P(2)h (α)| = 6, |P(2)h (β)| = 24, |P (2)v (α)| = 360 · 606, |P(2)v (γ )| = 360 · 606.

Example A.30. (Ph(α) 6= Ph(β), Pv(α) 6= Pv(γ ))
Let Y be given by its geometric squares

a1b1 = d1c1, a1b2 = d2c1, a1b3 = d3c1,

a1b4 = d4c2, a1b5 = d5c2, a1b6 = d6c3,

a2b1 = d1c2, a2b2 = d3c2, a2b3 = d4c3,

a2b4 = d5c3, a2b5 = d6c1, a2b6 = d2c2,

a3b1 = d2c3, a3b2 = d3c3, a3b3 = d6c2,

a3b4 = d4c1, a3b5 = d1c3, a3b6 = d5c1.

Then |Ph(α)| = 3, |Ph(β)| = 6, |Pv(α)| = 360, |Pv(γ )| = 120.
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A.7 Example 07,23

Example A.31.

R4·12 :=





a1b1a−1
3 b−1

4 , a1b2a−1
4 b5, a1b3a2b8, a1b4a2b7,

a1b5a−1
3 b−1

7 , a1b6a−1
2 b−1

5 , a1b7a−1
4 b−1

10 , a1b8a−1
1 b12,

a1b9a−1
4 b4, a1b10a−1

3 b−1
9 , a1b11a3b2, a1b12a3b3,

a1b−1
12 a−1

4 b−1
2 , a1b−1

11 a−1
2 b9, a1b−1

10 a4b−1
11 , a1b−1

9 a−1
3 b10,

a1b−1
7 a4b−1

6 , a1b−1
6 a−1

4 b11, a1b−1
5 a−1

2 b6, a1b−1
4 a−1

4 b−1
8 ,

a1b−1
3 a4b−1

1 , a1b−1
2 a−1

2 b1, a1b−1
1 a4b−1

3 , a2b1a4b9,

a2b3a−1
3 b11, a2b4a4b10, a2b6a−1

3 b1, a2b9a−1
3 b−1

5 ,

a2b10a−1
2 b7, a2b12a−1

4 b−1
11 , a2b−1

12 a−1
3 b8, a2b−1

11 a−1
4 b12,

a2b−1
9 a3b−1

12 , a2b−1
8 a−1

4 b6, a2b−1
7 a−1

3 b−1
3 , a2b−1

5 a3b−1
8 ,

a2b−1
4 a3b−1

2 , a2b−1
3 a−1

4 b2, a2b−1
2 a3b−1

4 , a2b−1
1 a−1

3 b−1
10 ,

a3b4a−1
4 b−1

3 , a3b5a4b1, a3b6a4b2, a3b8a−1
4 b−1

7 ,

a3b10a−1
4 b−1

12 , a3b11a−1
3 b6, a3b−1

7 a−1
4 b8, a4b5a−1

4 b9





.
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Generators of 07,23:

a1 = ψ(1+ 2i + j + k), a−1
1 = ψ(1− 2i − j − k),

a2 = ψ(1+ 2i + j − k), a−1
2 = ψ(1− 2i − j + k),

a3 = ψ(1+ 2i − j + k), a−1
3 = ψ(1− 2i + j − k),

a4 = ψ(1+ 2i − j − k), a−1
4 = ψ(1− 2i + j + k),

b1 = ψ(1+ 2i + 3 j + 3k), b−1
1 = ψ(1− 2i − 3 j − 3k),

b2 = ψ(1+ 2i + 3 j − 3k), b−1
2 = ψ(1− 2i − 3 j + 3k),

b3 = ψ(1+ 2i − 3 j − 3k), b−1
3 = ψ(1− 2i + 3 j + 3k),

b4 = ψ(1+ 2i − 3 j + 3k), b−1
4 = ψ(1− 2i + 3 j − 3k),

b5 = ψ(3+ 2i + j + 3k), b−1
5 = ψ(3− 2i − j − 3k),

b6 = ψ(3+ 2i + j − 3k), b−1
6 = ψ(3− 2i − j + 3k),

b7 = ψ(3+ 2i − j + 3k), b−1
7 = ψ(3− 2i + j − 3k),

b8 = ψ(3+ 2i − j − 3k), b−1
8 = ψ(3− 2i + j + 3k),

b9 = ψ(3+ 2i + 3 j + k), b−1
9 = ψ(3− 2i − 3 j − k),

b10 = ψ(3+ 2i − 3 j + k), b−1
10 = ψ(3− 2i + 3 j − k),

b11 = ψ(3+ 2i + 3 j − k), b−1
11 = ψ(3− 2i − 3 j + k),

b12 = ψ(3+ 2i − 3 j − k), b−1
12 = ψ(3− 2i + 3 j + k).
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A.8 Example 07,31

Example A.32.

R4·16 :=





a1b1a−1
4 b−1

8 , a1b2a−1
3 b−1

16 , a1b3a1b−1
14 , a1b4a4b1,

a1b5a4b8, a1b6a1b−1
15 , a1b7a−1

4 b−1
10 , a1b8a−1

3 b−1
6 ,

a1b9a−1
1 b−1

9 , a1b10a−1
4 b−1

3 , a1b11a4b14, a1b12a−1
2 b−1

11 ,

a1b13a1b−1
12 , a1b14a−1

3 b−1
4 , a1b15a4b10, a1b16a−1

4 b−1
13 ,

a1b−1
16 a−1

2 b7, a1b−1
13 a−1

4 b16, a1b−1
11 a−1

4 b2, a1b−1
10 a−1

3 b12,

a1b−1
8 a−1

2 b15, a1b−1
7 a3b−1

5 , a1b−1
6 a−1

4 b11, a1b−1
5 a3b−1

7 ,

a1b−1
4 a−1

4 b5, a1b−1
3 a−1

2 b4, a1b−1
2 a2b−1

1 , a1b−1
1 a2b−1

2 ,

a2b1a−1
3 b−1

12 , a2b2a3b3, a2b4a2b−1
13 , a2b5a2b−1

16 ,

a2b6a−1
3 b−1

3 , a2b7a3b6, a2b9a3b16, a2b10a−1
2 b−1

10 ,

a2b11a−1
4 b−1

9 , a2b12a−1
3 b−1

5 , a2b13a3b12, a2b14a2b−1
11 ,

a2b15a−1
3 b−1

14 , a2b−1
15 a−1

4 b1, a2b−1
14 a−1

3 b15, a2b−1
9 a−1

3 b8,

a2b−1
8 a4b−1

6 , a2b−1
7 a−1

3 b2, a2b−1
6 a4b−1

8 , a2b−1
5 a−1

4 b7,

a2b−1
4 a−1

3 b9, a2b−1
3 a−1

4 b13, a3b1a3b−1
16 , a3b2a−1

4 b−1
1 ,

a3b5a−1
4 b−1

14 , a3b8a3b−1
13 , a3b11a−1

3 b−1
11 , a3b13a−1

4 b−1
6 ,

a3b15a3b−1
10 , a3b−1

9 a−1
4 b10, a3b−1

4 a4b−1
3 , a3b−1

3 a4b−1
4 ,

a4b2a4b−1
15 , a4b7a4b−1

14 , a4b12a−1
4 b−1

12 , a4b16a4b−1
9





.
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Generators of 07,31:

a1 = ψ(1+ 2i + j + k), a−1
1 = ψ(1− 2i − j − k),

a2 = ψ(1+ 2i + j − k), a−1
2 = ψ(1− 2i − j + k),

a3 = ψ(1+ 2i − j + k), a−1
3 = ψ(1− 2i + j − k),

a4 = ψ(1+ 2i − j − k), a−1
4 = ψ(1− 2i + j + k),

b1 = ψ(1+ 2i + j + 5k), b−1
1 = ψ(1− 2i − j − 5k),

b2 = ψ(1+ 2i + j − 5k), b−1
2 = ψ(1− 2i − j + 5k),

b3 = ψ(1+ 2i − j + 5k), b−1
3 = ψ(1− 2i + j − 5k),

b4 = ψ(1+ 2i − j − 5k), b−1
4 = ψ(1− 2i + j + 5k),

b5 = ψ(1+ 2i + 5 j + k), b−1
5 = ψ(1− 2i − 5 j − k),

b6 = ψ(1+ 2i + 5 j − k), b−1
6 = ψ(1− 2i − 5 j + k),

b7 = ψ(1+ 2i − 5 j + k), b−1
7 = ψ(1− 2i + 5 j − k),

b8 = ψ(1+ 2i − 5 j − k), b−1
8 = ψ(1− 2i + 5 j + k),

b9 = ψ(5+ 2i + j + k), b−1
9 = ψ(5− 2i − j − k),

b10 = ψ(5+ 2i + j − k), b−1
10 = ψ(5− 2i − j + k),

b11 = ψ(5+ 2i − j + k), b−1
11 = ψ(5− 2i + j − k),

b12 = ψ(5+ 2i − j − k), b−1
12 = ψ(5− 2i + j + k),

b13 = ψ(3+ 2i + 3 j + 3k), b−1
13 = ψ(3− 2i − 3 j − 3k),

b14 = ψ(3+ 2i + 3 j − 3k), b−1
14 = ψ(3− 2i − 3 j + 3k),

b15 = ψ(3+ 2i − 3 j + 3k), b−1
15 = ψ(3− 2i + 3 j − 3k),

b16 = ψ(3+ 2i − 3 j − 3k), b−1
16 = ψ(3− 2i + 3 j + 3k).
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A.9 Example 07,23,e0

Example A.33.

R4·12 :=





a1b1a3b9, a1b2a−1
1 b−1

12 , a1b3a−1
3 b−1

2 , a1b4a3b10,

a1b5a2b1, a1b6a2b2, a1b7a−1
2 b−1

8 , a1b8a−1
1 b−1

4 ,

a1b9a4b5, a1b10a−1
1 b−1

6 , a1b11a−1
4 b−1

10 , a1b12a4b8,

a1b−1
12 a−1

3 b11, a1b−1
11 a−1

2 b−1
9 , a1b−1

9 a−1
2 b−1

11 , a1b−1
7 a−1

3 b−1
5 ,

a1b−1
6 a−1

4 b7, a1b−1
5 a−1

3 b−1
7 , a1b−1

4 a−1
2 b3, a1b−1

3 a−1
4 b−1

1 ,

a1b−1
1 a−1

4 b−1
3 , a2b3a−1

2 b−1
7 , a2b5a−1

2 b12, a2b6a−1
3 b−1

11 ,

a2b7a−1
3 b−1

10 , a2b8a3b−1
5 , a2b10a−1

2 b1, a2b12a3b−1
9 ,

a2b−1
12 a−1

4 b3, a2b−1
11 a−1

4 b2, a2b−1
9 a4b10, a2b−1

8 a4b−1
6 ,

a2b−1
6 a4b−1

8 , a2b−1
4 a3b−1

2 , a2b−1
2 a3b−1

4 , a2b−1
1 a4b4,

a3b1a−1
3 b6, a3b2a4b−1

1 , a3b3a−1
4 b−1

8 , a3b4a−1
4 b−1

7 ,

a3b6a4b−1
5 , a3b8a−1

3 b9, a3b11a−1
3 b−1

3 , a3b−1
12 a4b−1

10 ,

a3b−1
10 a4b−1

12 , a4b2a−1
4 b5, a4b7a−1

4 b−1
11 , a4b9a−1

4 b4





.
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Generators of 07,23,e0 :

a1 = ψ(2+ i + j + k), a−1
1 = ψ(2− i − j − k),

a2 = ψ(2+ i + j − k), a−1
2 = ψ(2− i − j + k),

a3 = ψ(2+ i − j + k), a−1
3 = ψ(2− i + j − k),

a4 = ψ(2− i + j + k), a−1
4 = ψ(2+ i − j − k),

b1 = ψ(2+ i + 3 j + 3k), b−1
1 = ψ(2− i − 3 j − 3k),

b2 = ψ(2+ i + 3 j − 3k), b−1
2 = ψ(2− i − 3 j + 3k),

b3 = ψ(2+ i − 3 j − 3k), b−1
3 = ψ(2− i + 3 j + 3k),

b4 = ψ(2+ i − 3 j + 3k), b−1
4 = ψ(2− i + 3 j − 3k),

b5 = ψ(2+ 3i + j + 3k), b−1
5 = ψ(2− 3i − j − 3k),

b6 = ψ(2+ 3i + j − 3k), b−1
6 = ψ(2− 3i − j + 3k),

b7 = ψ(2− 3i + j − 3k), b−1
7 = ψ(2+ 3i − j + 3k),

b8 = ψ(2− 3i + j + 3k), b−1
8 = ψ(2+ 3i − j − 3k),

b9 = ψ(2+ 3i + 3 j + k), b−1
9 = ψ(2− 3i − 3 j − k),

b10 = ψ(2+ 3i − 3 j + k), b−1
10 = ψ(2− 3i + 3 j − k),

b11 = ψ(2− 3i − 3 j + k), b−1
11 = ψ(2+ 3i + 3 j − k),

b12 = ψ(2− 3i + 3 j + k), b−1
12 = ψ(2+ 3i − 3 j − k).
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A.10 Example 013,17

R7·9 :=





a1b1a3b3, a1b2a2b1, a1b3a4b2,

a1b4a6b8, a1b5a7b−1
1 , a1b6a5b4,

a1b7a−1
2 b−1

6 , a1b8a7b6, a1b9a5b−1
2 ,

a1b−1
9 a−1

3 b−1
8 , a1b−1

8 a−1
2 b9, a1b−1

7 a6b−1
3 ,

a1b−1
6 a−1

4 b−1
7 , a1b−1

5 a−1
4 b−1

4 , a1b−1
4 a−1

3 b5,

a1b−1
3 a5b−1

9 , a1b−1
2 a7b−1

5 , a1b−1
1 a6b7,

a2b2a−1
3 b−1

3 , a2b3a6b−1
6 , a2b4a5b7,

a2b5a4b−1
4 , a2b6a6b−1

1 , a2b7a−1
7 b9,

a2b9a6b4, a2b−1
9 a4b−1

8 , a2b−1
8 a5b3,

a2b−1
6 a3b−1

7 , a2b−1
5 a−1

7 b−1
2 , a2b−1

4 a3b−1
5 ,

a2b−1
3 a−1

4 b1, a2b−1
2 a5b8, a2b−1

1 a−1
7 b5,

a3b1a−1
4 b−1

2 , a3b2a5b−1
8 , a3b5a5b6,

a3b6a7b−1
9 , a3b7a−1

6 b−1
1 , a3b8a5b−1

3 ,

a3b−1
9 a−1

6 b5, a3b−1
8 a4b9, a3b−1

6 a4b7,

a3b−1
4 a7b2, a3b−1

3 a−1
6 b−1

7 , a3b−1
1 a7b4,

a4b1a7b−1
4 , a4b4a7b−1

2 , a4b8a6b−1
5 ,

a4b−1
9 a−1

5 b−1
3 , a4b−1

7 a7b8, a4b−1
6 a6b1,

a4b−1
5 a−1

5 b−1
7 , a4b−1

3 a6b6, a4b−1
2 a−1

5 b9,

a5b1a−1
5 b−1

1 , a5b−1
7 a5b−1

6 , a5b−1
5 a5b−1

4 ,

a6b2a−1
6 b−1

2 , a6b5a6b−1
4 , a6b−1

9 a6b−1
8 ,

a7b3a−1
7 b−1

3 , a7b7a7b−1
6 , a7b9a7b−1

8





.
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A.11 Amalgam decompositions of Example 3.42

We first give the vertical decomposition of the group 0 of Example 3.42:

0 ∼= F (b)3 ∗F(b)17
∼=F(s)17

(Z∗12
2 ∗ F (s)3 ) ,

where
F (b)3 = 〈b1, b2, b3〉 ,

Z∗12
2 ∗ F (s)3 = 〈s1, . . . , s12, s13, s14, s15 | s2

1 = . . . = s2
12 = 1〉 .

The subgroup F (b)17 < F (b)3 of index 8 is given by

F (b)17 = 〈b−1
1 b2, b−1

1 b3, b2b1b−1
3 , b2

1b2b1, b1b2
2b1, b1b−1

3 b2b1,

b−1
1 b−1

2 b1b2b2
1, b−1

1 b−1
2 b−1

3 b2
1, b3b3

1, b2
3b2

1, b3b−1
2 b2

1,

b3b−1
1 b2

2b2
1, b3b−1

1 b3b2b2
1, b3b−2

1 b2b2
1, b−1

1 b−1
3 b2b2

1,

b1b−1
2 b−1

3 , b1b3b1b−1
3 〉 ,

the index 2 subgroup F (s)17 < Z∗12
2 ∗ F (s)3 by

F (s)17 = 〈s1s2, s1s3, s13, s4s1, s5s1, s6s1, s1s14s1,

s1s15s1, s7s1, s8s1, s9s1, s10s1, s11s1,

s12s1, s1s13s1, s15, s14〉 .
The identification in 0 is

F (b)17

∼=←→ F (s)17

b−1
1 b2 ←→ s1s2

b−1
1 b3 ←→ s1s3

b2b1b−1
3 ←→ s13

b2
1b2b1 ←→ s4s1

b1b2
2b1 ←→ s5s1

b1b−1
3 b2b1 ←→ s6s1

b−1
1 b−1

2 b1b2b2
1 ←→ s1s14s1

b−1
1 b−1

2 b−1
3 b2

1 ←→ s1s15s1

b3b3
1 ←→ s7s1

b2
3b2

1 ←→ s8s1
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b3b−1
2 b2

1 ←→ s9s1

b3b−1
1 b2

2b2
1 ←→ s10s1

b3b−1
1 b3b2b2

1 ←→ s11s1

b3b−2
1 b2b2

1 ←→ s12s1

b−1
1 b−1

3 b2b2
1 ←→ s1s13s1

b1b−1
2 b−1

3 ←→ s15

b1b3b1b−1
3 ←→ s14 .

Recall the presentation of 0 given in Section 3.4:

0 = 〈a1, a2, a3, a4, b1, b2, b3 | R 〉 ,

where

R =





a1b1a1b1, a1b2a1b2, a1b3a1b3,

a1b−1
3 a4b−1

2 , a1b−1
2 a2b−1

1 , a1b−1
1 a3b−1

3 ,

a2b1a2b1, a2b2a2b2, a2b3a−1
4 b−1

1 ,

a2b−1
3 a2b−1

3 , a2b−1
2 a−1

3 b3, a3b1a3b1,

a3b3a3b3, a3b−1
2 a3b−1

2 , a3b−1
1 a−1

4 b2,

a4b2a4b2, a4b3a4b3, a4b−1
1 a4b−1

1





.

The isomorphism to the amalgam described above is

F (b)3 ∗F(b)17
∼=F(s)17

(Z∗12
2 ∗ F (s)3 )

∼=←→ 0 = 〈a1, a2, a3, a4, b1, b2, b3 | R 〉

s1 ←→ a1b1

s2 ←→ a1b2

s3 ←→ a1b3

s4 ←→ a1b−1
2 b−2

1

s5 ←→ a1b−2
2 b−1

1

s6 ←→ a1b−1
2 b3b−1

1

s7 ←→ a1b−2
1 b−1

3

s8 ←→ a1b−1
1 b−2

3
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s9 ←→ a1b−1
1 b2b−1

3

s10 ←→ a1b−1
1 b−2

2 b1b−1
3

s11 ←→ a1b−1
1 b−1

2 b−1
3 b1b−1

3

s12 ←→ a1b−1
1 b−1

2 b2
1b−1

3

s13 ←→ b2b1b−1
3

s14 ←→ b1b3b1b−1
3

s15 ←→ b1b−1
2 b−1

3

s1b−1
1 ←→ a1

b−2
1 s4b1 ←→ a2

b−2
3 s8b3 ←→ a3

b−1
2 b1b−1

3 s10b3b−1
1 ←→ a4

b1 ←→ b1

b2 ←→ b2

b3 ←→ b3 .

We describe now the (vertical) amalgam decomposition of the subgroup 00:

00
∼= F (r)5 ∗F(r)33

∼=F(q)33
F (q)5 ,

where

F (r)5 = 〈r1, r2, r3, r4, r5〉 ,

F (q)5 = 〈q1, q2, q3, q4, q5〉 ,

F (r)33 = 〈r−1
3 r5, r−1

4 r5, r5r1r5, r4r1r5, r−1
2 r1r5, r1r4r2r5, r1r3r2r5,

r1r2r5, r2r2
5 , r2r3r5, r2r−1

1 r5, r−1
5 r−2

1 r−1
3 , r−1

5 r−1
1 r−1

2 r−1
3 ,

r−1
5 r−1

1 r5r−1
3 , r−1

1 r3r1r5, r−1
1 r2r3r1r5, r−1

1 r−1
4 r3r1r5,

r2r4r5r2r5, r2r4r1r5r2r5, r2r4r−1
3 r5r2r5, r−1

1 r−2
3 r1r5,

r−1
1 r−1

3 r−1
2 r−1

3 r1r5, r−1
1 r−1

3 r−1
1 r−1

3 r1r5, r2r4r2r−1
1 ,

r−1
1 r−1

3 r5r−1
4 r−1

2 , r−1
5 r−1

1 r3r−1
5 r3r1r5, r−1

1 r−1
3 r4r−1

3 ,

r−1
1 r−1

5 r−1
1 , r−1

5 r−1
2 r1r3r1r5, r−1

5 r−1
1 r4r5, r−1

5 r2r5r2r5,

r3r−1
2 , r−1

5 r−1
1 r3r−1

4 r5r2r5〉 ,



246 APPENDIX A. MORE EXAMPLES

F (q)33 = 〈q2, q1, q−1
4 q−1

5 , q−1
4 q−1

1 q−1
5 , q−1

4 q3q−1
5 , q−1

3 q−1
1 q−1

4 ,

q−1
3 q−1

2 q−1
4 , q−1

3 q5q−1
4 , q−1

5 q−1
3 , q−1

5 q−1
2 q−1

3 , q−1
5 q4q−1

3 ,

q5q2q4q−1
5 q4, q5q2q3q−1

5 q4, q5q2q−1
5 q4, q−1

4 q−1
2 q−1

5 q4q−1
5 ,

q−1
4 q−1

2 q−1
3 q4q−1

5 , q−1
4 q−1

2 q1q4q−1
5 , q−1

5 q3q−1
5 q3q−1

4 ,

q−1
5 q3q−1

4 q3q−1
4 , q−1

5 q3q2q3q−1
4 , q−1

4 q−1
2 q5q1q−1

2 q−1
5 ,

q−1
4 q−1

2 q3q1q−1
2 q−1

5 , q−1
4 q−1

2 q4q1q−1
2 q−1

5 , q−1
5 q2

3 ,

q−1
4 q−1

2 q−1
1 q−1

3 q5, q5q2q−1
1 q2q4q−1

5 , q−1
4 q−2

2 q−1
5 q4,

q−1
4 q−1

2 q−1
4 q3, q2

4 q−1
5 , q5q2q5q−1

3 , q3q1q3q−1
4 ,

q−1
4 q5q1q5, q5q2q−1

1 q3q−1
4 〉 ,

F (r)33

∼=←→ F (q)33

r−1
3 r5 ←→ q2

r−1
4 r5 ←→ q1

r5r1r5 ←→ q−1
4 q−1

5

r4r1r5 ←→ q−1
4 q−1

1 q−1
5

r−1
2 r1r5 ←→ q−1

4 q3q−1
5

r1r4r2r5 ←→ q−1
3 q−1

1 q−1
4

r1r3r2r5 ←→ q−1
3 q−1

2 q−1
4

r1r2r5 ←→ q−1
3 q5q−1

4

r2r2
5 ←→ q−1

5 q−1
3

r2r3r5 ←→ q−1
5 q−1

2 q−1
3

r2r−1
1 r5 ←→ q−1

5 q4q−1
3

r−1
5 r−2

1 r−1
3 ←→ q5q2q4q−1

5 q4

r−1
5 r−1

1 r−1
2 r−1

3 ←→ q5q2q3q−1
5 q4

r−1
5 r−1

1 r5r−1
3 ←→ q5q2q−1

5 q4

r−1
1 r3r1r5 ←→ q−1

4 q−1
2 q−1

5 q4q−1
5

r−1
1 r2r3r1r5 ←→ q−1

4 q−1
2 q−1

3 q4q−1
5

r−1
1 r−1

4 r3r1r5 ←→ q−1
4 q−1

2 q1q4q−1
5

r2r4r5r2r5 ←→ q−1
5 q3q−1

5 q3q−1
4

r2r4r1r5r2r5 ←→ q−1
5 q3q−1

4 q3q−1
4
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r2r4r−1
3 r5r2r5 ←→ q−1

5 q3q2q3q−1
4

r−1
1 r−2

3 r1r5 ←→ q−1
4 q−1

2 q5q1q−1
2 q−1

5

r−1
1 r−1

3 r−1
2 r−1

3 r1r5 ←→ q−1
4 q−1

2 q3q1q−1
2 q−1

5

r−1
1 r−1

3 r−1
1 r−1

3 r1r5 ←→ q−1
4 q−1

2 q4q1q−1
2 q−1

5

r2r4r2r−1
1 ←→ q−1

5 q2
3

r−1
1 r−1

3 r5r−1
4 r−1

2 ←→ q−1
4 q−1

2 q−1
1 q−1

3 q5

r−1
5 r−1

1 r3r−1
5 r3r1r5 ←→ q5q2q−1

1 q2q4q−1
5

r−1
1 r−1

3 r4r−1
3 ←→ q−1

4 q−2
2 q−1

5 q4

r−1
1 r−1

5 r−1
1 ←→ q−1

4 q−1
2 q−1

4 q3

r−1
5 r−1

2 r1r3r1r5 ←→ q2
4 q−1

5

r−1
5 r−1

1 r4r5 ←→ q5q2q5q−1
3

r−1
5 r2r5r2r5 ←→ q3q1q3q−1

4

r3r−1
2 ←→ q−1

4 q5q1q5

r−1
5 r−1

1 r3r−1
4 r5r2r5 ←→ q5q2q−1

1 q3q−1
4 .

The isomorphism is

F (r)5 ∗F(r)33
∼=F(q)33

F (q)5

∼=←→ 00 < 0

r1 ←→ b2b−1
1

r2 ←→ b3b−1
1

r3 ←→ b1b3

r4 ←→ b1b2

r5 ←→ b2
1

q1 ←→ b−1
2 b1

q2 ←→ b−1
3 b1

q3 ←→ a1a2b3b−1
2

q4 ←→ a1a−1
2 b−2

1

q5 ←→ a1a−1
3 b−1

1 b−1
3 .
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A.12 Amalgam decompositions of Example 3.46

We describe the amalgam decompositions of the group 03,5.

0(v)
∼=←→ 〈a1, . . . , b3 | R2·3〉

∼=←→ 0(h)

s4b3 ←→ a1 ←→ a1

b1s2b−1
2 ←→ a2 ←→ a2

b1 ←→ b1 ←→ u−1
2 a2a1

b2 ←→ b2 ←→ a2
2u−1

2 a2
2

b3 ←→ b3 ←→ a2u−1
2 a2

s1 ←→ b1b2

s2 ←→ a1b3b2

s3 ←→ a1b−1
1 b2

s4 ←→ a1b−1
3

s5 ←→ a1b1b2
2

a1a−1
2 b−1

1 ←→ u1

a2a1b−1
1 ←→ u2

a−2
1 a2 ←→ u3

a−1
1 a−1

2 a1b−1
1 ←→ u4 ,

where

0(v) = F (v,b)3 ∗F(v,b)9
∼=F(v,s)9

F (v,s)5 ,

0(h) = F (h,a)2 ∗F(h,a)7
∼=F(h,u)7

F (h,u)4 ,

F (v,b)3 = 〈b1, b2, b3〉 ,
F (v,s)5 = 〈s1, s2, s3, s4, s5〉 ,

F (v,b)9 = 〈b−1
3 b1, b2b2

1, b3b2
1, b1b2, b−1

2 b3b1, b−1
1 b2

2, b−2
1 b3b2, b−3

1 b2, b−2
1 b2b1〉 ,

F (v,s)9 = 〈s3s−1
2 , s4s−1

2 , s−1
4 s−1

2 , s1, s5s−1
2 , s2s5, s2

2 , s2s3, s2s1s−1
2 〉 ,

F (h,a)2 = 〈a1, a2〉 ,
F (h,u)4 = 〈u1, u2, u3, u4〉 ,

F (h,a)7 = 〈a2
1a−1

2 , a−1
1 a−2

2 , a2a1a2a−1
1 , a−2

1 a2, a1a−2
2 a1, a1a2

2, a1a−1
2 a1a2〉 ,

F (h,u)7 = 〈u1u3u−1
2 , u4u−1

2 , u2u−1
1 , u3, u2

1, u1u4, u1u2〉 ,
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F (v,b)9

∼=←→ F (v,s)9

b−1
3 b1 ←→ s3s−1

2

b2b2
1 ←→ s4s−1

2

b3b2
1 ←→ s−1

4 s−1
2

b1b2 ←→ s1

b−1
2 b3b1 ←→ s5s−1

2

b−1
1 b2

2 ←→ s2s5

b−2
1 b3b2 ←→ s2

2

b−3
1 b2 ←→ s2s3

b−2
1 b2b1 ←→ s2s1s−1

2 ,

F (h,a)7

∼=←→ F (h,u)7

a2
1a−1

2 ←→ u1u3u−1
2

a−1
1 a−2

2 ←→ u4u−1
2

a2a1a2a−1
1 ←→ u2u−1

1

a−2
1 a2 ←→ u3

a1a−2
2 a1 ←→ u2

1

a1a2
2 ←→ u1u4

a1a−1
2 a1a2 ←→ u1u2

and

R2·3 :=





a1b1a2b2, a1b2a2b−1
1 ,

a1b3a−1
2 b1, a1b−1

3 a1b−1
2 ,

a1b−1
1 a−1

2 b3, a2b3a2b−1
2




.
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Appendix B

GAP-programs

In this appendix, we present and describe the GAP-programs ([29]), which led to the
construction of most groups in this work.

B.1 Theory and ideas

Our strategy to generate and analyze (2m, 2n)–groups 0 with GAP ([29]) can be
resumed as follows:

Step 1: Describe a (2m, 2n)–complex X in a way which is manageable for a
computer. We write X as a pair of integer valued (2m× 2n)–matrices (lists of lists) A
and B.

Step 2: Given “small” m, n, generate all pairs of matrices (A, B) corresponding
to a (2m, 2n)–complex. Given “large” m, n, generate randomly many pairs (A, B)
corresponding to a (2m, 2n)–complex.

Step 3: Starting from a constructed pair (A, B) describing X , provide additional
programs which compute the local groups P (k)h , P(k)v (for k ∈ N small) and a finite
presentation of 0 = π1(X). Then apply the powerful GAP-tools for finite permutation
groups to look for examples with interesting local groups and/or use GAP-commands
like

AbelianInvariants();

and

LowIndexSubgroupsFpGroup();

to get some information on the (normal) subgroup structure of the infinite group 0.
Following these three steps, we have for instance immediately found an irreducible

(A6, A6)–group 0 with [0, 0] = 00 and 00 perfect (see Example 2.2).
We explain now each of the three steps in detail:

251



252 APPENDIX B. GAP-PROGRAMS

Step 1

We want to define for given m, n ∈ N an injective map

ϕm,n : X2m,2n → Mat(2m, 2n, {1, . . . , 2m})×Mat(2m, 2n, {1, . . . , 2n})
X 7→ ϕm,n(X) = (A, B)

where X2m,2n denotes the set of (2m, 2n)–complexes and X ∈ X2m,2n is given as
usual by its mn geometric squares, and where Mat(2m, 2n, {1, . . . , 2m}) denotes the
set of (2m × 2n)–matrices with entries in {1, . . . , 2m}. Recall that each geometric
square [aba′b′] of X can be represented by four squares of the form

aba′b′, a′b′ab, a−1b′−1a′−1b−1, a′−1b−1a−1b′−1 .

To define the map ϕm,n , note that at least one of these four expressions has one of the
five types (I)-(V) illustrated in Figure B.1, for suitable

i, k ∈ {1, . . . ,m} and j, l ∈ {1, . . . , n} .
It is easy to check that each geometric square has a unique type.

b j b j b j b j b j

ai ai ai ai ai

akakakakak

bl bl bl bl bl

ai b j akbl ai b j akb−1
l ai b j a

−1
k bl ai b j a

−1
k b−1

l ai b
−1
j akb−1

l

(I) (II) (III) (IV) (V)

Figure B.1: Possible types of a geometric square

We now define the map ϕm,n for each possible type of geometric squares, using
the following notation for the “inverses”:

ī := 2m + 1− i, k̄ := 2m + 1− k, j̄ := 2n + 1− j, l̄ := 2n + 1− l .

Type (I) (ai b j akbl) Ai j := k̄ Bi j := l̄

Akl := ī Bkl := j̄

Aī l̄ := k Bī l̄ := j

Ak̄ j̄ := i Bk̄ j̄ := l .
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Type (II) (ai b j akb−1
l ) Ai j := k̄ Bi j := l

Akl̄ := ī Bkl̄ := j̄

Aī l := k Bīl := j

Ak̄ j̄ := i Bk̄ j̄ := l̄ .

Type (III) (ai b j a
−1
k bl) Ai j := k Bi j := l̄

Ak j̄ := i Bk j̄ := l

Aī l̄ := k̄ Bī l̄ := j

Ak̄l := ī Bk̄l := j̄ .

Type (IV) (ai b j a
−1
k b−1

l ) Ai j := k Bi j := l

Ak j̄ := i Bk j̄ := l̄

Aī l := k̄ Bīl := j

Ak̄l̄ := ī Bk̄l̄ := j̄ .

Type (V) (ai b
−1
j akb−1

l ) Ai j̄ := k̄ Bi j̄ := l

Akl̄ := ī Bkl̄ := j

Aī l := k Bīl := j̄

Ak̄ j := i Bk̄ j := l̄ .

Thus, each geometric square of X defines exactly four entries in A and in B which
describe the corresponding four geometric edges in the link Lk(X). In case of type (I)
and (V), two choices are possible, since we have the equalities for geometric squares
[ai b j akbl] = [akblai b j ] and [ai b

−1
j akb−1

l ] = [akb−1
l ai b

−1
j ] respectively, but the given

definition of ϕm,n is independent of this choice. This proves that ϕm,n is well-defined.
We illustrate this definition in Table B.1 in the case of Example 2.2 given by its

nine relators

R3·3 :=





a1b1a−1
1 b−1

1 , a1b2a−1
1 b−1

3 , a1b3a2b−1
2 ,

a1b−1
3 a−1

3 b2, a2b1a−1
3 b−1

2 , a2b2a−1
3 b−1

3 ,

a2b3a−1
3 b1, a2b−1

3 a3b2, a2b−1
1 a−1

3 b−1
1




.
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geometric square representative type A-entries B-entries

[a1b1a−1
1 b−1

1 ] a1b1a−1
1 b−1

1 (IV) A11 = 1, A16 = 1 B11 = 1, B16 = 6
A61 = 6, A66 = 6 B61 = 1, B66 = 6

[a1b2a−1
1 b−1

3 ] a1b2a−1
1 b−1

3 (IV) A12 = 1, A15 = 1 B12 = 3, B15 = 4
A63 = 6, A64 = 6 B63 = 2, B64 = 5

[a1b3a2b−1
2 ] a1b3a2b−1

2 (II) A13 = 5, A25 = 6 B13 = 2, B25 = 4
A62 = 2, A54 = 1 B62 = 3, B54 = 5

[a1b−1
3 a−1

3 b2] a3b3a−1
1 b−1

2 (IV) A33 = 1, A14 = 3 B33 = 2, B14 = 5
A42 = 6, A65 = 4 B42 = 3, B65 = 4

[a2b1a−1
3 b−1

2 ] a2b1a−1
3 b−1

2 (IV) A21 = 3, A36 = 2 B21 = 2, B36 = 5
A52 = 4, A45 = 5 B52 = 1, B45 = 6

[a2b2a−1
3 b−1

3 ] a2b2a−1
3 b−1

3 (IV) A22 = 3, A35 = 2 B22 = 3, B35 = 4
A53 = 4, A44 = 5 B53 = 2, B44 = 5

[a2b3a−1
3 b1] a2b3a−1

3 b1 (III) A23 = 3, A34 = 2 B23 = 6, B34 = 1
A56 = 4, A41 = 5 B56 = 3, B41 = 4

[a2b−1
3 a3b2] a3b2a2b−1

3 (II) A32 = 5, A24 = 4 B32 = 3, B24 = 5
A43 = 2, A55 = 3 B43 = 2, B55 = 4

[a2b−1
1 a−1

3 b−1
1 ] a3b1a−1

2 b1 (III) A31 = 2, A26 = 3 B31 = 6, B26 = 1
A46 = 5, A51 = 4 B46 = 1, B51 = 6

Table B.1: Definition of A and B in Example 2.2

Hence, we get

A =




1 1 5 3 1 1
3 3 3 4 6 3
2 5 1 2 2 2
5 6 2 5 5 5
4 4 4 1 3 4
6 2 6 6 4 6




and

B =




1 3 2 5 4 6
2 3 6 5 4 1
6 3 2 1 4 5
4 3 2 5 6 1
6 1 2 5 4 3
1 3 2 5 4 6



.
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See Table B.2 for a more compact notation.

ϕ3,3(X) 1 ≈ b1 2 ≈ b2 3 ≈ b3 4 ≈ b−1
3 5 ≈ b−1

2 6 ≈ b−1
1

1 ≈ a1 1/1 1/3 5/2 3/5 1/4 1/6
2 ≈ a2 3/2 3/3 3/6 4/5 6/4 3/1
3 ≈ a3 2/6 5/3 1/2 2/1 2/4 2/5
4 ≈ a−1

3 5/4 6/3 2/2 5/5 5/6 5/1
5 ≈ a−1

2 4/6 4/1 4/2 1/5 3/4 4/3
6 ≈ a−1

1 6/1 2/3 6/2 6/5 4/4 6/6

Table B.2: Compact notation of A and B in Example 2.2

Note that given (A, B) ∈ im(ϕm,n), we can uniquely and easily reconstruct the
(2m, 2n)–complex X = ϕ−1

m,n((A, B)) (this reflects the injectivity of ϕm,n).

Remark. By construction of ϕm,n , there are bijections between the following sets:

{(Ai j , Bi j)}i=1,...,2m, j=1,...,2n
∼= {1, . . . , 2m} × {1, . . . , 2n} ,

{1, . . . , 2m} ∼= {Ai j}i=1,...,2m for any j ∈ {1, . . . , 2n} ,
{1, . . . , 2n} ∼= {Bi j} j=1,...,2n for any i ∈ {1, . . . , 2m} ,

in particular each column of A is a permutation of {1, . . . , 2m}, and each row of B is
a permutation of {1, . . . , 2n}.

Step 2

The idea of Step 2 for small m, n (for example “small” could mean mn < 10) is to start
with (2m × 2n)–matrices A and B consisting of 0-entries and “fill” them recursively
with one geometric square (four non-zero entries in A and B) in each recursion step.
This is done systematically, i.e. going through all potential geometric squares S. Of
course, S has to satisfy several conditions, e.g. we want all potential new positions
in A (and B) coming from S to be free (i.e. zeroes), and all potential new pairs of
entries (Aαβ, Bαβ) coming from S are required to be new. If the candidate S does
not satisfy these conditions, we try the next one. The conditions guarantee that at
the end a “full” (i.e. without zero entries) pair of matrices (A, B) indeed describes a
(2m, 2n)–complex X , in particular having a complete bipartite link Lk(X) as required
in the link condition.
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B.2 The main program

Our main GAP-program ([29]) looks as follows: (comments in GAP start with the
character #)

all := function(x1, x2, y1, y2)
# generates the list
# [[x1,y1],...,[x1,y2],...,[x2,y1],...,[x2,y2]]
local w, k, i, j;
w := [ ];
k := 1;
for i in [x1..x2] do
for j in [y1..y2] do
w[k] := [i,j];
k := k+1;

od;
od;
return w;
end;

test := function(M, N, q, r, s, t, cM, cN)
# checks candidate aqbr a−1

s b−1
t

if (s = cM+1-q and t = cN+1-r) or
M[s][cN+1-r] <> 0 or
M[cM-q+1][t] <> 0 or
M[cM+1-s][cN+1-t] <> 0 or

# M[q][r] <> 0 is tested in test2
ForAny(all(1,cM,1,cN),
v -> ([M[v[1]][v[2]],N[v[1]][v[2]]] in
[[s,t], [q,cN+1-t], [cM+1-s,r], [cM+1-q,cN+1-r]]))

then
return false;

else
return true;

fi;
end;

part := function(x, y, z)
# we assume y <= z
# generates [[1,1],...,[1,z],...,[x-1,1],...,[x-1,z],
# [x,1],...,[x,y-1]]
local w, k, i1, i2, j;
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w := [ ];
k := 1;
for i1 in [1..x-1] do
for i2 in [1..z] do
w[k] := [i1,i2];
k := k+1;

od;
od;
for j in [1..y-1] do
w[k] := [x,j];
k := k+1;

od;
return w;
end;

test2 := function(A, x, y, z)
# returns true if (x,y) is
# the first "free" position in A
if A[x][y] = 0 and
ForAll(part(x,y,z), v -> A[v[1]][v[2]] <> 0)

then
return true;

else
return false;

fi;
end;

full := function(A)
# returns true if matrix A contains no 0
if ForAny(A, x -> 0 in x) then
return false;

else
return true;

fi;
end;

main := function(A, B)
# main program
local cA, cB, i, j, k, l, AA, BB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A)[2]; # = DimensionsMat(B)[2]
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for i in [1..cA/2] do
for j in [1..cB] do
if test2(A,i,j,cB) then
# (i,j) is first free position in A
for k in [1..cA] do

for l in [1..cB] do
if test(A,B,i,j,k,l,cA,cB) then
# tests if ai b j a

−1
k b−1

l is ok
AA := StructuralCopy(A);
BB := StructuralCopy(B);
AA[i][j] := k;
BB[i][j] := l;
AA[k][cB-j+1] := i;
BB[k][cB-j+1] := cB+1-l;
AA[cA+1-i][l] := cA+1-k;
BB[cA+1-i][l] := j;
AA[cA+1-k][cB+1-l] := cA+1-i;
BB[cA+1-k][cB+1-l] := cB+1-j;
if full(AA) then
# (AA,BB) now describes a (cA,cB)-complex
# now we can check for conditions on AA, BB,
# e.g. if conditions(AA,BB) then
# Print(AA, " ", BB, "\n"); fi;

else
main(AA, BB); # recursive step

fi;
fi;

od;
od;

fi;
od;

od;
end;

# can be applied as follows:
# for example main(NullMat(4, 6), NullMat(4, 6));
# generates now all (4,6)-complexes,
# or use main(C,D); for an embedding, where C, D describe
# any partial complex, i.e. some given geometric squares

This procedure can a priori also be applied for large integers m, n (for example if
mn ≥ 10), but the time required to finish (that is to generate all (2m, 2n)–complexes)
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grows very rapidly with increasing m and n. One reason for this is that the filling
process needs mn recursion steps for each (2m, 2n)–complex but another reason is
that the number of different (2m, 2n)–complexes becomes very large soon. This is
illustrated in Table B.3. Observe that the number of non-isomorphic corresponding
fundamental groups is much smaller, but unknown in general, even for (4, 4)–groups.
Kimberley ([40]) has counted the number of “BM relations” for

(m, n) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 2), (2, 3)}.

They coincide with those in Table B.3. The number 541 for (4, 4)–complexes also
appears in [41, Section 7].

m n mn # X
1 1 1 3
1 2 2 15
1 3 3 105
1 4 4 945
1 5 5 10395
1 6 6 135135
1 7 7 2027025
1 8 8 34459425
2 2 4 541
2 3 6 35235
2 4 8 3690009
2 5 10 570847095
3 3 9 27712191

Table B.3: Number of (2m, 2n)–complexes generated by our programs

Therefore, to get a better “distribution” of the examples for large m and n, we
also have written a program which randomly generates many (2m, 2n)–complexes for
fixed m, n ∈ N.

B.3 A random program

# the functions full(), all(), test(), part(), test2()
# are defined as before

Ma := function(m, n)
# generates (m x n)-matrix A, A[i][j] = i
local i, j, w;



260 APPENDIX B. GAP-PROGRAMS

w := NullMat(m,n);
for i in [1..m] do
for j in [1..n] do
w[i][j] := i;

od;
od;
return w;
end;

Mb := function(m, n)
# generates (m x n)-matrix A, A[i][j] = j
local i, j, w;
w := NullMat(m,n);
for i in [1..m] do
for j in [1..n] do
w[i][j] := j;

od;
od;
return w;
end;

out := [ ];

rdm := function(A, B, p)
local cA, cB, i, j, k, l, AA, BB, kl, pp, z;
z := 0;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
for i in [1..cA/2] do
for j in [1..cB] do
if test2(A,i,j,cB) then
repeat kl := Random(p); # p:available edges in link

z := z+1; # z counts number of attempts,
# here we set the maximal number to 30, but it
# can be chosen larger or smaller if needed

until test(A,B,i,j,kl[1],kl[2],cA,cB) or z = 30;
AA := StructuralCopy(A);
BB := StructuralCopy(B);
if z < 30 then # test ok

AA[i][j] := kl[1];
BB[i][j] := kl[2];
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AA[kl[1]][cB-j+1] := i;
BB[kl[1]][cB-j+1] := cB+1-kl[2];
AA[cA+1-i][kl[2]] := cA+1-kl[1];
BB[cA+1-i][kl[2]] := j;
AA[cA+1-kl[1]][cB+1-kl[2]] := cA+1-i;
BB[cA+1-kl[1]][cB+1-kl[2]] := cB+1-j;
pp := StructuralCopy(p);
RemoveSet(pp,kl);
RemoveSet(pp,[i,cB+1-kl[2]]);
RemoveSet(pp,[cA+1-kl[1],j]);
RemoveSet(pp,[cA+1-i,cB+1-j]);
# removes used edges in link
if full(AA) then
out := StructuralCopy([AA,BB,cA,cB]);

else
rdm(AA, BB, pp);

fi;
fi;

fi;
od;

od;
return out;
end;

slc := function(aa,bb)
local res;
repeat out := [Ma(aa,bb),Mb(aa,bb),aa,bb]; res :=
rdm(NullMat(aa, bb), NullMat(aa, bb), all(1,aa,1,bb));

until
# conditions(res[1],res[2]); whatever we want to check
Print(res[1],"\n",res[2],"\n");
end;

# e.g. slc(6,6); generates now randomly a (6,6)-complex
# satisfying additional conditions

One nice feature of both programs is that we can start with any k given geometric
squares (where 0 ≤ k < mn) and generate all (or randomly some, respectively)
(2m, 2n)–complexes containing these k geometric squares. This was very useful in
Chapter 2, where we have embedded for instance non-residually finite examples in
virtually simple (2m, 2n)–groups.
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B.4 Computing the local groups

Step 3

We have written programs which compute the local groups P (k)h and P(k)v for k small
enough. Here are the programs for k = 1 and k = 2. The programs for k ≥ 3 become
more complicated with increasing k, but we do not need any new ideas. Moreover, we
give the program to compute the group Kh for m = 3.

PhPerm := function(j, cA, A)
# generates permutation in Ph induced by b j, i.e. ρv(b j)

local v, i;
v := [ ];
for i in [1..cA] do
v[i] := cA+1-A[cA-i+1][j];

od;
return PermList(v);
end;

Ph := function(A)
# generates Ph as a permutation group
local p, j, cA, cB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
p := [ ];
for j in [1..cB/2] do
p[j] := PhPerm(j,cA,A);

od;
return Group(p,());
end;

PvPerm := function(i, cA, cB, B)
# generates permutation in Pv induced by ai, i.e. ρh(ai)

local w, j;
w := [ ];
for j in [1..cB] do
w[j] := B[cA-i+1][j];

od;
return PermList(w);
end;
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Pv := function(B)
# generates Pv
local p, i, cA, cB;
cA := DimensionsMat(B)[1];
cB := DimensionsMat(B)[2];
p := [ ];
for i in [1..cA/2] do
p[i] := PvPerm(i,cA,cB,B);

od;
return Group(p,());
end;

indx := function(v, x)
# returns index of first appearance of x
# in vector v
local i;
i := 1;
while v[i] <> x do
i := i+1;

od;
return i;
end;

s2 := function(c)
# generates points in 2-sphere
# of c-regular tree
local v, k, i, j;
v := [ ];
k := 1;
for i in [1..c] do
for j in [1..c] do
if i+j <> c+1 then
# exclude reducible paths
v[k] := [i,j];
k := k+1;

fi;
od;

od;
return v;
end;
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vPerm2i := function(i, cA, cB, A, B)

# generates i-th permutation in P (2)v

local w, j;
w := [ ];
for j in [1..cB*(cB-1)] do
w[j] := indx(s2(cB), [B[cA+1-i][s2(cB)[j][1]],

B[A[cA+1-i][s2(cB)[j][1]]][s2(cB)[j][2]]]);
od;
return PermList(w);
end;

P2v := function(A, B)

# generates P(2)v

local i, p, cA, cB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
p := [ ];
for i in [1..cA/2] do
p[i] := vPerm2i(i, cA, cB, A, B);

od;
return Group(p,());
end;

hPerm2j := function(j, cA, cB, A, B)

# generates j-th permutation in P (2)h
local w, i;
w := [ ];
for i in [1..cA*(cA-1)] do
w[i] := indx(s2(cA), [cA+1-A[cA+1-s2(cA)[i][1]][j],
cA+1-A[cA+1-s2(cA)[i][2]][B[cA+1-s2(cA)[i][1]][j]]]);

od;
return PermList(w);
end;

P2h := function(A, B)

# generates P(2)h
local j, p, cA, cB;
cA := DimensionsMat(A)[1]; cB := DimensionsMat(A)[2];
p := [ ];
for j in [1..cB/2] do
p[j] := hPerm2j(j, cA, cB, A, B);
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od;
return Group(p,());
end;

Kh6 := function(A, B)
# generates Kh for m = 3
return Stabilizer(Stabilizer(Stabilizer(

Stabilizer(Stabilizer(Stabilizer(P2h(A, B),
[1, 2, 3, 4, 5], OnTuples),
[6, 7, 8, 9, 10], OnSets),
[11, 12, 13, 14, 15], OnSets),
[16, 17, 18, 19, 20], OnSets),
[21, 22, 23, 24, 25], OnSets),
[26, 27, 28, 29, 30], OnSets);

end;

B.5 Computing a presentation

A finite presentation for 0 is obtained as follows (illustrated for m = n = 3):

F := FreeGroup("a1", "a2", "a3", "b1", "b2", "b3");
# free group generated by a1, a2, a3, b1, b2, b3

a1 := F.1;
a2 := F.2;
a3 := F.3;
b1 := F.4;
b2 := F.5;
b3 := F.6;

NL6a := function(i)
# bijection {1, . . . , 2m} → Eh

local v;
if i=1 then v := a1;
elif i=2 then v := a2;
elif i=3 then v := a3;
elif i=4 then v := a3ˆ-1;

elif i=5 then v := a2ˆ-1;
elif i=6 then v := a1ˆ-1;
fi;
return v;
end;
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NL6b := function(j)
# bijection {1, . . . , 2n} → Ev
local v;
if j=1 then v := b1;
elif j=2 then v := b2;
elif j=3 then v := b3;
elif j=4 then v := b3ˆ-1;

elif j=5 then v := b2ˆ-1;
elif j=6 then v := b1ˆ-1;
fi;
return v;
end;

relation6 := function(A, B)
# generates mn relators of 0

local i, j, rel, cA, cB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
rel := [ ];
for i in [1..cA/2] do
for j in [1..cB] do
if not NL6a(i)*NL6b(j)*

NL6a(cA+1-A[i][j])*NL6b(cB+1-B[i][j]) in rel
and not NL6a(cA+1-A[i][j])*NL6b(cB+1-B[i][j])*

NL6a(i)*NL6b(j) in rel
and not NL6a(cA+1-A[i][j])ˆ-1*NL6b(j)ˆ-1*

NL6a(i)ˆ-1*NL6b(cB+1-B[i][j])ˆ-1 in rel then
Add(rel,NL6a(i)*NL6b(j)*

NL6a(cA+1-A[i][j])*NL6b(cB+1-B[i][j]));
fi;

od;
od;
return rel;
end;

G := F / relation6(A,B); # definition of 0

# e.g. AbelianInvariants(G); computes now 0ab

# LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 8);
# computes all subgroups of low index
# (here of index ≤ 8), only reasonable for small index
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B.6 A normal form program

Very useful for other investigations are programs which bring a word of 0 in ab- and
in ba-normal form, see Proposition 1.10 (again illustrated for m = n = 3):

# F, a1, a2, a3, b1, b2, b3, NL6a(), NL6b()
# as in Appendix B.5

LN6a := function(w)
# bijection Eh → {1, . . . , 2m},
# inverse of NL6a
local i;
if w=a1 then i := 1;
elif w=a2 then i := 2;
elif w=a3 then i := 3;
elif w=a3ˆ-1 then i := 4;

elif w=a2ˆ-1 then i := 5;
elif w=a1ˆ-1 then i := 6;
fi;
return i;
end;

LN6b := function(w)
# bijection Ev → {1, . . . , 2n},
# inverse of NL6b
local j;
if w=b1 then j := 1;
elif w=b2 then j := 2;
elif w=b3 then j := 3;
elif w=b3ˆ-1 then j := 4;

elif w=b2ˆ-1 then j := 5;
elif w=b1ˆ-1 then j := 6;
fi;
return j;
end;

SetA6 := [a1, a2, a3, a3ˆ-1, a2ˆ-1, a1ˆ-1];
# Eh

SetB6 := [b1, b2, b3, b3ˆ-1, b2ˆ-1, b1ˆ-1];
# Ev
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nfab := function(A,B,w)
# brings word w in ab-normal form
local i;
for i in [1..Length(w)-1] do
if Subword(w,i,i) in SetB6 and

Subword(w,i+1,i+1) in SetA6 then
return nfab(A,B,SubstitutedWord(w,i,i+1,
(NL6b(B[LN6a(Subword(w,i+1,i+1)ˆ-1)]

[LN6b(Subword(w,i,i)ˆ-1)])*
NL6a(A[LN6a(Subword(w,i+1,i+1)ˆ-1)]

[LN6b(Subword(w,i,i)ˆ-1)]))ˆ-1));
fi;

od;
return w;
end;

nfba := function(A,B,w)
# brings word w in ba-normal form
local i;
for i in [1..Length(w)-1] do
if Subword(w,i,i) in SetA6 and

Subword(w,i+1,i+1) in SetB6 then
return nfba(A,B,SubstitutedWord(w,i,i+1,
NL6b(B[LN6a(Subword(w,i,i))]

[LN6b(Subword(w,i+1,i+1))])*
NL6a(A[LN6a(Subword(w,i,i))]

[LN6b(Subword(w,i+1,i+1))])));
fi;

od;
return w;
end;

B.7 Computing Aut(X)

The following program generates all elements of Aut(X), where X is described by the
matrices A and B (again illustrated for m = n = 3).

# F, a1, a2, a3, b1, b2, b3, NL6a(), NL6b()
# as in Appendix B.5
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relation := function(A, B)
local i, j, k, rel, rel2, cA, cB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
rel := [ ];
rel2 := [ ];
for i in [1..cA] do
for j in [1..cB] do
rel[cB*(i-1)+j] := NL6a(i)*NL6b(j)*
NL6a(cA+1-A[i][j])*NL6b(cB+1-B[i][j]);

od;
od;
for k in [1..cA*cB] do
rel2[k] := Subword(rel[k],2,4)*Subword(rel[k],1,1);

od;
return Union(rel,rel2);
end;

LN := function(w,k1,k2,k3,k4,k5,k6,c)
local n;
if w=a1 then n := k1;
elif w=a2 then n := k2;
elif w=a3 then n := k3;
elif w=b1 then n := k4;

elif w=b2 then n := k5;
elif w=b3 then n := k6;
elif w=b3ˆ-1 then n := c-k6;

elif w=b2ˆ-1 then n := c-k5;
elif w=b1ˆ-1 then n := c-k4;

elif w=a3ˆ-1 then n := c-k3;
elif w=a2ˆ-1 then n := c-k2;

elif w=a1ˆ-1 then n := c-k1;
fi;
return n;
end;

NL := function(z)
local n;
if z=1 then n := a1;
elif z=2 then n := a2;
elif z=3 then n := a3;
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elif z=4 then n := b1;
elif z=5 then n := b2;
elif z=6 then n := b3;
elif z=7 then n := b3ˆ-1;

elif z=8 then n := b2ˆ-1;
elif z=9 then n := b1ˆ-1;

elif z=10 then n := a3ˆ-1;
elif z=11 then n := a2ˆ-1;

elif z=12 then n := a1ˆ-1;
fi;
return n;
end;

permute := function(A,B)
local i1, i2, i3, j1, j2, j3, k, PL, L, cA, cB, c;
PL := [ ];
L := relation(A,B);
cA := DimensionsMat(A)[1]; cB := DimensionsMat(A)[2];
c := cA + cB;
for i1 in [1..c] do
for i2 in Difference([1..c], [i1, c+1-i1]) do
for i3 in Difference([1..c],

[i1, c+1-i1, i2, c+1-i2]) do
for j1 in Difference([1..c],

[i1, c+1-i1, i2, c+1-i2, i3, c+1-i3]) do
for j2 in Difference([1..c],

[i1, c+1-i1, i2, c+1-i2,
i3, c+1-i3, j1, c+1-j1]) do

for j3 in Difference([1..c],
[i1, c+1-i1, i2, c+1-i2, i3, c+1-i3,

j1, c+1-j1, j2, c+1-j2]) do
for k in [1..Size(L)] do
PL[k] :=

NL(LN(Subword(L[k],1,1),i1,i2,i3,j1,j2,j3,c+1))*
NL(LN(Subword(L[k],2,2),i1,i2,i3,j1,j2,j3,c+1))*
NL(LN(Subword(L[k],3,3),i1,i2,i3,j1,j2,j3,c+1))*
NL(LN(Subword(L[k],4,4),i1,i2,i3,j1,j2,j3,c+1));

od;
if Set(PL) = Set(L) then
Print(NL(i1)," ",NL(i2)," ",NL(i3)," ",

NL(j1)," ",NL(j2)," ",NL(j3)," ","\n");



B.8. A QUATERNION LATTICE PROGRAM 271

fi;
od;

od;
od;

od;
od;

od;
end;

For X as in Example 2.2, i.e. for

A =




1 1 5 3 1 1
3 3 3 4 6 3
2 5 1 2 2 2
5 6 2 5 5 5
4 4 4 1 3 4
6 2 6 6 4 6



, B =




1 3 2 5 4 6
2 3 6 5 4 1
6 3 2 1 4 5
4 3 2 5 6 1
6 1 2 5 4 3
1 3 2 5 4 6




we get (cf. Theorem 2.3(9))

permute(A,B);
a1 a2 a3 b1 b2 b3
a1ˆ-1 a2ˆ-1 a3ˆ-1 b1ˆ-1 b3 b2

B.8 A quaternion lattice program

We illustrate the construction of the group 0p,l of Chapter 3 for the smallest example
p = 3, l = 5 (Example 3.46).

psi := function(v,x0,x1,x2,x3)
return[[x0 + v*x1*E(4), v*x2 + v*x3*E(4)],

[-v*x2 + v*x3*E(4), x0 - v*x1*E(4)]];
end;
# v = -1 gives the conjugate of x
# E(4)ˆ2 = -1

a := [ ]; b := [ ];

a[1] := psi(1,1,0,1,1); # ψ(1+ j + k)
a[2] := psi(1,1,0,1,-1); # ψ(1+ j − k)
a[3] := psi(-1,1,0,1,-1); # ψ(1− j + k)
a[4] := psi(-1,1,0,1,1); # ψ(1− j − k)
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b[1] := psi(1,1,2,0,0); # ψ(1+ 2i)
b[2] := psi(1,1,0,2,0); # ψ(1+ 2 j)
b[3] := psi(1,1,0,0,2); # ψ(1+ 2k)
b[4] := psi(-1,1,0,0,2); # ψ(1− 2k)
b[5] := psi(-1,1,0,2,0); # ψ(1− 2 j)
b[6] := psi(-1,1,2,0,0); # ψ(1− 2i)

qAB := function(p,l)
local i, j, k, m, A, B;
A := NullMat(p+1,l+1);
B := NullMat(p+1,l+1);
for i in [1..p+1] do
for j in [1..l+1] do
for k in [1..l+1] do
for m in [1..p+1] do

if a[i]*b[j] = b[k]*a[m] or
a[i]*b[j] = -b[k]*a[m] then

A[i][j] := m;
B[i][j] := k;

fi;
od;

od;
od;

od;
return([A,B]);
end;

A := qAB(3,5)[1];
B := qAB(3,5)[2];

gives

A =




3 3 2 4 4 2
1 4 3 1 3 4
4 2 4 2 1 1
2 1 1 3 2 3




and

B =




5 1 6 2 3 4
3 6 2 1 4 5
4 3 1 5 6 2
2 4 5 6 1 3


 .



Appendix C

Some lists

C.1 Primitive permutation groups

We give a list of all primitive permutation groups G < S2n , where n ≤ 7, including
some information about the groups like its order |G| or its transitivity on {1, . . . , 2n}.
A comprehensive introduction to permutation groups, including the definitions of the
groups in Table C.1, is given in [25]. See also [13] for a list of all finite primitive
permutation groups up to degree 50.

Group G degree 2n transitivity(G) order |G| G < A2n

S2 2 2 2 N

A4 4 2 12 Y
S4 4 4 24 N

PSL2(5) 6 2 60 Y
PGL2(5) 6 3 120 N
A6 6 4 360 Y
S6 6 6 720 N

AGL1(8) 8 2 56 Y
A0L1(8) 8 2 168 Y
PSL2(7) 8 2 168 Y
PGL2(7) 8 3 336 N
ASL3(2) 8 3 1344 Y
A8 8 6 20160 Y
S8 8 8 40320 N

A5 10 1 60 Y
S5 10 1 120 N
PSL2(9) 10 2 360 Y
S6 10 2 720 N
PGL2(9) 10 3 720 N

273
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M10 10 3 720 Y
P0L2(9) 10 3 1440 N
A10 10 8 1814400 Y
S10 10 10 3628800 N

PSL2(11) 12 2 660 Y
PGL2(11) 12 3 1320 N
M11 12 3 7920 Y
M12 12 5 95040 Y
A12 12 10 239500800 Y
S12 12 12 479001600 N

PSL2(13) 14 2 1092 Y
PGL2(13) 14 3 2184 N
A14 14 12 43589145600 Y
S14 14 14 87178291200 N

Table C.1: Primitive permutation groups

C.2 Quasi-primitive permutation groups

See Table C.2 for all quasi-primitive, but not 2-transitive subgroups of S2n , where
n ≤ 8. Only two of them are not primitive. For the primitive groups, we have used the
list in [13] and their notations, in particular the symbol “:” to denote a split extension.

Group G degree 2n primitive order |G| G < A2n

A5 10 Y 60 Y
S5 10 Y 120 N
PSL2(5) 12 N 60 Y
PSL2(7) 14 N 168 Y
24 : 5 16 Y 80 Y
24 : D5 16 Y 160 Y
(A4 × A4) : 2 16 Y 288 Y
(24 : 5) : 4 16 Y 320 Y
24 : 32 : 4 16 Y 576 Y
24 : S3 × S3 16 Y 576 Y
24 : A5 16 Y 960 Y
(S4 × S4) : 2 16 Y 1152 Y
24 : S5 16 Y 1920 Y

Table C.2: Quasi-primitive permutation groups
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C.3 Locally 2-transitive (6, 6)–groups

We study (6, 6)–groups such that Ph , Pv are 2-transitive and give a complete list of the
arising 4-tuples (|Ph |, |Pv|, |P(2)h |, |P(2)v |). Without loss of generality, we may assume

that |Ph | ≤ |Pv| and that |P (2)h | ≤ |P(2)v | if |Ph | = |Pv|. By Table C.1, there are only
four 2-transitive subgroups of S6: PSL2(5), PGL2(5), A6 and S6 of order 60, 120, 360
and 720, respectively. Given P• ∈ {Ph, Pv}, the maximal possible value for |P (2)• | is
|P•|(|P•|/6)6. If this maximum is attained, the value of |P (2)• | is marked in the list with
the symbol “∗” on the right hand side. Observe that in the case P• = A6 the number
|P(2)• | is always maximal (this is not very surprising by [16, Proposition 3.3.1]).

|Ph | |Pv| |P(2)h | |P(2)v |
60 60 937500 937500
60 60 937500 60000000 ∗
60 120 7500 15000
60 120 937500 60000000
60 120 937500 120000000
60 120 937500 1920000000
60 120 30000000 1875000
60 120 30000000 60000000
60 120 30000000 1920000000
60 120 60000000 ∗ 60000000
60 120 60000000 ∗ 120000000
60 120 60000000 ∗ 7680000000 ∗
60 360 937500 16796160000000 ∗
60 360 30000000 16796160000000 ∗
60 360 60000000 ∗ 16796160000000 ∗
60 720 7500 1074954240000000
60 720 937500 33592320000000
60 720 937500 1074954240000000
60 720 937500 2149908480000000 ∗
60 720 1875000 1074954240000000
60 720 30000000 33592320000000
60 720 30000000 1074954240000000
60 720 30000000 2149908480000000 ∗
60 720 60000000 ∗ 33592320000000
60 720 60000000 ∗ 67184640000000
60 720 60000000 ∗ 1074954240000000
60 720 60000000 ∗ 2149908480000000 ∗
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120 120 15000 15000
120 120 1875000 60000000
120 120 60000000 60000000
120 120 60000000 1920000000
120 120 60000000 3840000000
120 120 1920000000 1920000000
120 120 1920000000 7680000000 ∗
120 120 3840000000 7680000000 ∗
120 360 1875000 16796160000000 ∗
120 360 60000000 16796160000000 ∗
120 360 120000000 16796160000000 ∗
120 360 1920000000 16796160000000 ∗
120 360 3840000000 16796160000000 ∗
120 360 7680000000 ∗ 16796160000000 ∗
120 720 1875000 33592320000000
120 720 1875000 1074954240000000
120 720 60000000 33592320000000
120 720 60000000 67184640000000
120 720 60000000 1074954240000000
120 720 60000000 2149908480000000 ∗
120 720 120000000 33592320000000
120 720 120000000 1074954240000000
120 720 120000000 2149908480000000 ∗
120 720 1920000000 33592320000000
120 720 1920000000 67184640000000
120 720 1920000000 1074954240000000
120 720 1920000000 2149908480000000 ∗
120 720 3840000000 33592320000000
120 720 3840000000 67184640000000
120 720 3840000000 1074954240000000
120 720 3840000000 2149908480000000 ∗
120 720 7680000000 ∗ 33592320000000
120 720 7680000000 ∗ 1074954240000000
120 720 7680000000 ∗ 2149908480000000 ∗
360 360 16796160000000 ∗ 16796160000000 ∗
360 720 16796160000000 ∗ 33592320000000
360 720 16796160000000 ∗ 67184640000000
360 720 16796160000000 ∗ 1074954240000000
360 720 16796160000000 ∗ 2149908480000000 ∗
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720 720 33592320000000 3359232000000
720 720 33592320000000 67184640000000
720 720 33592320000000 1074954240000000
720 720 33592320000000 2149908480000000 ∗
720 720 67184640000000 1074954240000000
720 720 67184640000000 2149908480000000 ∗
720 720 1074954240000000 1074954240000000
720 720 1074954240000000 2149908480000000 ∗
720 720 2149908480000000 ∗ 2149908480000000 ∗

Table C.3: Local groups in locally 2-transitive (6, 6)–groups

C.4 List of (4, 4)–groups

In the list below, we classify all (4, 4)–groups by the permutation isomorphism types
of the local groups Ph and Pv, and by 0ab (up to interchanging the role of Ph and Pv).
In total, we get 32 different types. Note that there are in fact at least 41 and at most 43
non-isomorphic (4, 4)–groups (see [41, Section 7]).

We use the following notation in Table C.4:
21: group of order 2, permutation isomorphic to 〈(1, 2)〉 < S4,
22: group of order 2, permutation isomorphic to 〈(1, 2)(3, 4)〉,
41: group of order 4, isomorphic to Z2

2, permutation isomorphic to 〈(1, 2), (3, 4)〉,
42: as above, but permutation isomorphic to 〈(1, 2)(3, 4), (1, 3)(2, 4)〉.
trans(P•) denotes the transitivity of the group P• ∈ {Ph, Pv} on the set {1, 2, 3, 4}.
“N?” means that 0 is possibly irreducible.

Ph Pv trans(Ph) trans(Pv) reducible 0ab

1 1 0 0 Y Z4

1 21 0 0 Y Z3 × Z2

1 22 0 0 Y Z3

1 22 0 0 Y Z2 × Z2
2

1 Z4 0 1 Y Z2 × Z2

1 41 0 0 Y Z2 × Z2
2

1 42 0 1 Y Z2 × Z2

1 D4 0 1 Y Z2 × Z2

21 21 0 0 Y Z2 × Z2
2

21 22 0 0 Y Z2 × Z2

21 22 0 0 Y Z2 × Z4
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21 22 0 0 Y Z× Z3
2

22 22 0 0 Y Z2 × Z2

22 22 0 0 Y Z× Z2 × Z4

21 Z4 0 1 Y Z× Z2
2

22 Z4 0 1 Y Z× Z8

22 Z4 0 1 Y Z× Z2
2

21 41 0 0 Y Z× Z3
2

21 42 0 1 Y Z× Z2 × Z4

22 41 0 0 Y Z× Z2 × Z4

22 41 0 0 Y Z2

22 42 0 1 Y Z2 × Z2
4

21 D4 0 1 Y Z× Z2
2

21 D4 0 1 Y Z× Z2 × Z4

22 A4 0 2 Y Z× Z2

Z4 Z4 1 1 Y Z4 × Z8

Z4 41 1 0 Y Z× Z4

41 41 0 0 Y Z4
2

41 D4 0 1 Y Z× Z2

41 D4 0 1 Y Z2
2 × Z4

D4 A4 1 2 N? Z2 × Z6

S4 S4 4 4 N? Z2
6

Table C.4: Properties of (4, 4)–groups

C.5 List of (4, 6)–groups

Similarly as in Section C.4, we give a certain classification of (4, 6)–groups, but here
the groups Ph and Pv are classified only up to isomorphism (not up to permutation
isomorphism) and up to their transitivity. Notation: “36” denotes the group of order
36 permutation isomorphic to 〈(1, 2, 3), (1, 4, 2, 5)(3, 6)〉 and “72” denotes the group
of order 72 permutation isomorphic to the group 〈(1, 2, 3), (1, 2), (1, 4)(2, 5)(3, 6)〉.
“Y?” means that we do not exclude the existence of a reducible example.

Example Ph Pv trans(Ph) trans(Pv) reducible

1 1 0 0 Y
1 Z2 0 0 Y
1 Z3 0 0 Y
1 Z4 0 0 Y
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1 Z2
2 0 0 Y

1 S3 0 0 Y
1 S3 0 1 Y
1 Z6 0 1 Y
1 Z2 × Z4 0 0 Y
1 D4 0 0 Y
1 A4 0 1 Y
1 Z2 × S3 0 1 Y
1 S4 0 1 Y
1 Z2 × A4 0 1 Y
1 Z2 × S4 0 1 Y

Z2 1 0 0 Y
Z2 Z2 0 0 Y
Z2 Z3 0 0 Y
Z2 Z4 0 0 Y
Z2 Z2

2 0 0 Y
Z2 S3 0 0 Y
Z2 S3 0 1 Y
Z2 Z6 0 1 Y
Z2 Z2 × Z4 0 0 Y
Z2 D4 0 0 Y
Z2 Z2

3 0 0 Y
Z2 A4 0 0 Y
Z2 A4 0 1 Y
Z2 Z2 × S3 0 1 Y
Z2 Z3 × S3 0 1 Y
Z2 S4 0 1 Y
Z2 Z2 × A4 0 0 Y
Z2 Z2 × A4 0 1 Y
Z2 36 0 1 Y
Z2 S3 × S3 0 0 Y
Z2 Z2 × S4 0 1 Y
Z2 PSL2(5) 0 2 Y
Z2 PGL2(5) 0 3 Y
Z2 A6 0 4 Y
Z2 S6 0 6 Y

Z4 1 1 0 Y
Z4 Z2 1 0 Y
Z4 Z4 1 0 Y
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Z4 Z2
2 1 0 Y

Z4 S3 1 0 Y
Z4 Z2 × Z4 1 0 Y
Z4 D4 1 0 Y
Z4 Z2

3 1 0 Y
Z4 S3 × S3 1 0 Y

Z2
2 1 0 0 Y
Z2

2 1 1 0 Y
Z2

2 Z2 0 0 Y
Z2

2 Z2 1 0 Y
Z2

2 Z3 0 0 Y
Z2

2 Z4 0 0 Y
Z2

2 Z4 1 0 Y
Z2

2 Z2
2 0 0 Y

Z2
2 Z2

2 1 0 Y
Z2

2 S3 0 0 Y, N?
Z2

2 S3 0 1 Y
Z2

2 Z6 0 1 Y
Z2

2 Z2 × Z4 0 0 Y
Z2

2 D4 0 0 Y
Z2

2 A4 0 1 Y
Z2

2 A4 1 0 Y
Z2

2 Z2 × S3 0 1 Y, N?
Z2

2 S4 0 1 Y, N?
Z2

2 Z2 × A4 0 1 Y
Z2

2 Z2 × A4 1 0 Y
Z2

2 36 0 1 N?
2.36 Z2

2 S3 × S3 0 0 N?
Z2

2 Z2 × S4 0 1 Y, N?
Z2

2 PSL2(5) 0 2 N?
Z2

2 PGL2(5) 0 3 N?
Z2

2 S6 0 6 N

D4 1 1 0 Y
D4 Z2 1 0 Y
D4 Z3 1 0 Y
D4 Z4 1 0 Y
D4 Z2

2 1 0 Y
D4 S3 1 0 Y, N?
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D4 S3 1 1 Y
D4 Z6 1 1 Y
D4 Z2 × Z4 1 0 Y
D4 D4 1 0 Y
D4 Z3 × Z3 1 0 N?
D4 A4 1 0 Y, N?
D4 A4 1 1 Y
D4 S4 1 1 Y, N?
D4 Z2 × A4 1 0 Y, N?
D4 Z2 × A4 1 1 Y
D4 36 1 1 N?
D4 S3 × S3 1 0 N?
D4 Z2 × S4 1 1 N?
D4 PSL2(5) 1 2 N?
D4 PGL2(5) 1 3 N, Y?
D4 A6 1 4 N
D4 S6 1 6 N

A4 Z2 2 0 Y
A4 Z2

2 2 0 Y
A4 S3 2 0 N?
A4 D4 2 0 N?
A4 Z2 × S3 2 1 N?
A4 S4 2 1 N?
A4 36 2 1 N?
A4 S3 × S3 2 0 N?
A4 Z2 × S4 2 1 N?
A4 S6 2 6 N

S4 Z2 4 0 Y
S4 Z4 4 0 Y
S4 Z2

2 4 0 Y
S4 S3 4 0 N, Y?
S4 Z2 × Z4 4 0 Y
S4 D4 4 0 Y, N?
S4 Z3 × Z3 4 0 N?
S4 S4 4 0 N?
S4 S4 4 1 N, Y?
S4 S3 × S3 4 0 N, Y?
S4 Z2 × S4 4 0 N?
S4 Z2 × S4 4 1 N, Y?
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S4 PSL2(5) 4 2 N, Y?
S4 72 4 1 N?

3.46 S4 PGL2(5) 4 3 N
S4 PGL2(5) 4 3 Y?
S4 A6 4 4 N
S4 S6 4 6 N

Table C.5: Properties of (4, 6)–groups

C.6 Some abelianized (A2m, A2n)–groups

We classify some (A2m, A2n)–groups 0 by their abelianization 0ab and by the size of
P(2)h and P(2)v (we restrict to 2 ≤ m ≤ n and m + n ≤ 8). If P (2)h is not maximal

(this can only happen if 2m = 4), then we give the number 12 · 34/|P(2)h |. The list is
complete for (2m, 2n) = (6, 6) and (2m, 2n) = (4, 8). There are no (A4, A4)– and
(A4, A6)–groups.

Example 2m 2n P (2)h max. P(2)v max. |0ab| 0ab

4 8 Y Y 4 Z2
2

4 10 Y Y 4 Z2
2

4 10 3 Y 4 Z2
2

4 10 Y Y 8 Z2 × Z4

4 10 3 Y 8 Z2 × Z4

4 10 Y Y 12 Z2 × Z6

4 10 3 Y 12 Z2 × Z6

4 10 Y Y 16 Z2
2 × Z4

4 10 Y Y 16 Z2 × Z8

4 10 3 Y 16 Z2 × Z8

4 10 Y Y 24 Z2 × Z12

4 10 Y Y 24 Z2
2 × Z6

4 10 Y Y 32 Z2
2 × Z8

4 12 Y Y 4 Z2
2

4 12 3 Y 4 Z2
2

4 12 Y Y 8 Z2 × Z4

4 12 3 Y 8 Z2 × Z4

4 12 Y Y 8 Z3
2

4 12 3 Y 8 Z3
2
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4 12 Y Y 12 Z2 × Z6

4 12 3 Y 12 Z2 × Z6

4 12 Y Y 16 Z2 × Z8

4 12 3 Y 16 Z2 × Z8

4 12 Y Y 16 Z2
2 × Z4

4 12 Y Y 20 Z2 × Z10

4 12 Y Y 24 Z2 × Z12

4 12 Y Y 24 Z2
2 × Z6

4 12 Y Y 28 Z2 × Z14

4 12 Y Y 32 Z2 × Z16

4 12 3 Y 32 Z2 × Z16

4 12 Y Y 32 Z2
2 × Z8

4 12 Y Y 40 Z2 × Z20

4 12 Y Y 40 Z2
2 × Z10

4 12 Y Y 48 Z2 × Z24

2.2 6 6 Y Y 4 Z2
2

6 6 Y Y 8 Z3
2

6 6 Y Y 8 Z2 × Z4

6 6 Y Y 16 Z2 × Z8

6 6 Y Y 24 Z2 × Z12

6 6 Y Y 28 Z2 × Z14

2.15 6 6 Y Y 32 Z2
2 × Z8

6 8 Y Y 4 Z2
2

6 8 Y Y 8 Z2 × Z4

6 8 Y Y 8 Z3
2

6 8 Y Y 12 Z2 × Z6

6 8 Y Y 16 Z2 × Z8

6 8 Y Y 16 Z2
2 × Z4

6 8 Y Y 16 Z4
2

6 8 Y Y 20 Z2 × Z10

6 8 Y Y 24 Z2 × Z12

6 8 Y Y 24 Z2
2 × Z6

6 8 Y Y 28 Z2 × Z14

6 8 Y Y 32 Z2 × Z16

6 8 Y Y 32 Z2
2 × Z8

6 8 Y Y 36 Z2 × Z18

6 8 Y Y 40 Z2 × Z20

6 8 Y Y 40 Z2
2 × Z10
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6 8 Y Y 48 Z2
2 × Z12

6 8 Y Y 60 Z2 × Z30

6 8 Y Y 80 Z2
2 × Z20

6 10 Y Y 4 Z2
2

6 10 Y Y 8 Z2 × Z4

6 10 Y Y 8 Z3
2

6 10 Y Y 12 Z2 × Z6

6 10 Y Y 16 Z2 × Z8

6 10 Y Y 16 Z2
4

6 10 Y Y 16 Z2
2 × Z4

6 10 Y Y 20 Z2 × Z10

6 10 Y Y 24 Z2 × Z12

6 10 Y Y 24 Z2
2 × Z6

6 10 Y Y 28 Z2 × Z14

6 10 Y Y 40 Z2 × Z20

6 10 Y Y 40 Z2
2 × Z10

6 10 Y Y 108 Z6 × Z18

8 8 Y Y 4 Z2
2

8 8 Y Y 8 Z2 × Z4

8 8 Y Y 8 Z3
2

8 8 Y Y 12 Z2 × Z6

8 8 Y Y 16 Z2 × Z8

8 8 Y Y 16 Z2
4

8 8 Y Y 16 Z2
2 × Z4

8 8 Y Y 16 Z4
2

8 8 Y Y 20 Z2 × Z10

8 8 Y Y 24 Z2 × Z12

8 8 Y Y 24 Z2
2 × Z6

8 8 Y Y 28 Z2 × Z14

Table C.6: Abelianized (A2m, A2n)–groups
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C.7 More embeddings of Example 2.39

We embed the non-residually finite (8, 6)–complex of Example 2.39 into many dif-
ferent (10, 10)–complexes X such that Ph and Pv are primitive permutation groups.
Let w := a2a−1

1 a3a−1
4 . In all examples 0 in the subsequent list, the normal subgroup

〈〈w〉〉0 has finite index in 0, in particular, by Lemma 2.42,

〈〈w〉〉0 =
⋂

N
f.i.C0

N .

If two rows are exactly the same, then the quotients 0/〈〈w〉〉0 are non-isomorphic non-
abelian groups of the same finite order. The (A10, A10)–groups are precisely those of
Table 2.7.

Ph Pv abelianization 0ab
∣∣0ab

∣∣ and [0 : 〈〈w〉〉0]
S6 < S10 A10 [2, 2] 4

S6 < S10 S10 [2, 2] 4

P0L2(9) A10 [2, 2] 4

P0L2(9) S10 [2, 2] 4
P0L2(9) S10 [2, 4] 8
P0L2(9) S10 [2, 2, 2] 8

A10 A10 [2, 2] 4
A10 A10 [2, 4] 8
A10 A10 [2, 2, 2] 8
A10 A10 [2, 6] 12
A10 A10 [2, 2, 4] 16
A10 A10 [2, 8] 16
A10 A10 [2, 10] 20
A10 A10 [2, 12] 24
A10 A10 [2, 2, 6] 24
A10 A10 [2, 2, 8] 32
A10 A10 [2, 20] 40

A10 S10 [2, 2] 4
A10 S10 [2, 4] 8
A10 S10 [2, 2, 2] 8
A10 S10 [2, 2, 2] 8, 16
A10 S10 [2, 6] 12
A10 S10 [2, 8] 16
A10 S10 [4, 4] 16
A10 S10 [2, 2, 4] 16
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A10 S10 [2, 10] 20
A10 S10 [2, 12] 24
A10 S10 [2, 2, 6] 24
A10 S10 [2, 14] 28
A10 S10 [2, 2, 8] 32
A10 S10 [2, 16] 32
A10 S10 [2, 20] 40
A10 S10 [2, 2, 10] 40
A10 S10 [2, 24] 48

S10 A10 [2, 2] 4
S10 A10 [2, 4] 8
S10 A10 [2, 2, 2] 8
S10 A10 [2, 2, 2] 8, 16
S10 A10 [2, 2, 2] 8, 16
S10 A10 [2, 6] 12
S10 A10 [2, 2, 4] 16
S10 A10 [2, 8] 16
S10 A10 [4, 4] 16
S10 A10 [2, 10] 20
S10 A10 [2, 12] 24
S10 A10 [2, 2, 6] 24
S10 A10 [2, 14] 28
S10 A10 [2, 2, 8] 32
S10 A10 [2, 18] 36
S10 A10 [6, 6] 36
S10 A10 [2, 20] 40
S10 A10 [2, 22] 44
S10 A10 [2, 28] 56
S10 A10 [2, 32] 64

S10 S10 [2, 2] 4
S10 S10 [2, 4] 8
S10 S10 [2, 2, 2] 8
S10 S10 [2, 2, 2] 8, 16
S10 S10 [2, 2, 2] 8, 16
S10 S10 [2, 6] 12
S10 S10 [2, 8] 16
S10 S10 [2, 2, 4] 16
S10 S10 [2, 2, 4] 16, 32
S10 S10 [2, 2, 4] 16, 32
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S10 S10 [2, 2, 4] 16, 32
S10 S10 [4, 4] 16
S10 S10 [2, 10] 20
S10 S10 [2, 12] 24
S10 S10 [2, 2, 6] 24
S10 S10 [2, 2, 6] 24, 48
S10 S10 [2, 14] 28
S10 S10 [2, 16] 32
S10 S10 [2, 2, 8] 32
S10 S10 [2, 4, 4] 32
S10 S10 [4, 8] 32
S10 S10 [2, 18] 36
S10 S10 [6, 6] 36
S10 S10 [2, 20] 40
S10 S10 [2, 2, 10] 40
S10 S10 [2, 22] 44
S10 S10 [2, 24] 48
S10 S10 [2, 2, 12] 48
S10 S10 [2, 26] 52
S10 S10 [2, 28] 56
S10 S10 [2, 30] 60
S10 S10 [2, 32] 64
S10 S10 [2, 36] 72
S10 S10 [2, 38] 76
S10 S10 [2, 40] 80
S10 S10 [2, 44] 88
S10 S10 [2, 50] 100
S10 S10 [10, 10] 100
S10 S10 [2, 52] 104

Table C.7: Example 2.39 embedded into (10, 10)–groups
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Appendix D

Miscellanea

D.1 History of simple groups and free amalgams

We give in this section some history of finitely presented (or finitely generated) infinite
simple groups and amalgams of finitely generated non-abelian free groups.

• Aleksandr G. Kuroš 1944 ([42]) He asked for the existence of a finitely gener-
ated infinite simple group. (This was positively answered in [34].)

• Graham Higman 1951 ([34]) He gave the first existence proof of a finitely gen-
erated infinite simple group and asked for the existence of a finitely presented
infinite simple group: “Can an infinite simple group have not only a finite set
of generators, but also a finite set of defining relations?” (This was positively
answered by Richard J. Thompson in 1965.)

• Ruth Camm 1953 ([19]) She constructed uncountably many finitely generated
infinite simple groups of the form F2 ∗F∞ F2. These groups are torsion-free,
2-generated, but not finitely presentable (by [4]).

• Richard J. Thompson 1965 (in unpublished notes) He defined two finitely pre-
sented infinite simple groups Ĉ (often called T ) and V̂ (often called V ). They
are not torsion-free. He also defined a third interesting group P̂ (often called F)
which is torsion-free but not simple. For an introduction to these three groups,
see [20].

• Peter M. Neumann 1973 ([56]) “At one time I had hoped that one might con-
struct a finitely presented simple group as a generalised free product of two free
groups A, B of finite rank amalgamating finitely generated subgroups H and
K . Joan Landman-Dyer and I showed quite easily that if H has infinite index in
A or K has infinite index in B then such a group G is not simple.” For a proof
that G is even SQ-universal under these conditions, see [62, Corollary 2]. For

289
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an alternative proof that G is not simple (again provided [A : H ] or [B : K ] is
infinite), see [37, Corollary 2]. Then Neumann posed the following problems
(which appeared also in the Kourovka notebook): “Let G = A ∗H=K B where
A, B are non-abelian free groups of finite rank and |A : H |, |B : K | are finite.
(a) Can it happen that G is simple? (b) Is G always SQ-universal?” ((a) was
positively answered in [15]; consequently the answer to (b) is “no”.)

• Graham Higman 1974 ([35]) He generalized Thompson’s group V to an infi-
nite family of finitely presented infinite simple groups.

• Dragomir Ž. Djoković 1981 ([26]) His finitely presented “simple” group with
bounded torsion turned out to be not simple.

• Elisabeth A. Scott 1984 ([63]) She constructed another family of finitely pre-
sented infinite simple groups, related to the Higman groups.

• Kenneth S. Brown 1985 ([11]) He generalized the Thompson groups T , V and
established some finiteness properties. In 1989 ([12]), he showed that Thomp-
son’s group V can be written as a (“positively curved, realizable”) triangle of
groups with finite vertex groups S5, S6, S7.

• Meenaxi Bhattacharjee 1994 ([7]) She gave a construction of an amalgam
F3 ∗F13 F3 without non-trivial finite quotients. This group is “nearly simple” in
her terminology, but it is not known whether it has proper infinite quotients, or
it is simple. More examples like this appear in [7, 8].

• Geoffrey Mess (in [57, Problem 5.11 (C)] 1995) “Let X be a finite aspherical
complex. Is there an example of an X with simple fundamental group?” (His
question was positively answered in [15].)

• Daniel T. Wise 1996 ([68]) He constructed a square complex without a non-
trivial finite covering and asked: “Does there exist a CSC with (non-trivial) sim-
ple π1? I guess that one does exist.” (where CSC stands for complete squared
complex; any (2m, 2n)–complex is CSC). (Again, this was positively answered
in [15].)

• Marc Burger, Shahar Mozes 1997 ([15]) They constructed an infinite family
of finitely presented torsion-free simple groups which are amalgams of finitely
generated non-abelian free groups and thereby solved many open problems
mentioned above (Neumann, Mess, Wise).

• Claas E. Röver 1999 ([61]) He gave a construction of finitely presented infinite
simple groups that contain Grigorchuk groups.
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D.2 Topology of Aut(T`)

Throughout this section, let T` be the `-regular tree and G = Aut(T`) its group of
automorphisms. We denote by X the countable vertex set of T` endowed with the
discrete topology. Let X = {x1, x2, . . .} be a fixed enumeration of X . For subsets
V,W ⊆ X and elements x, v, w ∈ X , we define GV,W := {g ∈ G : g(V ) ⊆ W }, the
vertex stabilizer Gx := G{x},{x}, the pointwise stabilizer GV := ∩x∈V Gx and to sim-
plify the notation we write Gv,W := G{v},W , Gv,w := G{v},{w}. We take the product
topology on

∏
x∈X X ∼= X X = { f : X → X} and let O be the relative topology for

G ⊂ X X . Let πi :
∏

x∈X X → X be the i -th projection. The product topology guar-
antees that these maps are continuous. Again, by definition of the product topology,
a subbase for O is given by the sets Gv,W , where v ∈ V ⊆ X and W ⊆ X . Since
Gv,W = ∪w∈W Gv,w, the family of sets Gv,w, where v,w ∈ X , is another subbase
for O. This topology O is sometimes called topology of pointwise convergence (or
topology of simple convergence), since a sequence (gn)n∈N in G converges to g ∈ G if
and only if (gn(x)) converges to g(x) in X for all x ∈ X . Since X carries the discrete
topology, this means that for each x ∈ X , there is an integer m such that gn(x) = g(x)
if n ≥ m. Note that O is the compact open topology, since this has as subbase the sets
GV,W , where V ⊂ X is finite, W ⊆ X , and since

GV,W =
n⋂

i=1

⋃

w∈W

Gvi ,w ,

where V = {v1, . . . , vn}.
Proposition D.1. (G,O) is a locally compact, totally disconnected, second countable,
metrizable Hausdorff space. Moreover, it is a topological group, where we take the
usual composition of elements in the group G.

Proof. Hausdorff: The space X X is Hausdorff as a product of Hausdorff spaces (see
[39, Theorem III.5]), hence also its subspace G is Hausdorff.

Second countable: This follows immediately since X is countable and the set
{Gv,w : v,w ∈ X} is a subbase for O.

Metrizable: Let ρ be the discrete metric on X , i.e. ρ(v, w) := 0 if v = w and
ρ(v, w) := 1 if v 6= w. We define for g, h ∈ G

d(g, h) :=
∞∑

i=1

ρ(g(xi ), h(xi)) .

Then d is a metric on G which induces O (see [18, Theorem 6.20]).
Locally compact: Let v,w ∈ X . If we can show that Gv,w is compact, then any

g ∈ G has a compact neighbourhood. Let (gn)n∈N be a sequence in Gv,w. By the local
finiteness of T`, the set {gn(xi) : n ∈ N} is finite for each i ∈ N. Therefore, there is an
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infinite subset N1 ⊆ N such that the vertices gn1(x1) coincide for all n1 ∈ N1. Denote
this common vertex by g(x1). Next, choose an infinite subset N2 ⊆ N1, such that
gn2(x2) coincide for all n2 ∈ N2 and define g(x2) := gn2(x2) (n2 ∈ N2). Continuing
this process (i = 3, 4, . . .) defines an element g ∈ Gv,w. By construction, g is a
cluster point of (gn)n∈N. This shows that Gv,w is countably compact. But in a metric
space, the notions of countably compactness and compactness are equivalent.

Note that Gx is a profinite group (see [21, Proposition 1.3.5]). Recall that a topo-
logical group is profinite if and only if it is compact and totally disconnected.

Observe that X X is not locally compact (this follows from [39, Theorem V.19]).
Separable: A metric space is separable if and only if it has a countable base (see

[18, Corollary 7.21]).
Totally disconnected: We show that X X is totally disconnected. Assume that

K ⊂ X X is a connected subset such that k1, k2 ∈ K . Since the projections πi are
continuous, each image πi(K ) is connected in X , i.e. a point. Thus πi (k1) = πi (k2)

for each i and therefore k1 = k2. G is totally disconnected as a subspace of X X .
Topological group: Let U be the family of sets GV , where V runs over finite

subsets of X . Note that GV = ∩v∈V Gv,v is open in G. We first show that

B1 := {gU : g ∈ G, U ∈ U}
is a base for some topology Õ on G such that (G, Õ) (with the usual composition in
the group G) is a topological group and then show that Õ = O.
The subbase B1 = {gU : g ∈ G, U ∈ U} generates a topology Õ on G, in particular,
the family B2 of finite intersections of elements in B1 is a base for Õ. Obviously, we
have B1 ⊆ B2. If we can prove B2 ⊆ B1, then B1 is a base for Õ as claimed. Let

B2 =
n⋂

i=1

giUi (gi ∈ G,Ui ∈ U)

be any element in B2 and let h ∈ B2. Then g−1
i h ∈ Ui for each i = 1, . . . , n and

therefore g−1
i hUi = Ui for each i = 1, . . . , n, using that Ui = GVi for some finite

Vi ⊂ X . Thus,

B2 =
n⋂

i=1

hUi = h
( n⋂

i=1

Ui
) ∈ B1 ,

since ∩n
i=1Ui ∈ U. Recall that the map

φ : G × G → G

(g1, g2) 7→ g1g2

is continuous if for each (g1, g2) ∈ G × G and each open neighbourhood Û of g1g2

in G there is an open neighbourhood V̂ of (g1, g2) in G × G such that φ(V̂ ) ⊂ Û .
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So let (g1, g2) ∈ G × G and let Û = ∪hιUι (hι ∈ G,Uι ∈ U) be an open neigh-
bourhood of g1g2 in G, say g1g2 = h j u j ∈ h jU j ⊂ Û with U j = GV j . Then

g−1
2 Gg2(V j )g2U j ⊂ U j . It follows that

(
g1Gg2(V j )

) (
g2U j

) ⊂ g1g2U j = h j u jU j = h jU j ⊂ Û .

Since g1Gg2(V j )× g2U j is an open neighbourhood of (g1, g2) in G ×G, we conclude
that φ is continuous.
The proof of the continuity of the map G → G, g 7→ g−1 is similar. We have to
show that for each g ∈ G and each open neighbourhood Û of g−1 there is an open
neighbourhood V̂ of g such that V̂−1 ⊂ U :
Let g ∈ G and let Û = ∪hιUι (hι ∈ G,Uι ∈ U) be an open neighbourhood of g−1,
say g−1 = h j u j ∈ h jU j ⊂ Û with U j = GV j and define V̂ = Gg−1(V j )

∈ U. Then

gV̂−1g−1 ⊂ U j and

(
gV̂
)−1 ⊂ g−1U j = h j u jU j = h jU j ⊂ Û .

Since gV̂ is an open neighbourhood of g, the map g 7→ g−1 is continuous and (G, Õ)
is a topological group.
We know that {Gv,w : v,w ∈ X} is a subbase for O and

{gU : g ∈ G, U = GV , V ⊂ X finite}
is a subbase for Õ. In fact, O = Õ, because on one hand Gv,w = gGv for any g ∈ G
such that g(v) = w, and on the other hand

gGV =
⋂

v∈V

Gv,g(v) .

Proposition D.2. Let 0 be a subgroup of G and define 0x := 0 ∩ Gx . Then the
following three statements are equivalent:

i) 0 is discrete.

ii) 0x is finite for all x ∈ X.

iii) 0x is finite for some x ∈ X.

Proof. i)⇒ ii): A discrete subgroup H of a Hausdorff topological group G is closed
in G (see [33, Theorem 5.10]). Applying this theorem, the group 0 is closed in G and
0x = 0 ∩ Gx is closed in Gx , hence compact (since Gx is compact). But 0x is also
discrete (being a subgroup of 0), thus finite.
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ii)⇒ iii): This is obvious.
iii)⇒ i): Write 0x = {γ1, . . . , γn}. For any γi ∈ 0x \ {1} there is some (large)

integer mi such that γi /∈ 0 ∩ GS(x,mi ). Let m be the maximum of the m i ’s, then
0 ∩ GS(x,m) = {1}. Since GS(x,m) is open in G, {1} is open in 0, and 0 is discrete
({γ } = {γ }{1} is open in 0).

Remark. By Proposition D.2, the full group G is not discrete if ` ≥ 3, in particular
{g} is not open in G. However, {g} is closed in G, since

{g} = G \
⋃

i∈N
Gxi ,X\{g(xi )} .
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[38] Kari, Jarkko; Papasoglu, Panagiotis, Deterministic aperiodic tile sets, Geom.
Funct. Anal. 9(1999), no. 2, 353–369.



302 BIBLIOGRAPHY

[39] Kelley, John L., General topology, Reprint of the 1955 edition [Van Nostrand,
Toronto, Ont.]. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New
York-Berlin, 1975.

[40] Kimberley, Jason S., Computing the groups acting on products of trees, forth-
coming Ph.D. thesis, University of Newcastle, Australia.

[41] Kimberley, Jason S.; Robertson, Guyan, Groups acting on products of trees,
tiling systems and analytic K-theory, New York J. Math. 8(2002), 111–131 (elec-
tronic).
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[61] Röver, Claas E., Constructing finitely presented simple groups that contain Gri-
gorchuk groups, J. Algebra 220(1999), no. 1, 284–313.

[62] Schupp, Paul E., Cancellation theory over free products with amalgamation,
Math. Ann. 193(1971), 255–264.

[63] Scott, Elizabeth A., A construction which can be used to produce finitely pre-
sented infinite simple groups, J. Algebra 90(1984), no. 2, 294–322.

[64] Serre, Jean-Pierre, Trees, Translated from the French by John Stillwell. Springer-
Verlag, Berlin-New York, 1980.

[65] Stallings, John R., On torsion-free groups with infinitely many ends, Ann. of
Math. (2) 88(1968), 312–334.



304 BIBLIOGRAPHY

[66] Wang, Hao, Proving theorems by pattern recognition. II., Bell System Tech. J.
40(1961), 1–41.

[67] Wiegold, James; Wilson, John S., Growth sequences of finitely generated groups,
Arch. Math. (Basel) 30(1978), no. 4, 337–343.

[68] Wise, Daniel T., Non-positively curved squared complexes, aperiodic tilings, and
non-residually finite groups, Ph.D. thesis, Princeton University, 1996.



Curriculum Vitae

Personal Data

Name: Diego Attilio Rattaggi
Date of Birth: February 22, 1972
Place of Birth: Aarberg, Switzerland
Nationality: Swiss

School

1979 – 1985: Primary School Luzern
1985 – 1992: Kantonsschule Alpenquai Luzern
1992: Matura Typus C

Undergraduate Studies

1993 – 1998: Studies in Mathematics at the ETH Zürich
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