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Abstract

Motivated by the work of Burger-Mozes and Wise, we study groups in a class of co-
compact lattices in Aut(72m) x Aut(T2n), the product of automorphism groups of two
regular trees. From a geometric viewpoint, these groups are fundamental groups of
certain finite square complexes, and therefore infinite, finitely presented and torsion-
free. We are interested in their normal subgroup structures and construct examples
of such groups without non-trivial normal subgroups of infinite index, groups which
are non-residually finite, groups without proper subgroups of finite index, and simple
groups. Moreover, we generalize a construction of quaternion cocompact lattices in
PGL2(Qp) x PGL2(Qy), where p, | are two distinct odd prime numbers. To generate
and analyze all these groups, we have written several computer programs with GAP.

Kurzfassung

Motiviert durch Arbeiten von Burger-Mozes und Wise untersuchen wir Gruppen in-
nerhalb einer Klasse von kokompakten Gittern in Aut(72m) x Aut(72,), dem Produkt
der Automorphismengruppen zweier reguldrer Baume. Diese Gruppen sind aus geo-
metrischer Sicht Fundamentalgruppen von gewissen endlichen Quadratkomplexen,
und deshalb unendlich, endlich préasentiert und torsionsfrei. Wir interessieren uns
fur die Struktur ihrer Normalteiler und konstruieren Beispiele von solchen Gruppen
ohne nicht-triviale Normalteiler von unendlichem Index, Gruppen die nicht residuell
endlich sind, Gruppen ohne echte Untergruppen von endlichem Index, und einfache
Gruppen. Ausserdem verallgemeinern wir eine Konstruktion von quaternionischen
kokompakten Gittern in PGL2(Qp) x PGL2(Q)), wobei p, | zwei verschiedene unge-
rade Primzahlen sind. Um all diese Gruppen zu erzeugen und analysieren, haben wir
mehrere Computerprogramme mit GAP geschrieben.



Introduction

Our main goal is to study aspects related to the structure of fundamental groups
of finite square complexes covered by a product of two regular trees of even de-
grees Tom x J2n. These groups can be seen as cocompact lattices in the product
Aut(Tom) x Aut(T2n) of automorphism groups of the trees. The original motivation
for Burger, Mozes and Zimmer to study such groups was the expected analogy to
the rich structure theory of irreducible lattices in higher rank semisimple Lie groups,
where one has for example the remarkable (super-)rigidity and arithmeticity results of
Margulis. Note that in the rank one case, a similar analogy to lattices in certain sim-
ple Lie groups led to the extensive development of the theory of tree lattices by Bass,
Lubotzky and others in the last 15 years. Besides many analogies, there are also some
fascinating new phenomena. We want to mention one of them, since it has a strong
influence on this work. It is the construction by Burger-Mozes of an infinite family of
cocompact lattices in Aut(92m) x Aut(T2n) (for sufficiently large m and n), which are
the first infinite groups being simultaneously finitely presented, torsion-free and sim-
ple. Moreover, these groups are CAT(0) and bi-automatic, have finite cohomological
dimension, and are decomposable as amalgamated free products of finitely generated
non-abelian free groups, hence are very interesting objects from many different view-
points of infinite group theory.

We proceed now with an outline of the chapters and explain our main results and
methods. Chapter 1 serves as a preparation for the following three main chapters. Af-
ter giving some general preliminaries, we define a certain class of finite 2-dimensional
cell complexes, called (2m, 2n)—complexes. Under different names, they have al-
ready been used by Burger-Mozes and Wise for many interesting constructions. These
(2m, 2n)—complexes X have only one vertex, and the 2-cells are squares with bound-
ary consisting of alternating horizontal and vertical edges, such that the universal cover
of X is the product of two regular trees 7om x T2n. Equivalently, the link of the single
vertex in X is the complete bipartite graph Kom 2n induced by the subdivision of the
edges in the 1-skeleton into m horizontal and n vertical geometric loops. We call the
fundamental group I' = 71(X) a (2m, 2n)—group. By construction, it is an infinite,
finitely presented, torsion-free group, and a cocompact lattice in Aut(72m) x Aut(T2n),
where the group Aut(7") is equipped with some natural topology. Moreover, I" acts
freely and transitively on the vertices of 7oy x J25. Following Burger-Mozes, we
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associate to I certain finite permutation groups. They describe the local actions of
vertex stabilizers, if one projects I' to a factor of Aut(92m) x Aut(72n). These lo-
cal groups can be easily read off from the complex X and play an important role in
constructing groups I with interesting properties. Having in mind some analogy to
lattices in higher rank semisimple Lie groups, it is not surprising that irreducibility is
another important notion. We recall the definition for irreducible lattices in a product
of trees and some criteria proposed by Burger-Mozes. In the remaining sections of
Chapter 1, we discuss some other useful properties of (2m, 2n)—groups, for example
the existence of amalgam decompositions, the behaviour under embeddings, or nor-
mal forms associated to a word in I". This has some applications to the structure of
centralizers.

Groups acting on a product of trees are a rich source for examples of interest-
ing infinite groups. The highlight was certainly the construction of finitely presented
torsion-free simple groups by Burger-Mozes some years ago, thereby answering sev-
eral long-standing open questions in group theory. These groups occur as index 4
subgroups of certain (2m, 2n)—groups. Unfortunately, since m and n have to be quite
big in the given constructions, the presentations of those simple groups turn out to be
very large; any of them would require more than 360000 relators. Therefore, one aim
at the beginning of this work was to understand the construction of Burger-Mozes, and
then to construct smaller finitely presented torsion-free simple groups, refining their
methods or developing new methods. This is done in Chapter 2. Since finite index
subgroups of (2m, 2n)—groups are already finitely presented and torsion-free, the dif-
ficult part is to find simple ones. The most natural strategy to prove that an infinite
group is simple, is to show that (I) there are no non-trivial normal subgroups of infinite
index, and (I1) there are no proper normal subgroups of finite index. In the context of
irreducible lattices in higher rank semisimple Lie groups, part (1) is true by a famous
result of Margulis. He proved proper quotients I'/N to be finite by showing that they
are at the same time amenable and satisfy Kazhdan’s property (T). This ingenious
proof has been successfully adapted by Burger-Mozes to a class of irreducible lattices
in products of trees, having highly transitive local groups, and we have constructed
many explicit examples where this “normal subgroup theorem” applies. A necessary
condition for part (I1) is that the group is non-residually finite, i.e. the intersection
of all finite index subgroups is not the trivial group. We know of two sources for
non-residually finite (2m, 2n)—groups. One is a sufficient criterium of Burger-Mozes,
the other is a concrete example of Wise. However, Wise’s example has non-trivial
normal subgroups of infinite index, and also all non-residually finite groups coming
from the Burger-Mozes criterion have non-trivial normal subgroups of infinite index
by construction. Since subgroups of residually finite groups are again residually finite,
we follow the strategy of Burger-Mozes to inject a non-residually finite group into a
group satisfying the normal subgroup theorem. The m1-injection is obtained geomet-
rically, using an appropriate embedding of the corresponding finite square complexes.
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Now, such a non-residually finite group G without non-trivial infinite index normal
subgroups has a subgroup H of finite index satisfying condition (I1), namely the inter-
section of all finite index subgroups of G. If one can moreover guarantee that H still
satisfies the normal subgroup theorem, then H is a simple group. Nevertheless, a ma-
jor problem in general is to determine explicitly this simple subgroup H, given G. We
were able to do this in some examples by taking an appropriate embedding of Wise’s
non-residually finite (8, 6)—group and using the fact that an explicit non-trivial element
is known, which belongs to any finite index subgroup. This idea of construction led to
a finitely presented torsion-free simple subgroup of index 4 of a (10, 10)—group, and to
many more simple groups. Along the way, we have constructed new small (2m, 2n)-
groups without non-trivial normal subgroups of infinite index, and new non-residually
finite examples. They can be used as building blocks to improve lower bounds on
m and n in several theorems of Burger-Mozes about infinite families of groups with
interesting normal subgroup structures. By a slight variation of the above construction
of simple groups, we also have produced a group with non-trivial normal subgroups of
infinite index, but without proper finite index subgroups. Moreover, using an idea of
Wise, we give an example of a finitely presented group which is not virtually torsion-
free. The search for all these groups has been enormously simplified, and even made
possible to some extent, by several GAP-programs we have written, in particular one
which generates all (2m, 2n)—groups for given m,n € N. The same program can
also be used to generate all possible embeddings of a given (2m, 2n)—group. We have
written many more programs related to (2m, 2n)—group, for example one which com-
putes local groups. They are described in Appendix B. In the remaining sections of
Chapter 2, we study on the one hand an example which almost satisfies the normal
subgroup theorem, give ideas how to construct and how not to construct an explicit
proper infinite quotient, and on the other hand we present several other groups that
are candidates for being finitely presented torsion-free simple groups, including some
very small ones. According to several computer experiments, it seems reasonable to
hope that some of them indeed are simple, but proofs appear to be challenging.

Let p,1 =1 (mod 4) be two distinct prime numbers. Using a construction based
on the multiplication of Hamilton quaternions, Mozes has associated to any such pair
(p, I) acocompact lattice I'p | in PGL2(Qp) x PGL2(Q)), which is moreover an irre-
ducible (p + 1, 1 4 1)—group, induced by the actions of PGL2(Qp) and PGL2(Q) on
their Bruhat-Tits trees 71 and 771, respectively. Mozes originally used the groups
I"p,1 to define certain tiling systems, so-called two-dimensional subshifts of finite type,
and to study a resulting dynamical system. Later, the group I"13 17 appears as a build-
ing block in the construction of a non-residually finite (196, 324)—group and in a con-
struction of an infinite family of finitely presented torsion-free virtually simple groups
by Burger-Mozes. In Chapter 3, we first recall the definition of I |. The fact that I' |
isa (p+1, 14+1)—group can almost be deduced from an old result of Dickson about the
existence and uniqueness of the factorization of integer quaternions. Inspired by the
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construction and properties of a certain cocompact lattice in SO3(R) x PGL2(Qp) in
Lubotzky’s book, which was used there to generate Ramanujan graphs and to solve the
Banach-Ruziewicz problem, we prove that I | is a normal subgroup of index 4 of the
group (modulo its center) of invertible elements in the Hamilton quaternion algebra
over the ring Z[1/p, 1/1] < Q. The same idea using overrings gives explicit realiza-
tions of I'p| as a subgroup of SO3(Q) and PGL>(C). Moreover, we explicitly define
for each odd prime number q different from p and I, a homomorphism from I", | to the
finite group PGL2(Z/qZ) and determine its image. Recently, Kimberley-Robertson
have formulated a very simple conjecture for the abelianization of the groups I'p,
based on computations in many examples. We do not know how to prove this conjec-
ture, but can express it in terms of the number of commuting quaternions in certain
generating sets. This could shed some light on the hidden nature of this conjecture.
The general assumption p,| = 1 (mod 4) is made to guarantee the existence of a
square root of —1 in the fields Qp and Qy, respectively, which is needed in the explicit
definition of I'p ;. However, by adapting several parts in the definition of "), we
are able to generalize it to the case of prime numbers p,| = 3 (mod 4) and to the
mixed case p = 3 (mod 4), | = 1 (mod 4). Those new groups, also called I"p |, are
subgroups of PGL2(Qp) x PGL2(Qy), and we prove that they are (p+1, | +1)—group,
too. In some subcases for p and I, there is a second possible definition of I'p |, which
leads to a different but similar group. The Kimberley-Robertson conjecture can be
extended to all these generalized groups. They have a certain normal subgroup of in-
dex 4, a cocompact lattice in PSL2(Qp) x PSL2(Q)). It seems that the abelianization
of this subgroup does not depend on p and I, provided that p, | > 5. Let now I" be any
(2m, 2n)—group. We say that the horizontal element a € T" and the vertical element
b € I' generate the anti-torus (a, b) in T, if a and b have no commuting non-trivial
powers. This notion was introduced by Wise, and essentially used in his constructions
of the first examples of non-residually finite groups in the following three important
classes: finitely presented small cancellation groups, automatic groups, and groups
acting properly discontinuously and cocompactly on CAT(0)-spaces. Only few exam-
ples and no general criterion for the existence of anti-tori are known. We observe that
in a commutative transitive (2m, 2n)—group, a and b generate an anti-torus if and only
if they do not commute, in particular either (a, b) is isomorphic to the abelian group
7 x Z, or (a, b) is an anti-torus. Then we prove that the groups I"p| are commutative
transitive, using a similar property for integer quaternions, and we therefore get plenty
of anti-tori. Combining this with results on centralizers for general (2m, 2n)—groups,
we get some interesting statements on commuting elements and anti-tori in I'p |, as
well as for integer quaternions after a transformation from I"p | back to H(Z). We also
discuss the existence of free anti-tori in I' |, related to free subgroups in the group of
invertible rational quaternions, and to free subgroups of SO3(Q). As a corollary, we
can prove that certain pairs of integer quaternions, for example 1 + 2i and 1 + 4k, do
not generate a free group. All results and constructions of groups I' | in this chapter
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are illustrated by many examples and very explicit computations.

In Chapter 4, we discuss miscellaneous topics related to (2m, 2n)—groups I'. First,
we naturally associate to I" a finite set of unit squares, so-called Wang tiles, and prove
that there always exists a doubly periodic tiling of the Euclidean plane with these
tiles. As a consequence, I has a subgroup isomorphic to Z x Z. This is not clear
in general for groups acting cocompactly and properly discontinuously on a CAT(0)-
space. In a second section, we illustrate a result of Burger-Mozes by constructing
certain examples of irreducible non-linear (2m, 2n)—groups. Then, we study possible
connections between irreducibility, finite abelianization, and transitivity properties of
the local groups, illustrated for small groups I". In a further section, we recall Mozes’
definition of two infinite families of finite regular graphs associated to I'. In the case
of the groups I'p |, these graphs are Ramanujan. Afterwards, we compute the growth
of I". Although (2m, 2n)—groups can be algebraically very different, from a geometric
viewpoint they all look the same, and therefore this computation is easy. Finally, we
show that any (2m, 2n)—group I" is efficient and has deficiency m +n — mn.

Appendix A is a big reservoir of supplementary examples. In addition, we de-
scribe explicit amalgam decompositions for several important examples of the pre-
ceding chapters.

Appendix B contains the ideas and the GAP-code for the main computer programs
which led to the constructions of most examples in this work.

In Appendix C, we first compile some known lists of finite (quasi-)primitive per-
mutation groups and then give classifications of (2m, 2n)—groups with respect to cer-
tain easily computable properties. It can be seen that even for small m and n there is
an enormous diversity of such groups.

Starting with the question of KuroS in 1944 on the existence of finitely generated
infinite simple groups, we list in Appendix D in chronological order some important
developments in the area of finitely presented simple groups and amalgams of free
groups. The second part of this appendix is devoted to a review of the topology of the
group of automorphisms of a regular tree.

11



Acknowledgments

First of all, I would like to thank my advisor Marc Burger: for accepting me as his
Ph.D. student, for taking me to a conference in Crete in July 1999, which aroused my
interest in groups acting on trees, and for giving me a lot of freedom to develop and
pursue my ideas.

I want to thank Shahar Mozes for being my co-examiner.

I am very grateful to Guyan Robertson for his interest in my work and for inviting
me to Newcastle, Australia in August 2002. Chapter 3 of this thesis grew out of many
stimulating discussions with him during this 4 weeks stay.

I am indebted to Michele Marcionelli who was a great help when | tried to write
my first GAP-programs in September 1999.

Many thanks to all the members of the “Assistance Group 4” at the ETH Zirich
for creating a friendly atmosphere.

My warmest thanks go to my family, in particular to Migge, Remo and Tina for
their love and constant support.

12



Chapter 1

Preliminaries, notations, definitions

In Section 1.1, we fix some general notations and provide some basic definitions,
mainly concerning groups and graphs, for the convenience of the reader. Most terms
should be standard and well-known. In Sections 1.2 to 1.10, we introduce some termi-
nology and several concepts which will be extensively used in the subsequent chapters.
Many ideas have been taken from the work of Burger-Mozes ([16, 17]), to some ex-
tent with modified notations. Most statements in these sections are reformulations or
direct consequences of results given in [16, 17] or Wise’s Ph.D. thesis ([68]), only a
few results are new.

1.1 Basic definitions and notations

We divide this section into subsections on numbers, groups, permutation groups,
graphs, groups acting on trees and lattices.

Numbers

We denote by N, No := N U {0}, Z, Q, R and Qp (where p is a prime number)
the positive integer, non-negative integer, integer, rational, real and p-adic numbers,
respectively.

Groups

The trivial group as well as the identity element in a group are denoted by “1”. In the
following, let G be a group, S ¢ G asubset, H < G a subgroup, N < G a normal
subgroup, g, 91, 92, g3 € G elements and k € N a positive integer. Note that all the
signs C, <, < do not exclude equality here, and elsewhere in this work.

We write G /N for the quotient group, G for the direct product G x ... x G of k
copies of G and G*X for the free product G * ... % G of k copies of G. The finitely

13



14 CHAPTER 1. PRELIMINARIES, NOTATIONS, DEFINITIONS

generated free group isomorphic to Z*X is denoted by F.

Let (S) be the subgroup of G generated by the set S, and let ((S)) s be the normal
closure of S in G, i.e. the smallest normal subgroup of G containing S. For a finite
subset S = {901, ..., gk}, we usually drop the brackets and write (g1, ..., Qk)c Or
{91, ..., 9k)a. Also the subscript “G” is often omitted if the ambient group G is
evident. We denote by [g1, g2] := glgzgl‘lgz‘1 the commutator of g; and go. A
group G is called commutative transitive, if [g1, g2] = [02, 93] = 1, 01, 92, 93 # 1,
always implies [g1, g3] = 1, i.e. if the relation of commutativity is transitive on the
non-trivial elements of G. The expressions [g1, g2, where g1, g2 € G, generate the
commutator subgroup [G, G]. We write Gab .= G/[G, G] for the abelianization
of G. A group G is perfect if G = [G, G], it is simple if 1 and G are the only normal
subgroups of G and it is residually finite if the intersection of all normal subgroups of
finite index of G is the trivial group 1. We denote by Z(G) or ZG the center of G,
i.e. the normal subgroup {x € G : xg = gx forall g € G}, by Zg(g) the centralizer
{x € G : xg = gx} of g and by Ng(H) the normalizer {x € G : xHx™1 = H}
of H. A subgroup H is called proper, if H # G, the quotient G/N is called proper if
G/N # G. We write [G : H] for the index of H in G, and |G| for the order (if it is
finite). A group is torsion-free if any non-trivial element has infinite order. We say that
G has virtually some property (P), or is virtually (P), if G has a subgroup of finite index
with this property (P). The groups of automorphisms, inner automorphisms and outer
automorphisms of G are denoted by Aut(G), Inn(G) and Out(G) = Aut(G)/Inn(G),
respectively. For a finitely generated group G, let d(G) be the minimal number of
generators of G. If we write

G = (X1, ..y Xk | F1, ..., 1), G = (X1, o.vy Xk | ri=1,...,n =1)
orG = (X1,..., Xk | S),where S = {ry, ..., n}is afinite set of freely reduced words
in Fx = (x4, ..., Xk), then the three expressions are finite presentations of G, and we

have G = F¢/{(S) k.

LetZn :=Z/nZ = {0+nZ,1+nZ,...,(n — 1)+ nZ} be the cyclic group of
order n (not to confuse with “n-adic integers” which will never appear in this work).
We write Dy, for the dihedral group of order 2n.

Permutation groups

A very good introduction to permutation groups is the book of Dixon-Mortimer [25].
Let ©2 be a non-empty set. The group of all bijections of & under composition of
mappings is denoted by Sym(<2). If n € N, we write Sy := Sym({1, ..., n}) for the
symmetric group on n letters and A, for the alternating group, the index 2 subgroup
of Sp consisting of even permutations. Let G be a permutation group, i.e. a subgroup
G < Sym(£2). The degree of G < Sym(€2) is the cardinality of the set 2. For
k € N, the permutation group G is said to be k-transitive if for every pair (w1, . . ., wk),
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(&1, ..., &) of k-tuples of distinct points in €2, there exists an element g € G such
that g(w1) = &1, ..., g(wk) = &. Let G < Sym(L2) be a transitive (i.e. 1-transitive,
according to the definition above) permutation group. A non-empty subset A C Q2 is
called a block for G, if for each g € G either g(A) = A, or g(A) N A is the empty
set . We say that G is primitive if it has no non-trivial blocks on €2, i.e. no blocks
except Q2 itself and the one-element subsets {w} of 2. See Appendix C.1 for a list of all
finite primitive permutation groups of even degree up to 14. A non-trivial permutation
group G < Sym(£2) of a set Q2 is called quasi-primitive, if every non-trivial normal
subgroup of G (in particular G itself) acts transitively on ©2. See Appendix C.2 for a
list of all quasi-primitive subgroups of Sy, which are not 2-transitive, n < 8. Observe
that primitive groups are quasi-primitive, and that quasi-primitive groups are transitive
by definition.

Two permutation groups G < Sym(2) and H < Sym(Q’) are called permutation
isomorphic if there exists a bijection f : @ — Q' and an isomorphism of groups
¥ : G — H such that the following diagram commutes for each g € G

Graphs

For the definition of a graph, we follow the viewpoint of Serre ([64, Section 2.1]): A
graph X is a pair of sets (V (X), E(X)), consisting of the vertex set V (X) # ¥ and
the edge set E(X), equipped with origin and terminus maps o,t : E(X) — V(X)
and an inverse map — : E(X) — E(X) such that for each edge e € E(X) we have
€+#£e e=-eando(e) =t(E). Anedgee € E(X) is called a loop if o(e) = t(e). A
geometric edge is a set {e, €}, consisting of an edge e € E(X) and its inverse edge €.
Let X1, X2 € V(X) be two vertices and let k € N be a number. A path (of length k
from X1 to x2) in the graph X is a sequence (e, ..., ex) of edges such that o(e1) = X1,
t(ex) = x2and t(ej) = o(ej;1) foreach 1 < i < k. The path is without backtracking
or reduced if always ej 11 # €. The graph X is said to be connected if given any two
vertices X1, X2 € V (X)), there is a path from x4 to x2. Two distinct vertices x1 and x»
are neighbours, if there is a path of length 1 from x4 to x». A circuit (of length k) is a
path (e, ..., ex) without backtracking such that t(ey), ..., t(ex) are distinct vertices
and t(ex) = o(e1). Note that a circuit of length 1 is a loop. A tree is a connected graph
without circuits. The valency of a vertex x € V (X) is the number of edges e € E(X)
such that o(e) = x. A graph is called k-regular if each vertex has valency k. We
denote by 7 the ¢-regular tree. It has infinitely many vertices if £ > 2. There is an
obvious distance function (the combinatorial distance) on the set of vertices V (77),
such that neighbours have distance 1. For a vertex x € 77 and a number k € N,
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let S(x, k) be the k-sphere, i.e. the set of vertices in 7; of combinatorial distance k
from x. A geodesic ray in 77 is an infinite sequence (e1, €2, ...) of edges ¢; € E(77)
such that for each i € N we have t(ej) = o(ej;+1) and ej11 # & . Two geodesic rays
are said to be equivalent if their intersection (as set of edges) is infinite. The boundary
at infinity 0., 77 is defined as the set of equivalence classes of geodesic rays.

Let m, n € N. The complete bipartite graph X = K. is a graph where V (X) is
divided into two disjoint subsets V1(X) and V2(X) of cardinality m and n respectively,
such that for each e € E(X) the origin o(e) and the terminus t(e) are in different sets
Vi (X) and such that given any two vertices x; € V1(X), X2 € Vo(X), there is a unique
edge e € E(X) from x1 to x».

Groups acting on trees

An automorphism ¢ of a graph X is a pair of bijective maps ¢1 : V(X) — V(X),
¢2 : E(X) — E(X) such that for each edge e € E(X) we have ¢1(0(e)) = 0(¢p2(e)),
1(t(e)) = t(p2(e)) and ¢2(€) = po(e). The group of automorphism of X is denoted
by Aut(X). Note that an element ¢ of Aut(77) is already determined by the bijection
o1 : V(Te) — V(T7), so we usually understand an element in Aut(77) as a bijective
map on the vertices V (7) which respects the edges. We endow the set Aut(77) with
the topology of pointwise convergence. See Appendix D.2 for a precise definition.
Informally, two elements in Aut(77) are close with respect to this topology, if they do
the same on a large set of vertices of 7. It is well-known that Aut(77) is a locally
compact, totally disconnected, second countable, metrizable Hausdorff space and a
topological group (see Proposition D.1 for elementary proofs of these facts).

A group G acts on the regular tree 77 if there is a homomorphism G — Aut(77).
Let H < Aut(77) be a subgroup, x € V (77) a vertex and S a subset of vertices of 75.
We write H (S) to denote the pointwise stabilizer

H(S) := Staby (S) = {h € H : h(x) = x foreach x € S},

and use the notation H(x) := H({x}). We say that H is locally transitive, locally
quasi-primitive, locally primitive, or locally 2-transitive, if for each vertex x € V (77)
the stabilizer H (x) induces a transitive, quasi-primitive, primitive, or 2-transitive per-
mutation group, respectively, on the 1-sphere S(x, 1) (equivalently, on the set of edges
with origin x). Moreover, we call H locally co-transitive, if H(x) acts transitively on
S(x, k) for each k € N and each vertex x of 7.

We recall now the definition of the universal group U (F) from [16, Section 3.2]
or [17, Chapter 5]. Let ¢ > 3 and write here Eyx for the set of edges in 7; with

origin X € V(7). A legal edge coloringisamapi : E(7;) — {1,..., ¢} such that
i(e) = i(e) for each e € E(J%), and such that the restrictioni|g, : Ex — {1,...,¢}

is bijective for each x € V (7%). Given a permutation group F < Sy, the group

U(F):={g € Aut(Ty) :iogo(ilg) t e F foreach x € V(7;)}
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is up to conjugation in Aut(7%) independent of the legal edge coloring i, and is called
the universal group. See [16, Section 3.2] for some properties of U (F).

Lattices

Let G be any locally compact group. A subgroup I' < G is called a lattice if it is
discrete and G/ I" carries a finite G-invariant measure. If moreover G/ I' is compact
then I" is a cocompact lattice. Our main examples for G will be G = Aut(77) with the
topology mentioned above and G = Aut(72m) x Aut(T2,) with the product topology.
Note that a subgroup H < Aut(77) is discrete if and only if the stabilizer H(x) is
finite for each vertex x € V (77), see Proposition D.2 for a proof.

1.2 Square complexes and (2m, 2n)—groups

On an intuitive level, a square complex is a 2-dimensional cell complex, such that
the 2-cells are “squares”. We want to study square complexes which have additional
quite restrictive properties. They are called 1-vertex VH-T-square complexes in [17]
or complete squared VH-complexes with one vertex in [68]. We will just call them
(2m, 2n)—complexes to emphasize the parameters m and n. Before giving the precise
definition, we need some preparation. Fix two numbers m, n € N and let ({x}, E) be
the graph with one vertex x and m 4+ n geometric loops. We use the following notation
for the edges: E = E u E,, where

En:={as....am an% ..., a7}, Eyi={b1,...,bn, byt ..., bTY)

and ! stands here for the inverse map ~ in a graph. The advantage of this notation
will become clear when we define corresponding groups and — will be the inversion
in the group. We call any set {a;, ai‘l}, I =1,...,m,ahorizontal geometric loop and
{bj, bj‘l}, j =1,...,n, avertical geometric loop. A square is an expression aba’b’
such that {a,a’} c Ep, {b,b’} ¢ E,. We visualize it as a 2-dimensional cell with
oriented boundary as in Figure 1.1 (left hand side).

/
X a X X‘ al X
b’/ b by v bs
X X X‘ X
a ag

Figure 1.1: The squares aba’b’ and albz‘lalbl
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See the right hand side of Figure 1.1 for an explicit example of a square. If it does not
matter where to start to read off the edges of the boundary, or if we identify squares that
are reflected along an edge, then we are automatically led to the following definition.
A geometric square is a set

{aba’b’, a’b’ab, a—*b’~ta’~tb~t, a~tb~ta~lb'~!} =: [aba'b]],
where {a,a’} C Ep, {b, b’} C E,. Note that
[aba’b’] = [@'b’ab] = [a~bta" b1 = [a~tb~tatb ).

Any of the four squares in the set {aba’b’, a’b’ab, a~1b'~1a’~1b~1, a’~tb~la—1p'~1}
represents the geometric square [aba’b’]. Given a non-empty set S of geometric
squares, the link Lk(S) is defined as the graph with vertex set E = Ex u E, and
an edge set, where each square aba’b’ represented in S contributes an edge s such that
0(s) = a, t(s) = b1, and its inverse 5 to this edge set of Lk(S). In other words,
each geometric square [aba’b’] in S contributes four geometric edges to Lk(S), cor-
responding to the four “corners” in any of the four squares representing [aba’b’]. A
(2m, 2n)—complex is a set X consisting of exactly mn geometric squares such that the
link Lk(X) is the complete bipartite graph Kom 2n (Where the bipartite structure is in-
duced by the decomposition E = Ep U E,). This link condition means that given any
a € Epand b € E,, there are unique a’ € En and b’ € E, such that [aba’b’] € X.
Note that this definition automatically excludes geometric squares of the form [abab]
(so-called projective planes) ina (2m, 2n)-complex X.

We usually think of X as a finite 2-dimensional cell complex which is built by
attaching mn squares of the form aba’b’ to the 1-skeleton ({x}, E), according to the
labels a, b, @’, b’" in the squares. By the link condition, the universal covering space
X of X is the product of two regular trees 7om x T2n. In fact, both conditions are
equivalent, see [17, Proposition 1.1] or [68, Theorem 11.1.10]. By construction, the
fundamental group I' := m1(X, X) < Aut(T2om x T2n) of a (2m, 2n)—complex X is
a finitely presented torsion-free cocompact lattice, acting freely and transitively on
the vertices of Tom x T2n. The decomposition Ep L E, of E guarantees that I does
not interchange the factors of 9oy, x J2n, 1.6. T" is in fact a subgroup of the direct
product Aut(Tom) x Aut(T2n) < Aut(Tom X T2n). Such a group I will be called a
(2m, 2n)—group. A finite presentation of I" can be directly read off from X:

[ =(ag,...,am,b1,..., by | aba’b’ =1, if [aba’b’] € X).

Note that all four representatives of a geometric square [aba’b’] € X give the same
relation in ", in particular we get a presentation of I with m 4 n generators and only
mn relators. We write Ry, for such a set of mn relators. This presentation is optimal
in some sense, see Section 4.6. If we give explicit examples of (2m, 2n)—groups T,
we usually specify only the set Rp.n, Since it completely determines I'. Observe that
(a1, ...,am)r and (bs, ..., by)r are free subgroups of I", see Corollary 1.11(1).
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Given a (2m, 2n)—group I' by its presentation (ai, ..., @8m, b1, ..., bn | Rmn), We
can always define the surjective homomorphism of groups
I' —> Z%
ai—~> 1+27Z,04+27Z), i=1....,m

bj > 0422,14+27), j=1,....n.

Obviously, the kernel of this homomorphism is a normal subgroup of I" of index 4. We
always denote this subgroup by I'g. Geometrically, it can be seen as the fundamental
group of a corresponding finite square complex Xq with 4 vertices, a 4-fold regular
covering space of X.

We define an automorphism of a (2m, 2n)—complex X as a graph automorphism
of the 1-skeleton ({x}, E) which induces a permutation on the set of geometric squares
of X. The group of all such maps is denoted by Aut(X).

1.3 Projections and quasi-center

Let I" be a (2m, 2n)—group. Since I" is a subgroup of Aut(7>m) x Aut(72,), we have
two canonical projections, the homomorphisms of groups

pry: ' — Aut(T2m) and pro: I' = Aut(T2n) .

We define the two groups H; := pr; (I'), i = 1, 2, where the closure of pr; (') is taken
with respect to the topology of Aut(77) described in Section 1.1 or Appendix D.2. Let

QZ(Hi) :={h € Hi : Zy, (h) isopen in H;}

be the quasi-center of H;. See [16] for some properties and examples of this group.

Recall that I" acts freely on the vertices of 72m x T2n, but in general, it is possi-
ble that non-trivial elements of I" act trivially on (exactly) one factor of T2m x T2n.
Therefore, we define the group

Ag:=pry(I' N (H1 x {1})) = pry(T N (Aut(Tom) x {1})) < Aut(Tom)
and similarly
Ao = pry(I' N ({1} x H2)) = pro(I' N ({1} x Aut(T2n))) < Aut(Tan) .

Observe that
Ai = pr;(ker(pra_;)) = ker(prg_;) < T’

and note that A; < QZ(H;), since every discrete normal subgroup of H; is contained
in QZ(H;), as explained in [16]. In particular, we conclude that QZ(H;) = 1 implies
an isomorphism I" = pr,_; (I') and in this case we can naturally see I" as a subgroup
of Aut(Tom), if i = 2, or as a subgroup of Aut(72p), ifi = 1.
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1.4 Local groups

Let X be a (2m, 2n)-complex and I" its fundamental group. We turn now to the def-
inition of their finite “local groups” P, and P,, which will play a major role in the
construction of interesting examples. Let E,ﬂk) be the set of reduced paths of combi-
natorial length k € N in the vertical 1-skeleton X,(,1> = ({x}, E,) of X. We identify
elements in E,Sk) with freely reduced words of length k in the fundamental group
nl(xf,l), X) = (b1, ...,bn) = Fn. The set Er(]k) is defined analogously and identified
with the set of reduced words of length k in the free group (a1, ..., am) = Fm. Note
that EY = E, and E\" = Ep.
There is a family of homomorphisms

k ~
PO Fm= (a1, ..., am) = SymEX) = Sy on 11
and a family of homomorphisms
,Ol(}k) . Fn = (b]_, ey bn) —> Sym(Er(]k)) = SZm-(Zm—l)k—l .
We denote their images by
PY = im(pi") = (o3 (@1). ... o (@m))
PY = im(p() = (oM (by). ... o (bn)) .
If k = 1, we omit the superscript “(1)” and simply write
ph (@1, ..., am) = (on(@1), ..., ph(@m)) = Py < Sym(E,) = S,
where for the isomorphism Sym(E,) = Sy, we always use the explicit identification

E,=({1,...,2n}
bj < j
bt e2n+1—],

j=1,...,n,and
py 1 (b1, ..., bn) = (op(b1), ..., pu(bn)) = Ph < Sym(En) = Som,
via the identification (fori =1, ..., m)

Ep = (1,....2m)
i < i

ai_1<—>2m+1—i.



1.4. LOCAL GROUPS 21

Now, it is time to give the definition of pr(]k) and pf,k). First, we take k = 1. The
two homomorphisms pp and p, are explicitly constructed as follows: each geometric
square [aba’b’] of X defines

pr@)(b' Y :=b

pn@) (™Y =1’
pu(b)@t) :=a’

pp(®)@ ™ =a,

as visualized in Figure 1.2.

a’ a’ a’ a’
<—
b,mb blﬂb b,mb b,mb
—
a a a a

Figure 1.2: Visualizing the definition of pp, py

By the link condition in X, these 4mn expressions (going through all mn geometric
squares of X) indeed uniquely determine pn, and p,. If kK > 2, the homomorphisms

pr(]k) and ,ol(,k) are defined in a similar way, see [17, Chapter 1]. We give an inductive

definition of pr(]k), the homomorphism ,ol()k) can be defined analogously: Leta € Ep
andb = b’ -b” € EX, where we write a dot for the concatenation of paths and where

b’ e E, b € EX™. Then

P (@) (b) := pn(@)(B) - oY (py (B (@) (B,

see Figure 1.3 for an illustration.

Starting with a (2m, 2n)—complex X, the finite permutation groups Pv(k) and Prfk)
can be effectively computed, see Appendix B.4 for an implementation in GAP ([29])
for k = 1 and k = 2. These groups describe the local actions of the projections of I"
on k-spheres in 72, and Tom, respectively. More precisely, let x,, be any vertex in 7,
and let S(x,, k) be the k-sphere around x,, then the two groups

P® < sym(E®) and Ha(x,)/H2(S(Xy, k) < Sym(S(x,, k))

are permutation isomorphic (see [17, Chapter 1]). The analogous statement holds for
Pkfk) and Hi(xn)/H1(S(Xn, k)), where xy, is any vertex in Tom.
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b” A A o7 (pud)(@) (0"

pu (D) (@)
+

b" A A pn(@) (D)

L p
a

Figure 1.3: Inductive definition of ,or(]k), k>2

Taking this identification for k = 2
P = Hi(h)/H1(S(xh, 2)) < Sym(S(xn, 2)) ,
we define the subgroup
Kp := Stabpa (S(xh, 1) U S(yh, 1)) < P2,

where yp, is any neighbouring vertex of x in 2m. In our applications, the definition
of Ky will be independent of the choice of y, (up to permutation isomorphism). See
Appendix B.4 for the GAP-program ([29]) computing Ky, if m = 3. Analogously, one
defines the group K, < P,,(2>.

For each k € N, there is a commutative diagram

k+1
et

(@i, ..., am) — pHD _ Sym(Ef,k“))

Pk
k i
¥

P < Sym(ES)

where p is the homomorphism restricting the action of Pv(kH) on the (k + 1)-sphere
S(Xy, k + 1) to the k-sphere S(x,, k). In particular, the order \Pv(k)\ divides |Pv(k+1)\.
Note that

ﬂ kerpr(]k) ~ A; and ﬂ kerp® = A,.

keN keN



1.5. IRREDUCIBILITY 23

Lemmal.l. Letl’ = (ai,...,am,b1,...,bn | Rmn) be a (2m, 2n)—group.

(la) Let AC (a1, ...,am). Ifforeacha € Aandb € E, we have ph(a)(b) = b and
pv(b)(@) € A, then A C A1.

(1b) Let B C (bq,...,bn). Ifforeachb € B and a € E, we have p,(b)(a) = a and
pn(@)(b) € B,then B C A».

Proof. The assumptions made in (1a) directly imply

Ac [ kerpy® = As.
keN

(1b) follows similarly. O

Because of the importance of the local groups Py, and P, in our study of X, we will
sometimes call X a (P, P,)—complex and the corresponding fundamental group I" a

(Ph, Py)—group.

1.5 Irreducibility

An important notion in the theory of lattices in higher rank semisimple Lie groups is
“irreducibility”. In our situation, we adopt the generalized definition given in [17]. A
(2m, 2n)—group T" is called reducible if pry(I") < Aut(T2m) is discrete. Otherwise, I'
is called irreducible. A (2m, 2n)-complex X is said to be reducible (irreducible) if
and only if I' = w1(X, x) is reducible (irreducible).

Remarks. (1) Recall that a subgroup of Aut(77%) is discrete if and only if its vertex
stabilizers are all finite, see Proposition D.2 for a proof.

(2) Itis shown in [17, Proposition 1.2] that pry(I') < Aut(72m) is discrete if and
only if pro(I") < Aut(T2n) is discrete.

(3) Note that pry(T") is never dense in Aut(72m), i.e. H1 S Aut(92m), in contrast to
the behaviour of “irreducible” lattices in higher rank semisimple Lie groups.

(4) Interms of orders of the local groups Prfk) and Pv(k), the group I is reducible if

and only if the set {| Pék)|}keN is bounded, if and only if {| P,,(k)|}keN is bounded.

In geometric terms, the (2m, 2n)—complex X is reducible if and only if X admits
a finite covering which is a product of two graphs (see [17, Chapter 1]). Therefore, a
reducible (2m, 2n)—group I" is virtually a direct product of two finitely generated free
groups, in particular I" is residually finite. As a consequence, a non-residually finite
(2m, 2n)—group I" has to be irreducible. In general, no algorithm is known to deter-
mine whether a given I" is reducible or not. However, a useful sufficient criterion for
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irreducibility, based on the Thompson-Wielandt theorem (see e.g. [16, Theorem 2.1.1]
for a formulation of this theorem), is presented in [17, Proposition 1.3].

We will strongly use the criteria (1) and (2), divided into (1a), (1b), (2a) and (2b),
of the following proposition which is based on results in [16, 17]. The third criterion,
i.e. part (3a) and (3b), will only be used in Theorem 2.27, where (1) does not apply.

Proposition 1.2. LetT" = (a1, ..., am, b1, ..., bn | Rmn) be a (2m, 2n)—group.

(1a) Suppose thatm > 3 and P, = Aony. Then I' is irreducible if and only if

@ _ Az ™ 2m)! /(2m — 1)1\ "
‘Ph |—|A2m|(2m ) = 2 5 .

(1b) Suppose that P, = Azn, n > 3. Then I is irreducible if and only if

|Pv(2)‘ — Ao (|A2n|)2n _ (2n)! ((Zn — 1)!)2n.

2n 2 2

(2a) The group I" is reducible if and only if |P,**?| = |P,| for some k € N.

k+1
S =P

(2b) The group I" is reducible if and only if | P v(k)| for some k € N.

(3a) Let P, < Som be transitive and suppose that for each k € N there exist
freely reduced words b € (b1,...,bs) and a € (ai,...,am) with |a] = k
(k) _ ~ o n—1
such that p, "(b)(a) = a, and p,(b) acts transitively on E, \ {a”"~}, where
b := pr(]'b')(a)(b) and a = a’ - a” is the decomposition of a with a’ € Er(]k_l),
a” € Ep (see Figure 1.4). Then pry(T") is locally co-transitive, in particular I’

is irreducible.
a/ a//
b 3 3 3 3 AD
;/ Z//

Figure 1.4: Notations in Proposition 1.2(3a)
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(3b)

Let P, < Son be transitive and suppose that for each k € N there exist freely
reduced words a € (aiz,...,am) and b € (b1, ..., bny) with |b| = k such that
pﬁk)(a)(b) = b, and such that pn (&) acts transitively on E, \ {b”‘l}, where
d:= o ()@ andb = b’ - b” with b’ € ESP, b” € E,. Then pry(TI') is
locally oco-transitive, in particular I" is irreducible.

Proof. We only prove part a) of each statement, since part b) is completely analogous.

(1a)

(2a)

(3a)

The statement follows directly from [16, Proposition 3.3.1].

Obviously, |Prfk+1)| = |Pkfk)| for some k € N is a necessary condition, since
{l Pék)l}keN is bounded for a reducible I". We want to prove now, that it is also

sufficient for the reducibility of T". It is enough to show |P**?| = P+,
First observe that for all vertices xn € T>m we have
H1(S(Xnh, k 4+ 1)) = H1(S(Xn, k)) < Hi(xn), (1.1)

since
1= [P /]PY| = [Ha(S(xn, k) / Ha(S(xn, k +1))] -

Assume now that o 1
P2 > )

It follows that there is an element g € H1(S(Xn, k+ 1)) \ H1(S(Xp, k + 2)). But
then, for at least one neighbouring vertex yp of xp,

g € Hi(S(yn, k) \ H1(S(yn, k + 1)),
contradicting equation (1.1).

We have to show that prq(I")(xn) acts transitively on S(xp, k) for each k € N.
This is done by induction on k using the identification (see [17, Chapter 1])

(b1, ...,bn) ={y €T : pry(y)(Xn) = Xn}.

For k = 1, the statement is obvious since Py is transitive by assumption. To
prove the induction step k — k + 1, note that pry(I")(xn) acts by induction
hypothesis transitively on S(xp, k), hence we have at most 2m — 1 orbits in
S(xn, k + 1). But now, the assumptions, in particular the transitivity of p, (b) on
En\ @1, exactly guarantee that there is in fact only one orbit.

Since Pék) is transitive for each k > 1, the set {| Pék)|}keN is not bounded and
therefore I' is irreducible.

O
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Remark. Observe that Proposition 1.2(1a) cannot be generalized to the case where
Pn = A4 (i.e. to m = 2), because there are for example irreducible (As, A1p)—groups
such that

) |Agl\*
IP?| =324 < | Ayl (T) — 972

(cf. Appendix C.6).

1.6 Amalgam decompositions

Let A, B, C be groups. By writing an expression of the form A xc B, we mean that
there is given a commutative diagram of injective group homomorphisms

i
> .

E - B
ljB

—— Axc B
IA

@)

ia

>

(in particular C can be seen as a subgroup of A and B via the injections ia and ig,
respectively), and the group A xc B is uniquely determined by the following universal
property: Given any group G and any homomorphisms j, : A - G, jg: B - G
such that j, oia = jg o ig, there is a unique homomorphism p : A xc B — G such
that the following diagram commutes:

The group A xc B is called the amalgamated free product of the groups A and B
amalgamating the “subgroup” C, or simply an amalgam.

In most of our examples of amalgams, the three groups A, B, C will be finitely
generated non-abelian free groups, i.e. we will have amalgams of the form Fy xg,, F
for some k, I, m > 2. Moreover, ia(Fm) and ig(Fm) will have finite index in Fi and
F, respectively, where ia : Fn — Fx, ig : Fm — F denote the given injective
homomorphisms. Note that k, I, m are then related by the index formulae (see e.g.
[49, Proposition 1.3.9])

m-—1 m-—1

1 and [F : Fyp] = 1

[Fk : Fml =



1.6. AMALGAM DECOMPOSITIONS 27

If Fisgeneratedbyag, ..., ax, F bybs, ..., b and Fybycy, ..., cm, then Fexg, F
has the finite presentation

(@1, ...,ak, by, ..., b [ ia(Cy) =1ig(C1), ..., 1A(Cm) =iB(Cm))

and is torsion-free (this follows from [49, Theorem IV.2.7]).

A (2m, 2n)—group T splits by a result of Wise ([68, Theorem 1.1.18]) in two ways
as a fundamental group of a finite graph of finitely generated free groups (using the
terminology of the Bass-Serre theory). We are mainly interested in amalgamated free
products of free groups, i.e. fundamental groups of edges of free groups. This case
happens if the local groups are transitive:

Proposition 1.3. Let I" be a (2m, 2n)-group.

(1a) If P, < Som is a transitive permutation group, then I can be written as an
amalgamated free product of finitely generated free groups as follows:

I' = Fn *F_omiom F1-m4mn .
We call it the vertical decomposition of I.

(1b) If P, < Sy, is transitive, then we have a horizontal decomposition
= Fm *F1_on42mn Fl—rH—mn .

Proof. The two statements follow directly from [68, Theorem 1.1.18] after a vertical
subdivision of the cell complex X in (1a), and a horizontal subdivision of X in (1b).
O

Note that the indices in the inclusions of the splitting in Proposition 1.3(1a) are

[Fn : Fi—2myomn] = 2m and [F1—mtmn : Fi—omyomn] = 2.

The tree on which T" naturally acts is the first barycentric subdivision of 72n, the
“bi-regular” tree of valencies 2 and 2m. Note that F, is identified with the free sub-
group (b1, ..., by) of I". Furthermore, the second factor F1_m+mn is the fundamental
group of a graph with m vertices (one for each geometric edge {a;, ai_l}) and mn ge-
ometric edges (one for each geometric square in X). Finally, the amalgamated group
F1_2m+2mn IS the fundamental group of a graph having 2m vertices (one for each edge
in Ep) and 2mn geometric edges (one for each geometric square in the vertically sub-
divided complex X’). The two injections in the amalgamated free product are induced
by immersions (i.e. local injections, see [68, Definition 1.1.16]) in X’. Analogous
statements hold for the second splitting of I".

The following proposition describes amalgam decompositions for the important
subgroup I'p < T".
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Proposition 1.4. LetI" = (a1,...,am, b1, ..., bn | Rmn) be a (2m, 2n)—group. We
denote by Frﬁz) the subgroup of F, = (bs, ..., bp) of index 2 consisting of elements
with even length. Analogously, we define Fr$,2)<1Fm =(ay,...,am). prv(Frﬁz)) < Som
is transitive (which holds if for example Py, is a quasi-primitive permutation group
and m > 2), then there is an amalgam decomposition of I'g, the so-called vertical
decomposition of I'p,

1—‘0 = an—l *Fl—4m+4mn an—l .

Similarly, if ,oh(Fr%Z)) < Sop Is transitive (which holds if for example P, is quasi-
primitive and n > 2), then we get a horizontal decomposition

l—‘0 = F2m—1 *F1—4n+4mn F2m—1 .

In particular, if m = n > 2 and Py, P, both are quasi-primitive, then we have two
decompositions of I'g as

Fon—1 *F Fon-1.

(2n—1)2

Proof. Again, this can be immediately deduced from the more general result of Wise
[68, Theorem 1.1.18]. Note that the indices are

[Fon—1: F1-4miamn] = 2m and [Fom-1: Fi_aniamn] = 2n.

To see why ,ov(Frﬁz)) is transitive if P, < Som (M > 2) is quasi-primitive, first
observe that in general pU(Féz)) is a normal subgroup of P, = p,(Fy) of index at
most [Fn, : Frﬁz)] = 2. If we assume that Py, is quasi-primitive, then ,ov(FrgZ)) is trivial
or transitive, but pv(Frﬁz)) =1 would imply |Pp| =2andm = 1. O

We call a (2m, 2n)—group I" horizontally directed, if a; is not in the same orbit
as ai‘1 in the natural action of P, on Ep for all i € {1, ..., m}. The term vertically
directed can be defined analogously. These definitions are equivalent to those given
in [68, Definition 1.1.10]. We formulate in Proposition 1.5 another interesting special
case of [68, Theorem 1.1.18] concerning HNN-extensions. In general, if a group G is
given by a presentation (S | R), and A, B are isomorphic subgroups of G, then the
HNN-extension (Higman-Neumann-Neumann extension) of G with associated sub-
groups A and B via the isomorphism ¢ : A — B is the group with presentation

(S,t| R, ttat =¢(a), ifac A).
Proposition 1.5. LetI" = (a1, ..., am, b1, ..., bn | Rmn) be a (2m, 2n)—group.

(1a) IfI"is horizontally directed and Py, has exactly two orbits in its natural action on
En, then I" is @ HNN-extension of the free group F, = (b4, ..., by) associating
subgroups F1_m+mn Of index m.
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(1b) If T is vertically directed and P, has exactly two orbits in its natural action on
E,, then " is a HNN-extension of the free group Fy, = (ai, ..., am) associating
subgroups F1_n+mn Of index n.

Remark. Horizontally (or vertically) directed (2m, 2n)—groups I have an infinite
abelianization I'®, in particular they have a proper infinite quotient. To see this,
let @1 be the orbit of a; under the natural action of P, on E,. Define a surjective
homomorphism I' — Z by mapping all by, ..., b, to the trivial element 0 in Z, and
all elements in @1 to the generator 1 of Z. If both a; and ai‘1 are not in 91, then we
mapajto0eZ,i=2,...,m.

1.7 Double cosets

Given a group G and a subgroup H < G, the corresponding set of double cosets is
defined as

H\G/H :={HgH : g € G},
where HgH := {high2 : h1, ho € H} is as usual. The cardinalities of the two sets
of double cosets corresponding to the two amalgam decompositions of a (2m, 2n)—

group I" are related to transitivity properties of its local groups, as seen in the following
proposition (as always, similar statements can be made for P,).

Proposition 1.6. Let I" be a (2m, 2n)—group. Suppose that P, < Son is transitive.
Then there is a bijection between the set of orbits of the diagonal action of P, on
{1,...,2m} x {1, ..., 2m} and the set F1_om+2mn\Fn/F1—2m+2mn Of double cosets,
where

= Fn *F1-2m42mn Fl—m+mn

is the vertical decomposition given by Proposition 1.3(1a). In particular, the number
| F1—2m+2mn \ Fn/F1—2m+2mn| is the rank of Py (in the terminology of [25, p.67]) and
can be easily computed knowing the finite group Pp, but without knowing the explicit
amalgam decomposition, for example using the GAP-command ([29])

1 + Size(ObitLengt hs(Ph,
Arrangenents([1..2*n], 2), OnTupl es));

where Ph describes the group Py. Another consequence is that

|Fl—2m+2mn\Fn/ I:1—2m+2mn| = 2,

if and only if Py is a 2-transitive permutation group.



30 CHAPTER 1. PRELIMINARIES, NOTATIONS, DEFINITIONS

Proof. We define B := Fn and C := F1_omiomn. Let 7, be the bi-regular Bass-
Serre tree on which the amalgam I' = B x¢c F1_mymn Naturally acts and let xy, be the
vertex of 7, such that B = Stabr(xn). Denote by Q the set of edges in 7, with
origin x, and let w € 2 be the edge such that Stabr(w) = C. Note that

2] =[B : C] = [Fn : Fi_omi2mn] = 2m.

By construction, the action of P, on {1,...,2m} = Ej is equivalent (permutation
isomorphic) to the action of B on 2. We want to define a bijection

¢ : {Orbitsof B ~ 2 x 2} — C\B/C.

Let (w1, w2) € 2 x Q. We denote by [(w1, w2)] its B-orbit under the diagonal left ac-
tion, in particular [(w1, w2)] = [(bw1, bw>)] for each b € B. Since B acts transitively
on €2, we can choose by, by € B such that w = bjw1 = bowz. Now we define

¢ ([(01, w2)]) := Chib,'C € C\B/C.

We first show that ¢ is lndependent of the choice of b1, by. Take by, by € B such that
w = biwy = bowy. Then bib™w = bjwj = w, (i = 1,2), hence bib* € C, ie.
Chy = Cbyand b,'C = b, 1C which implies

Cbib,*C = Cbsb,'C.

Next we show that ¢ is independent of the representative of [(w1, w2)]. Any rep-
resentative of [(w1, w2)] has the form (bw1, bwy) for some b € B. But then

o = b1b™L(bwy) = bobL(bwy)

and
¢ ([(bw1, bwy)]) = Cbib™(bob™H)™*C = Chiby'C.

This proves that ¢ is well-defined.
Note that ¢ ([(w, bw)]) = CbC for each b € B, hence ¢ is surjective. To show the
injectivity of ¢, assume that

¢ ([(w1, w2)]) = Chbiby*C = Ch1b;C = ¢ ([(@1, @2))) ,

such that w = bywy = bpwp = b1@1 = bp@,. The assumption Cbib,'C = Cbyb,'C
implies that there is some ¢ € C such that

chib,* € bib,'C
bobrtcbib,t e C
Bzf)l_lcblbz_la) =w
Cblbz_la) = 6152_140 ,
hence
[(@1, @2)] = [(@, bib; *w)] = [(cw, chib; *)] = [(w, b1b; 'w)] = [(@1, @2)].
U
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1.8 SQ-universal groups

A countable group G is called SQ-universal, if every countable group can be em-
bedded in a quotient of G. According to [56], this term was suggested by Graham
Higman. The following result of Ilya Rips is mentioned in the book of Bass-Lubotzky
[3, Section 9.15].

Proposition 1.7. (Rips) Let G = A xc B be an amalgam such that C # B and
IC\A/C| > 3. Then G is SQ-universal.

There seems to be no published proof of this proposition, but the main idea is
explained in [3, p.149]: “Rips’ explanation uses Small Cancellation Theory, as in
[62]. Explicitly, let CaC and Ca’C be distinct non-trivial double cosets in C\A/C
and b € B\ C. Consider words in G of the form

w = a"ba"ba"ba"2ba"™ba’™b - - - .

When the exponents n;, n{ are suitably large one can apply Small Cancellation Theory
to conclude that adding the relation w = 1 does not kill G, whence G is not simple.”

Corollary 1.8. Let I" be a (2m, 2n)—group. If the local group P < Som is transitive,
but not 2-transitive, or if P, < Sy, is transitive, but not 2-transitive, then the group I’
is SQ-universal, in particular it has “many’ normal subgroups of infinite index.

Proof. Combine Proposition 1.3, 1.6 and 1.7. O

1.9 Embeddings

The constructions of many interesting groups in the subsequent chapters will be based
on certain embedding techniques. In the following proposition, we give some ele-
mentary general consequences for the case that a (2m, 2n)—complex is embedded in a
“bigger” complex, using the following definition: Let X be a (2m, 2n)—complex and
let Y be a (2m, 2A)—complex, where m > m and i > n. We say that X is embedded
inY, if the MA geometric squares of Y contain all mn geometric squares of X.

Proposition 1.9. Letm > m and A > n. Suppose that the (2m, 2n)—complex X is
embedded in the (2m, 2fA)—complex Y. Then

(1) The fundamental groups inject: 71X < m1Y.

(2) The order | Prgk)(X)| divides | Pék) (Y)| and the order | Pv(k)(X)| divides | Pv(k) )|
for each k € N.

(3) If X'isirreducible, thenalso Y isirreducible. The converse is not true in general.
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(1) See[9, Proposition 11.4.14(1)].

To take into account the two involved complexes X, Y, we write here Pkfk)(X),
Pkfk)(Y), P,,(k)(X), Pv(k)(Y), Pu.X, Pv.y instead of Pkfk), P,,(k), pv- We prove now
that | Pn(X)| divides |Pn(Y)|. The other statements are proved similarly. Let G
be the subgroup of Sy

G = (py,y(01), ..., pu,y(bn)) s,
and A the subset of {1, ..., 2m} with 2m elements
A={l....mjuf2h —m+1,...,2m}.

Because of the embedding assumption and the link conditions in X and Y, the
set A is G-invariant and the restriction of G to A is permutation isomorphic to

Ph(X) = (py,x (1), ..., pv,x(Bn)) s,
via the inclusion

{1,....2m} — {1, ..., 2m}
i— i
2m+1—i—2m+1—1,
i =1,...,m, hence |G| = |Pnr(X)| - I, where | is the order of the pointwise

stabilizer of A in G (cf. [25, p.17]). The claim follows now, since G is obviously
a subgroup of

(Pu,y(01), ..., puy(bn), ..., puy(Ba)) s, = Pn(Y).

The set {|Pék)(X)|}keN is unbounded since X is irreducible by assumption,
hence by part (2) also { Prfk) (Y)|}ken is unbounded, i.e. Y is irreducible, too.

To see that the converse is not true in general, we can take for example any
irreducible (2, 2fi)—complex Y having a pair of commuting generators {aj, bj}
(hence having an embedded reducible (2, 2)-complex). An explicit example is
described in Example 2.2, where a1b1 = bias.

O

1.10 Normal form and applications

Due to the link condition in a (2m, 2n)—-complex X, every elementy € I' = w1(X)
can be brought in a unique normal form, where “the a’s are followed by the b’s”.
The idea is to successively replace length 2 subwords of y of the form ba by a’b/, if

[a’b’a

~1p—1]is a geometric square in X. Analogously, there is a unique normal form,

where “the b’s are followed by the a’s”. Here is the precise statement of Bridson-Wise:
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Proposition 1.10. (Bridson-Wise [10, Normal Form Lemma 4.3]) Let y be any el-
ement in a (2m, 2n)—group I' = (a1, ...,am,b1,...,bn | Rmn). Then y can be
written as

Y = 0a0b = 01,04

where o, o, are freely reduced words in the subgroup (as, ..., am)r and op, o, are
freely reduced words in (by, ..., bn)r. The words oa, 0}, op, o}, are uniquely deter-
mined by y. Moreover, |oa| = |o4] and |op| = |oy|, where | - | is the word length with
respect to the standard generators {a1, ..., am, by, ..., bn)*L.

Proof. See [10]. For an implementation of the algorithm in GAP ([29]) to compute
the two normal forms of a given element in I, see Appendix B.6. O

If y = 0aon = o}0, as in Proposition 1.10, then we call oa0n the ab-normal form
and o0, the ba-normal form of . The length of y is by definition

ly| := loal + lob| = log| + logl -

Note that |1| = 0. It takes at most k?/4 switches to bring a word of length k from its
ba-normal form to its ab-normal form.
Proposition 1.10 has direct consequences for the structure of a (2m, 2n)—group:

Corollary 1.11. LetT" = (a1, ..., am, b1, ..., bn | Rmn) be a (2m, 2n)—group. Then

(1) Thetwo groups (ai, ..., am)r and (b1, ..., bn)r are free subgroups of I" of rank
m and n, respectively.

(2) The group I" is virtually abelian or contains a non-abelian free subgroup.
(3) The center ZT" is trivial if m, n > 2.
(4) The group T is residually finite if and only if Aut(T") is residually finite.

Proof. (1) This follows directly from the unigqueness of the normal forms described
in Proposition 1.10.

(2) If m > 2orn > 2, then I contains a non-abelian free subgroup by part (1). If
m = n = 1, then either

[ = (ag, by | a1by = byag) = 72

is abelian, or
I = (a1, by | azhia; = by),

which has the abelian group (az, b?)r = 72 as a subgroup of index 2.
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(3) Assume that there isanelementy € ZI' \ {1} and let

4

y=a® . a®p®  pO,

a® ... a® ¢ En, b® ... b® e E,, be its ab-normal form, where we can
assume without loss of generality that k > 1 and | > 0. Take any element

acEn\{a® a® " £g.

Then, we have

aa(1> .. .a(k)b(1> e b(I> = a(l) e a(k)b(l) cen b(')a .

The left hand side of this equation is already in ab-normal form, hence by
uniqueness of the ab-normal form, we can conclude from the right hand side that
a = a®, but this is a contradiction to the choice of a, and it follows ZI" = 1.

By a result of Baumslag ([5], or see [49, Theorem 1V.4.8]) the group Aut(T") is
residually finite, if T is a finitely generated residually finite group. For the other
direction, first note that if m = 1, then

K
Ph < SZm-(Zm—l)k* = 82 y

hence |Prfk)| < 2foreach k € N, and I' is reducible. The same holds if n = 1.
In particular, T is residually finite, if m = 1 or n = 1. Assume now that I" is
non-residually finite. Then m, n > 2, and by part (3) we have ZI" = 1, hence
[ ZInn(I") < Aut(T") and Aut(T") is non-residually finite.

O

Remark. The group Z x Fp is a (2, 2n)—group with a non-trivial (infinite) center

(Z x

{1}ifn > 2, Z x Z ifn = 1).

Using Proposition 1.10, we are able to compute certain centralizers of generators,
and their normalizers. The sufficient conditions in part (1) of the following proposition
can easily be checked by hand, given a (2m, 2n)—group T. If they are satisfied, also
part (2) applies.

Proposition 1.12. LetI" = (a1, ..., am, b1, ..., bn | Rmn) be a (2m, 2n)—group.

(1a) Assume that there is an element a; € {ai, ..., am} such that pn(a;j)(b) # b for

allb € E, (i.e. Rm.n has no relator representing a geometric square of the form
[ajbab~!], where a € Ep, b € E,). Then Zr(a) = (&) = Z.

(1b) Assume that there is an element bj € {by, ..., bn} such that p,(bj)(a) # a for

all a € Ep, (i.e. Rm.n has no relator representing a geometric square of the form
[a~lbjab], where a € Ep, b € E,). Then Zr(bj) = (bj) = Z.
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Assume that Zr-(aj) = (a;) for some a; € {ax, ..., am}. Then the normalizer of
(@) is Nr((ai)) = Zr(a) = (a).
Assume that Zr(bj) = (bj) for some bj € {by, ..., bn}. Then the normalizer of

(bj)is Nr((bj)) = Zr(bj) = (bj).

Proof. We prove (1b) and (2b), the proofs of (1a) and (2a) are similar.

(1b)

(2b)

Obviously, (bj) < Zr(bj). We have to show Zr(bj) < (bj). Let
y =a® .. a®p® b0 ¢ zr (b))
be in ab-normal form, a®, ..., a® ¢ E;,,b®, ..., b® € E,, k,1 > 0. Then
a® . a®p®  pOp; =pja®...a®p®  p"

Assume first that k > 1. The ab-normal form of ybj starts with a® ...a®.
Bringing also bja® ...a®pb® ... b® to this normal form, we must have in a
first step bja® = a@Wb for some b € E,, i.e. p,(bj)@?P) = a®, which is
impossible by assumption, hence k = 0. This means y = b® ... b® and

b® ... bVb; =bjb® ... b".
By uniqueness of the ab-normal form of
b; =b® 7t bD T p® . p®
wehavel =0orb®, ... ,b® e {bj,b;*} and hence y =b®...b" € (bj).

Obviously, we have (bj) < Nr((bj)). It remains to show that Nr((bj)) < (bj).
Let y € Nr({(bj)), then in particular y_lbj)/ € (bj), i.e. bj is conjugate to a
power of itself, hence by a result of Bridson-Haefliger (see Proposition 2.13)
we conclude y ~'bjy € {bj, b !} If y~tbjy = bj, then y € Zr (b)) = (b))
and we are done. So from now on let us suppose that y—lbjy = bj‘1 (we
will see in the proof that this case is in fact not possible under the assumption
Zr(bj) = (bj)), then

y b2 =y iy iy =y oty = () T = (b T =y,

ie. y? e Zr(bj) = (bj) (which however does not directly imply y € (bj) in
general). Let
y =a® .. .a®p®  pb,

k,1 > 0, be the ab-normal form of y. We first assume that k > 1, in particular
y # 1. Then

y2=a®. . a®p®  pOa®  a®p®  p® — p? (1.2)
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for some s € Z \ {0} (we know that s # 0, since y # 1 and I" is torsion-
free). Note that it follows | > 1, otherwise we would have the contradiction
@b ... a®)2 = b®. The expression b® .. b®a® . a® js in ba-normal

form, let a® ... aDpD . pD be its ab-normal form, i.e.
b® . pWa® | a® =50 FOFD O, (1.3)
Then, putting (1.3) into (1.2) gives
y2=a®. . a®a®. . a®p® . pOp® . p® =bs.  (L4)

The right hand side b? of equation (1.4) is in ab-normal form, hence the a’s on

- o 1 3 -1
the left hand side have to cancel (i.e. 4% =a® ™" ... &® = a@® ™" because
a® ... a® and a0 ...aD are freely reduced words in (a, ..., am)), SO we

have L L
b®D . p®a®  ak —a®™" @@ pb (1.5)

from equation (1.3) and

y?=b® . bOp® b =b? (1.6)
from equation (1.4). Moreover, since b@ ... b® and b@ ... 6D are freely re-
duced words in (b1, ..., bp), we conclude from equation (1.6) that s is even,

b® .. b" =b® . b®b! (1.7)
and

BD .. B0 = pib® " p® )

wheret =s/2and 0 < r < | is the number of cancellations in
Y. b0 . pD),
ie. bOWp® =1, ... pl—+Dp™ =1 Notethat|t| =| —r > 1, in particular
also the right hand sides of (1.7) and (1.8) are in normal form. First, we assume
r > 1. Putting (1.7) and (1.8) into (1.5), we get
b .. bOpta® .. a® —a® ™ a®7ptpO  p®TH (19)

Since both sides of equation (1.9) are in normal form, we have (looking at the
right ends)

bla® .. a® = wy@b® (1.10)

and (looking at the left ends)

a0~ a(l)_lbj?—L1 = bPiy (), (1.11)
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where wy(a) and wg(a) are freely reduced words of length k in (a, ..., am),
and the sign of bj in (1.10) and (1.11) is according to the sign of t, i.e. we have
bj, if t is positive, and bj‘l, if t is negative. Now, equation (1.11) gives

a®...a® = pFlat@b® (1.12)
Putting (1.12) into (1.10) gives

b2 @b ® ™ = wy@b® (1.13)
i.e. the contradiction bl?—L2 = wg(@)wk(@) € (ai,...,am). Thus, we have to
study the remaining caser = 0, i.e. |t| =1 = |s|/2 and

y=a® .. . a®b}.
Then equation (1.5) or (1.9) is
bta® .. .a® = a™t .a(l)_lbtj , (1.14)
which is equivalent to
a0t .a(l)_lbj =bta® .. .a®pi. (1.15)

The equation y ~1bjy = bj‘l is equivalent to

bj_ta(")_1 .a®pja® a®pl =b;t. (1.16)
Putting (1.15) into (1.16) gives

b 'bia® ... a®bi~a® .. a®b} = bt (1.17)
or equivalently

a...akpi~ = bj‘l‘ta(")_l a0t (1.18)

which is a contradiction, since both sides of the equation are in normal form,
butt =s/2 # 0 and hence

b~ =11t #|-1—t]=bj .

This means that the case k > 1 is impossible. It remains to consider the case
k =0,ie y =bD.. b® forsomel > 0. But then, y tbjy = bj‘l gives a
non-trivial relation in the free group (b1, ..., bp).

O

Remark. The assumptions made in Proposition 1.12(1a),(1b) are sufficient but not
necessary, as shown in Theorem 2.3(10).
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Chapter 2

Normal subgroup structure, simplicity

The main goal of this chapter is to construct explicit examples of finitely presented
torsion-free simple groups (Section 2.5). We choose a step-by-step approach by which
we explain the main ingredients of the proof and produce other interesting groups,
e.g. a non-residually finite (non-simple) group. In a first step, we apply the important
“normal subgroup theorem” of Burger-Mozes and thus get in Section 2.1 for exam-
ple an (Ag, Ag)—group without non-trivial normal subgroups of infinite index. The
same holds for an (Ag, M12)—group and an (Ag, ASL3(2))—group constructed in that
section. We believe that these three groups are non-residually finite and have a sim-
ple subgroup of index 4, but a proof seems to be hard. Instead of that, we construct in
Section 2.2 a non-residually finite (4, 12)—group, applying another criterion of Burger-
Mozes. This group has non-trivial normal subgroups of infinite index by construction,
but we can embed it as a subgroup for example in an (Ag, A1g)—group where the nor-
mal subgroup theorem applies. Consequently, this (6, 16)—group is virtually simple
(Section 2.3). We think that it has a simple subgroup of index 4, but again it is not
clear how to prove it. We evade this problem by taking another non-residually finite
group (Section 2.4) constructed by Wise, using completely different ideas than those
used in the Burger-Mozes criterion. Explicitly knowing a non-trivial element in the
intersection of all finite index normal subgroups of Wise’s (8, 6)—group, we are able
to prove that this group can be embedded for example in an (A1, A10)—group which
has a simple subgroup of index 4 (Section 2.5). We give other examples of virtu-
ally simple (2m, 2n)—groups where the simple subgroup has index 4, among those an
(M12, Ag)—group, or where the simple subgroup has index bigger than 4, like another
(A10, A10)—-group which has a simple subgroup of index 40. A slight variation of these
techniques leads in Section 2.6 to an index 4 subgroup of a (10, 10)—group which has
non-trivial normal subgroups of infinite index but no proper finite index subgroups.
Following Wise, we construct in Section 2.7 a finitely presented group which is not
virtually torsion-free, i.e. each finite index subgroup has a non-trivial element of finite
order. In Section 2.8, we study what can happen if we replace in the normal subgroup
theorem the 2-transitivity condition for the local group P, by the slightly weaker con-
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dition that P, is primitive. Comparing an (As, P,)—group, where P, is primitive but
not 2-transitive, with the (Aam, A2n)—groups constructed before, we observe that they
seem to share the properties on the finite index normal subgroups but not on the in-
finite index normal subgroups. We discuss several ideas how to construct an explicit
non-trivial normal subgroup of infinite index. Finally, we give in Section 2.9 smaller
candidates for being finitely presented torsion-free simple groups; “smaller” in the
sense that they have very short presentations. The example of Proposition 2.78 has a
presentation with two generators and only three relations.

See Table 2.1 for an overview of some properties of several irreducible examples
constructed in this chapter. The groups in Example 2.2, 2.30, 2.43 and the groups in
Example 2.26, 2.52, 2.58, respectively, seem to have the same properties in the list.
They are completely proved for Example 2.43 and Example 2.52. We have included
in the table an example of Chapter 3 which has no non-trivial normal subgroups of
infinite index, but behaves completely differently than the examples in Chapter 2, for
example it is linear, hence residually finite. The following abbreviations are used in
the table: “tr”, “prim”, “g-prim”, “Y” and “N” stand for “transitive”, “primitive”,
“quasi-primitive”, “yes” and “no”, respectively. Moreover, the (2m, 2n)—groups are
always called I", and I"'* denotes the normal subgroup of I"

F*::mN,

N
where “f.i.” stands for “finite index”.
\ Example I' \ 2.2 \ 2.30 \ 2.43 \ 2.26 \ 2.52 \ 2.58 \ 3.26 \
Ph 2-tr | 2-tr | 2-tr 2-tr tr 2-tr | 2-tr
Py 2-tr | 2-tr | 2-tr | g-prim | 2-tr | prim | 2-tr
irreducible Y Y Y Y Y Y Y
not linear Y Y Y Y Y Y N
"o perfect Y Y Y Y Y Y N
Io=[I,T] Y Y Y Y Y Y N
non-residually finite Y?| Y Y Y Y | Y? ]| N
all proper quotients finite | Y Y Y N N N Y
HZ(T;R) = 0 Y| Y |Y N N N Y
' =Tp Y?| Y? | Y Y ? Y | Y? ]| N
"o simple Y?|Y? | Y N N N N

Table 2.1: Subgroup properties for some examples of Chapter 2
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2.1 Normal subgroup theorem

We construct examples of (2m, 2n)—groups without non-trivial normal subgroups of
infinite index, applying the crucial “normal subgroup theorem” due to Burger-Mozes
(see [15, Theorem 4], [17, Theorem 4.1, Corollary 5.1, Corollary 5.3]). Here is an
adapted special version of it:

Proposition 2.1. (Burger-Mozes, see [17, Chapter 4 and 5]) Let I" be an irreducible
(2m, 2n)—group such that P,, P, are 2-transitive, and Stabp, ({1}), Stabp, ({1}) are
non-abelian simple groups. Then any non-trivial normal subgroup of I" has finite
index inT.

Proof. Combine [17, Corollary 5.1, Proposition 5.2, Corollary 5.3]. 0J

Concretely, we will apply Proposition 2.1 to irreducible (2m, 2n)—groups such that
(Pn, Py) belongs to the set

{(A2m, A2n), (Aom, M12), (Aom, ASL3(2)), (M12, Aon), (ASL3(2), Aon)},

where 2m > 6, 2n > 6, M2 < S12 and ASL3(2) < Sg. In particular, we will
construct in this section two (Ag, Ag)—groups (Example 2.2 and Example 2.15), an
(A, M12)—group (Example 2.18) and an (Ag, ASL3(2))—group (Example 2.21) with-
out non-trivial normal subgroups of infinite index. See [16, Section 3.3] for a list of
finite permutation groups satisfying the assumptions made on the local groups Py and
P, in Proposition 2.1.

Note that the smallest groups without non-trivial normal subgroups of infinite in-
dex appearing in [15, 16, 17], are an (Asp, Asg)—group ([17, Theorem 6.3]) and a
certain (14, 18)—group (see also Example 3.26), to which Proposition 2.1 does not
apply but the more general original result [17, Theorem 4.1].

All examples of (2m, 2n)—groups will be given only in terms of the set of mn
relators Rm.n. The corresponding presentation of I is

(al,...,am,bl,...,bn | Rm.n),
and it determines the groups Pn, Py, I'o, H1, H2, A1, A2 and the complex X as

explained in Chapter 1.

Example: (Ag, Ag)—group

We give a first small example to which Proposition 2.1 can be applied.
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Example 2.2.
alblal‘lbl‘l, albzal‘lbgl, albgazbz_l,

o -1,-1 -1,-1 -1,-1
R33 := a1b3 ag bo, azblas b2 , a2b2a3 b3 ,

asbsaz by, apbgzlashy, apbytaz'byt
Theorem 2.3. Let I" be the (6, 6)—group defined by R3.3 in Example 2.2. Then
(1) Pnh=As, Py = Ae.
(2) T isirreducible.
(3) Any non-trivial normal subgroup of I has finite index.
(4) [T, '] =T'gandI'g is perfect.
(5) T' isnot linear over any field.

(6) T" can be decomposed in two ways as an amalgamated free product of finitely

~

generated free groups I' = F3 *g,; F7. Its subgroup I'p has two amalgam
decompositions Fs xp,; Fs.

(7)) T =pr;I) s H =pry(D),i =1,2.

(8) Hg(F; R) = 0, i.e. the second bounded cohomology of I" with R-coefficients
vanishes.

(9) Aut(X) = Z, and Out(I") # 1.
(10) We have Zr(aj) = Nr({aj)) = (aj), if aj € {ap, az} and
Zr(bj) = Nr((bj)) = (bj), ifbj € {b2, bs}.

Proof. (1) We only list the generators of P, and P,. It can easily be checked for
example with GAP ([29]), that these permutations indeed generate Ag.

pv(b1) = (2,3)(4,5),
pU(bZ) == (17 5v 47 2’ 3)’
pv(b3) = (2, 3,5, 4,6), generating P, = Ag.

ph(@1) = (2,3)(4,5),
ph(@2) = (1,6, 3,2)(4, 5),
pn(as) = (1, 4,5, 6)(2, 3), generating P, = Ae.
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(2)
3)

4

®)
(6)

(7)

8

9

(10)

We compute |Pr$2)| = 360 - 606 and apply Proposition 1.2(1a).

We apply Proposition 2.1 or [17, Corollary 5.3], using the facts that Py, and P,
are 2-transitive (in fact 4-transitive), that the stabilizers

Stabp, ({1}) = ((2,3)(4,5), (2,3,5,4,6)) = As,
Stabp, ({1}) = ((2,3)(4,5), (2,4.5), (4,5,6)) = As

are non-abelian simple groups and that I" is irreducible by part (2).

These are easy computations using GAP ([29]). To see by hand that I'g is
perfect, one first computes a presentation of I'g by the Reidemeister-Schreier
method (see e.g. [49, Section 11.4]) and then adds commutators to the relators to
simplify the presentation.

It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

Use Proposition 1.3 and Proposition 1.4. Explicit amalgam decompositions of I"
and I'g are described in Appendix A.2.

By [16, Proposition 3.1.2, 1)], the quasi-center QZ(H;) is trivial fori = 1, 2,
hence the homomorphism pr,_; is injective, which shows that I' = pry_; (I).
The group H; is by [16, Proposition 3.3.1] isomorphic to the universal group
U (Ae), Which is not torsion-free, thus pr; (I') = I' # H;.

We have noticed in the proof of part (7) that H; = U(Ag), I = 1, 2. Hence,
by [16, Chapter 3], H1 and H> act transitively on the boundary at infinity 9., 76
of their corresponding trees 7om = T and T2, = Tg, respectively. The claim
follows now from [14, Corollary 26]. As pointed out there, this result has some
applications to I"-actions on the circle S* (see [14, Corollary 22]).

Checking all of the 286! = 46080 candidates (using the GAP-program of Ap-
pendix B.7), we have found exactly one non-trivial automorphism given by
a > a i = 1,23 Dby > byt by > bs, by > by It fixes seven of
nine geometric squares. The two non-trivially permuted geometric squares of X
are [azhsaz *b5 ] and [azbzag *b1]. Note that this automorphism induces a non-
trivial element in the group of outer automorphisms Out(I") = Aut(I")/Inn(T"),
since it has order 2 but Inn(T") = T" is torsion-free (the isomorphism Inn(T") = I’

holds because Inn(I") = T'/ZT and ZT" = 1 by Corollary 1.11(3)).

The statements Zr(a2) = Nr((a2)) = (a2), Zr(as) = Nr((as)) = (as),
Nr((b2)) = (b2) and N ((b3)) = (b3) follow from Proposition 1.12. We prove
Zr(b3) = (b3). Similarly, one can prove Z(b2) = (b2). Let

y=a® . . a®p® | pO ¢ 71 (by)
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be in ab-normal form, such that a®, ..., a® < Ep, b®, ..., b® ¢ E, and
k,1 > 0. Then

a® ... a®pD  pOby=hza®...a®Wp® .  b".

Assume first that k = 1, thus
a®p® . pOps = bga®p® . b

The ab-normal form of a@b® ... bO"bs starts with a®. Bringing also the
right hand side bsa®@b® ... b® to this normal form, we must have in a first
step bsa? = a®p for some b € E,. Checking all elements in Ra.3, the only
possibility isa® = az, b = by, hence

a1b® ... b®bg = a;bb® . p®
or equivalently
b ... bVbs = bob® ... pbD,
but this gives a non-trivial relation in the free group (b1, b, b3).
Assume now that k > 2. As in the case k = 1, we conclude a®® = a; and
bga(l) = a1b2, i.e.
a1a? ... .a®pD . pbOps = aha®@...a®pD . p»
hence
a®@ . . a®p® | pOpy=ba?...akpd p",

The ab-normal form of the left hand side of the last equation starts with a®.
Bringing the right hand side to this normal form, we must have b,a® = a@b
for some b € E,. Here, the only possibility is a®@ = al‘l, b = bgs, but this
contradicts the fact thata®@a®@ ...a® = aja;*...a® is freely reduced.

It follows that k = 0, and we conclude y € (b3) exactly as in the proof of
Proposition 1.12(1b).
Note that Zp(a1) = Zr(b1) = (a1, by)r = Z2.

O

The (6, 6)—group I of Example 2.2 can be used to simplify certain constructions

of infinite families made in [17], see also Proposition 2.29.

Proposition 2.4. (See [17, Theorem 6.3] for the same statement but with lower bounds
m > 15, n > 19) For every m > 7 and n > 7, there exists a torsion-free cocompact
lattice A < U (Aomn) x U(A2n) with dense projections. Any non-trivial normal sub-
group N <1 A is of finite index in A.
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Proof. We follow the proof of [17, Theorem 6.3]. The only difference is that we
can replace the (PSL2(13), PSL2(17))—complex @OX = 13,17 used there (see also
Example 3.26 and Proposition 3.27 for a description of that (14, 18)—complex) by our
(As, Ag)—complex X of Example 2.2. An illustration of this construction is given in
Appendix A.3 for the smallest values m = 7, n = 7 of Proposition 2.4. O

We believe that apart from having no non-trivial normal subgroups of infinite in-
dex, the group I" of Example 2.2 also has only very few normal subgroups of finite
index. More precisely, we think that I is non-residually finite, virtually simple, and
that its subgroup I'g is simple.

Conjecture 2.5. Let I" be the (6, 6)—group defined in Example 2.2. Then I'p is a
finitely presented torsion-free simple group.

The following elementary lemmas lead to Proposition 2.10 which could be useful
in a proof of Conjecture 2.5.

Lemma 2.6. Let G be agroup and H < G a subgroup of finite index. Then there is a
group N < Hsuchthat N <G and [G : N] < [G : H]! < oo, in particular

A M=[)L.

Ve e
Proof. (Probably due to Hall Jr. [31]) Let k be the finite index [G : H] and write G as
a disjoint finite union of left cosets

k
G=|_|giH.
i=1

Left multiplication giH +— ggi H induces a homomorphism ¢ : G — Sk such that
N :=ker¢p < Hand [G : N] < |Sk| =[G : H]! < co. Note that

N=()gHg™"
geG

O

Lemma 2.7. Let G be a group and H <1 G a normal subgroup of finite index. Assume
that there is an element h € H such that (h¥)g > H for each k € N. Then every
proper normal subgroup of H has infinite index.

Proof. Let N < H be a normal subgroup of finite index. By Lemma 2.6, there is a
group M < N such that M <t G and [G : M] < oo. Looking at the left cosets of the
form hKM, k € N, we see that at least two of them are equal, in particular h' € M for
somei € N, thus (h'))g < M. By assumption, we have H < ((h'))g, hence H < M
and M =N = H. O
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Lemma 2.8. Let G be a group and let H, M be two subgroups of G such that M has
finiteindex in G. Then[H : (M N H)] < [G : M] < 0.

Proof. Let k be the finite index [G : M] and write

k
G=||Mgi.
i=1

Then, intersecting with H, we get

k
H=GnH=| |(MgnH).
i=1
Fixi e {1,...,k}. If Mgi N H # ¢, take any element mgi = h € Mg; N H. Then
MgiNnH =MmgiNnH=MhNH=MhnNnHh=(MnNH)hand we are done. [

Lemma 2.9. Let G be a group and H < G a subgroup of finite index. Then

(YN=[)N.

fi. fi.
N<H N<G

In particular, H is residually finite if and only if G is residually finite.

(IN= (M=M= []N,

NZiH MZH MG NG
where the first and third equalities follow from Lemma 2.6. The inclusion “2” in the
second equality is obvious, whereas “C” in the second equality directly follows from
Lemma 2.8. O

Proposition 2.10. Suppose that I" satisfies the assumptions of the normal subgroup
theorem (Proposition 2.1). Let H < I" be a non-trivial normal subgroup of I" and
assume that there is an element h € H such that (h¥) > H holds for each k € N.
Then H is a finitely presented torsion-free simple group.

Proof.

Proof. First note that by assumption H has finite index in I". By Lemma 2.7

H= (N

fi.
N<H

H=(]N.

fli.
Nar
In particular, T" is non-residually finite and [17, Corollary 5.4] shows that H is simple.
It is obvious that H is finitely presented and torsion-free, since it is a finite index
subgroup of the finitely presented torsion-free group I". O

and hence by Lemma 2.9
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Corollary 2.11. Let I be as in Example 2.2. Assume that there is an element yg € I'g
such that ((y(l)())r = I'g for each k € N. Then I'g is a finitely presented torsion-free
simple group.

Proof. This follows directly from Proposition 2.10 using the fact (see Theorem 2.3(3))
that any non-trivial normal subgroup of I" has finite index. O

One step towards the proof of Conjecture 2.5 (or an application of Corollary 2.11)
could be the following proposition.

6(1+2k
a]_( + )»

Proposition 2.12. For I" as defined in Example 2.2, we have ( r = I'p for

each k € Np.

Proof. We first prove two auxiliary results: The first one says that for each k € Ng
1 A 6(142K) . — —6(1+2k
b3 lbzal( + )bz 1b3 — a2 (1+ )
Since af(”z") and a, 61429 are claimed to be conjugate, we only have to show it for
k =0, i.e. b3 thalby by = a;®. But this follows bringing the left hand side of the

equation to its ab-normal form.
The second result needed is the following: For each k € Ng

a2b3b2b§1a§3(1+2k)bsbz—lbglaz—l _ ag(1+2k)b2b1_
This proof is by induction on k. Ifk =0,
azbshobz taShsb, thytast = adhoby

again follows by computing the ab-normal form of the left hand side. For the induction
stepk — k + 1, we get

a2b3b2b§1a§3(1+2(k+1))b3b2_1b§13.2_1

= ah3bobz at?al ™ hgb; Ty ta,

= aj?ahsbobz 1l baho bz ezt (using babobz tal? = ai?habybs )

= a32a8™pyh;  (by the induction hypothesis)
— ag(l-l-z(k-i-l))bzbl

as required. Now we are ready to prove the proposition. Since af € I'p, one inclusion

is obvious:

2k
(@a;™#)r < To.

For the other inclusion we have by our first auxiliary result

a2—6(1+2k) c <<a§5(1+2k) Vi

’
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and by the second one
6(1-+2k 6(1-+2k
a2( + )bel = «al( + )»F ,

hence together
boby € ((a$(1+2k) . (2.1)

Next, we observe that b% € ((boby ) since
(a1a, hpbiaza; M) (@2bobiar ) = b?.
Moreover, ajaz* € (b2)r < {bzbi))r, since
(a1a, b %aza; Y (ay ta, th?azay) = agaz .

It is easy to check that I'g is generated (as a subgroup of I') by {alagl, b%} and we
conclude that

_ 2.1
o = (a1a; %, b < (babi)r < (@ )y

Remark. A calculation with MAGNUS ([50]) shows, that moreover
(@)r = (ai*hr = To.

See Table 2.2 for the orders of some quotients of I', illustrating that Conjecture 2.5
could be reasonable.

| T/*)r| [ k=1]2[3]4]5]6]7[8]9]10[11]12]
w = ay, a, a3 214241274 ]2[4]2] 4] 2] 4
b1, b, bs 214214214242 4] 2] 4

Table 2.2: Some orders of I'/{(w*)r in Example 2.2

In order to prove that I'g has no proper finite index subgroups, it could be useful to
have a non-trivial element y € I such that ¥ and ' are conjugate for some k, | € Z,
where k| # |l|. As an illustration, we mention that Bhattacharjee has constructed
in [7] an amalgam without non-trivial finite quotients, essentially using in the proof
that there is a non-trivial element a such that a® and a° are conjugate. However, this
technique is not possible for (2m, 2n)—groups by the following proposition which is a
special case of a result of Bridson-Haefliger ([9]):

Proposition 2.13. (Bridson-Haefliger [9]) Let I be a (2m, 2n)—group and let y € T’
be a non-trivial element. Then 3K can only be conjugate to ' if |k| = |I|.
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Proof. (Sketch, following Bridson-Haefliger [9]) Assume that X and y' are conjugate
for some k,1 € Z. Then by [9, Proposition 11.6.2(2)], ¥* and y' have the same

translation length, and by [9, Theorem 11.6.8(1)] we have |k| = |l|, using the fact that
the element y acts as a hyperbolic isometry on the CAT(0)-space Tom x T2n. 0J

By results of Wiegold-Wilson given in [67], the observation that I"g has no proper
subgroups of small index is somehow reflected in the next proposition on the slow
growth of the number of generators of direct powers. Recall that we denote by d(G)
the minimal number of elements needed to generate the group G and by GK the direct
product of k copies of G.

Proposition 2.14. Let I" be the group of Example 2.2 and | a positive even integer.
Suppose that (w))r, = I'o for all words w € I'g of even length 2, 4, ..., 2I. Let

bl) := %I{w €To:2=<|wl <}l

Then d(I'§) < 3 for each k < b(l).

Proof. (Adapted from [67, Proof of Theorem 4.2]) Since w # w—tand |w| = |w™}
for any non-trivial element w € I", we can choose a subset

S={y1,.... 0} CTlo

of cardinality b(l) such that SN S™t = @, and 2 < |y| < I forall 3 € S. It
follows that |y.1yi;1| e {2,4, ..., 21} whenever y,, », are different elements of S.
By assumption ((y.lyi;l))ro = TI'o. Note that I'g is generated by two elements, for
example by {a%, bzbl‘l}. We want to show by induction that F'g is for each k < b(l)
generated by the element (y1, ..., ») and the diagonal subgroup of F'g (which is for
example generated by the two diagonal elements (af, el af) and (bzbl‘l, el bzbl‘l)
in F'g). For k = 1, this is obviously true. We assume that 2 < k < b(l) is fixed
and that F'g_l is generated by its diagonal subgroup and (y1, ..., »-1). Let H be
the subgroup of F'g generated by the diagonal subgroup of Fg and (y1, ..., ¥). Our
goal is to show that H = T'. If we think ['§ ' embedded in TX as a subgroup
T8t x (1) < T§Y x T = T, then for any y € Tg the group H contains by
assumption k — 1 elements of the form

(v,1,....L %), ...,1Q,...,1,v,%),

where “x” are certain elements in I'g we do not have to care about. By construction,
H also contains the element

e e B D =) (e D
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Computing the k — 1 commutators

[y, 1, .., L%), v b e e S D1,

[(1’ ) 17 yv *)’ (Vlyk_l, ) Vk—l]/k_l’ 1)] D
we see that H contains the k — 1 elements

([V» ylyk_1]9 19 s ey 1)’ LIRS ] (17 co ey 17 [V, Vk—l)/k_l], 1) .
For j =1,...,k —1, let Nj be the subgroup of I'g
Nj := (v, ¥i% 1: v € To) < To.
Then Nj is a normal subgroup of I"g, since for each g € I'g
aly. vive 197 =19y, vive 1 - 19, viv T e Nj.

Note that yjy, *Nj € Z(I'o/N;), by definition of Nj. Since (yjyc “)r, = Lo, We
have ((j % "Nj)ro/N; = Fo/Nj and Z(To/Nj) = T'o/Nj, i.e. [o/Nj is abelian. But
then Nj = TI'o, because I'g is perfect. In particular, I'g is generated by the elements

[y, vj v “1and H contains therefore the j-th direct factor of T'X. Since

@y =@ Ly - hL D@Ly D,
H also contains the k-th direct factor of T'§, therefore H = I'§ and I'§ is generated by
three elements. O

Remark. We have used GAP ([29]) to check that (w))r, = I'o, Wwhenever w € I'g has
length 2, 4, or 6. Note that b(2) = 30, b(4) = 1230, b(6) = 42480, b(8) = 1354980.

Another example of an (Ag, Ag)—group

In most of our main examples (e.g. Example 2.2, 2.18, 2.21, 2.26, 2.30, 2.33, 2.43,
2.46, 2.52 and 2.58) of this chapter, we always have [T", I'] = I'p, where in addition
"o is perfect. The next example is different in this regard (see also Appendix C.6 for
more such groups), but it shares many other properties with Example 2.2.

Example 2.15.

aibia; b, t, aibras by,  ajbsa;tbs,
) 1, -1 11 ~1
Rss:= | aib; azh; ", agzbiag"by~, azhsaz~hs,

-1 -1,-1
a2b3a3 bz, a2b3 33 b1, agblagbz
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Theorem 2.16. Let I" be the (6, 6)—group defined in Example 2.15.
(1) The statements of Theorem 2.3(1)-(3) and (5)-(8) also hold for this I".
(2) [T, I'] is not perfect, of index 32 in ", and I'g is not perfect either.

Proof. (1) We can use the same arguments as in the proof of Theorem 2.3, of course
with different generators of P, and P,:

pv(b1) = (1,5,4,3,2),
pv(D2) = (2,6,5,4,3),
pv(b3) = (2,3)(4,5),
pn(@) = (1,5,6,2)(3, 4),
ph(@2) = (1,5,3)(2,6,4),
pn(@3) = (1,3,5)(2, 4, 6).

(2) Itiseasy to check that [I", I'] is the kernel of the surjective homomorphism

F—>Z%><Zg

a1~ (1+27,0+4 27,0+ 8%7)
ax—> (14 27,0+ 27,6 + 8Z)
az—> (04+ 27,0+ 27,1+ 87)
by — (0+2Z,1+ 27,3 + 87)
by~ (0+ 27,1+ 27,3 + 87)
bs— (1+27,1+ 27,0+ 87Z).

Note that the commutator subgroup of [I", I'] has index 6 in [T", I"] and that
((af))p is a perfect normal subgroup of I of index 192. See Table 2.3 for the
orders of some other quotients. Moreover, [I'g, I'g] has index 64 = 4-16in T,
more precisely I'&® = Zs.

O

Conjecture 2.17. Let I" be the (Ag, Ag)—group defined in Example 2.15. Then I" is
non-residually finite such that

() N = [ TLIT T = (a2)r

fi.
NI’

for each k € N, and this subgroup of index 192 is simple.
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[Tr/quSyr[Jk=1] 2] 3] 4] 5] 6] 7] 8] 9] 10[11] 12|
w=ay| 4819248102 |48 | 192 |48 | 192 | 48 | 192 | 48 | 192

az 8| 16|24 32| 8| 48| 8| 64|24 | 16| 8| 96
as 41 24| 4| 48| 4| 24| 4| 96| 4| 24| 4| 48
b1, b2 4 8112 | 16| 4| 24| 4| 32|12 8| 4| 48

b3 16| 9616|192 |16 | 96 |16 | 192 |16 | 96 | 16 | 192

Table 2.3: Some orders of I'/{(w*))r in Example 2.15

Example: (Ag, M12)—group

The famous group M12> was discovered by Emile Mathieu in 1861. It can be de-
scribed as a 5-transitive subgroup of A1 of order 95040 and belongs together with the
other Mathieu groups M11, M2z, Ma3 and Ma4 to the list of 26 sporadic finite simple
groups. With the exception of symmetric and alternating groups, M1> and My, are the
only finite 5-transitive groups. See [25] for the relation to Steiner systems and more
background information on Mathieu groups.

Example 2.18.
ajhia; b , aiha; b , aibza; b ,
atbsa; byt aibsa;tbgt, aibea; tbgt,
-1 -1 -1
a1b1 azbz, a2b1a2b3 y a2b3a2b4 y
R36 := ; -

a2b4a3 b5 1, asbsasbg, agbglagbz‘l,

a2b‘1a3b4, asbia; b 1, asboa, b 1,
5 3 3

asbsashg?, asbsaz'b;t, asbeashst
Theorem 2.19. Let I" be the (6, 12)—group of Example 2.18. Then
(1) Pnh = As, Py = M12.
(2) Any non-trivial normal subgroup of I" has finite index.
(3) T isnot linear over any field, in particular irreducible.

(4) [T, '] =T'gandI'gis perfect.



2.1. NORMAL SUBGROUP THEOREM 53

Proof. (1) We compute

pu(b1) = (2,6, 5),

pu(02) = (1,2,5),

pu(03) = (2,5)(3,4),

pu(ba) = (2,5, 4),

pu(bs) = (2,3, 5),

pu(Ds) = (2,5)(3, 4),

pr(@1) = (1, 2)(5, 6)(7, 8)(11, 12),

pn(a2) = (1,2,7,5,4,3)(6,11,12,10,9, 8),
pn(@3) = (1, 2)(3, 6)(4, 5)(7, 10)(8, 9)(11, 12).

Observe that P, = M1> is already generated by pn(a1) =: o and pp(az) =: t,

since

pn(as) = otiotot?ot’0t0ot30 .

As a by-product, we get the following short finite presentation of M2 with two
generators and six relators:

M1 = (0, 7 | 02,75 (07)°, (0t0T)?, (072, (070 1h)?).

(2) We apply Proposition 2.1 or [17, Corollary 5.3], using the fact that the stabilizer
Stabp, ({1}) is the group generated by the three permutations

(2,8,10,12,5)(3,4,7,6,9),
(2? 3’ 6’ 9)(57 107 77 12)’
(5,8)(6,7)(9,10)(11, 12),

which is isomorphic to the non-abelian simple group M1 of order 7920.
(3) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

(4) This is a short computation.
O

Conjecture 2.20. Let I" be the group defined in Example 2.18. Then its subgroup I'g
is simple.

Remark. By analyzing many (4, 12)—groups, we have observed that P, = M12 can
be generated in several ways by {pn(a1), pn(a2)}. We have found seven different cycle
structures for {pn(a1), pn(az)} generating My2. They are listed in Table 2.4:
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pn(az) Ph(a2)

3,4)(5,6)(7,8)(9,10) | (1,7,5, 3,2)(6, 12,11, 10, 8)
(3,4)(5,6)(7,8)(9,10) | (1,6,5,9,3,2)(4,8,7,12,11, 10)
(3,6,5,4)(7,8,9,10) (1,4,2)(3,8,6)(5,10,7)(9,11,12)
(3,6,5,4)(7,8,9,10) (1,6,3,2)(4,8)(5,9)(7,12, 11, 10)
(3,6,5,4)(7,8,9, 10) 1,7,3,2)(6,12,11, 10)
(3,6,5,4)(7,8,9, 10) (1,9,6,3,2)(4,12,11,10,7)
(3,6,5,4)(7,8,9, 10) (1,5,9,6,3,2)4,8,12,11, 10, 7)

Table 2.4: Several pairs which generate M

Example: (Ag, ASL3(2))—-group
See [25, p.55] for the definition of the affine special linear group ASL3(2). It can be
realized as a non-simple 3-transitive subgroup of Ag of order 1344.

Example 2.21.

alblal_lbl_l, albzal_lbz_l, albgal_lbgl,

arbsa; tozt, ajbyta;'bs, apbiay byt
R34 := 1 -
azbzaglbl, a2b3a2_1b4, azbz_lagb_l,

asbiagb; ',  asbpagh,’,  ashsasba
Theorem 2.22. Let I" be the (6, 8)—group defined in Example 2.21. Then
(1) P = Ag, P, = ASL3(2) < Ss.
(2) Any non-trivial normal subgroup of I has finite index.
(3) T' isnot linear over any field, in particular irreducible.
(4) [I',T'] =Tgand g is perfect.

Proof. (1) We compute

pu(b1) = (2,4,3),
pu(b2) = (3,5, 4),
pu(b3) = (1,2)(3, 4),
pv(bs) = (3,4)(5, 6),
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ph(@1) = (3,4)(5, 6),
pn(@2) = (1,7,8,2)(3,4,6,5),
pn(@z) = (1,7,5,3)(2,8,6,4).

(2) Note that
Stabp, ({1}) = ((3,4)(5,6), (3,5,7)(4,6,8), (2,7, 6, 3)(4, 8)) = PSL3(2)

is a non-abelian simple group. The statement follows now either from Propo-
sition 2.1, or from [16, Proposition 3.3.3] together with [17, Theorem 4.1}, or
directly from [17, Corollary 5.3].

(3) The claim is a consequence of [17, Theorem 1.4], see also Proposition 4.4 in
Section 4.2.

(4) This is a short computation.
O

Conjecture 2.23. Let I" be the group defined in Example 2.21. Then its subgroup I'g
is simple.

Question 2.24. Let I" be a (2m, 2n)—group such that any non-trivial normal subgroup
of I" has finite index. Assume that A < T" is a non-trivial perfect normal subgroup (of
finite index). Is A simple?

2.2 A non-residually finite group

Non-residually finite (2m, 2n)—groups have been constructed by Burger-Mozes in [15,
16, 17] for 2m = 196 = 142 2n = 324 = 182 and independently by Wise in [68]
for 2m = 8, 2n = 6 using completely different techniques. See Example 2.39 in
Section 2.4 for the non-residually finite example of Wise. We present in this section
an irreducible (A4, Py)—group I" with P, < Si12 quasi-primitive but such that the
quasi-center QZ(Ho) is not trivial. Applying a result of Burger-Mozes ([17]), this
shows that I" is non-residually finite (Example 2.26).

We first restate a special case of the criterium for non-residual finiteness taken
from [17, Section 2.1] and adapted to our situation:

Proposition 2.25. (Burger-Mozes, [17, Proposition 2.1, Corollary 2.3]) Let I" be an
irreducible (2m, 2n)—group. If P, < So is a quasi-primitive permutation group and
Ao # 1, then I' is non-residually finite. (Similarly, if P, < Som is a quasi-primitive
permutation group and A1 # 1, then I" is non-residually finite.)
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Example 2.26.

alblal‘lbl‘l, albzaz‘lbgl,

albgal‘lbgl, a1b4a1‘1bg1,

aibsa; tbgt, aibsa; b,
Rog := 3 -

-1 —1,,-1
aih; aghs,  azbia; “bg -,

-1 -1
a2b2a2b3 y a2b4a2 b4,

azbsa, thr !, azbea, tbs
Theorem 2.27. Let I" be the (4, 12)—group defined in Example 2.26. Then

(1) Ph = A4, P, =PSL2(5) < S1o, |Py| = 60.

(2) T isirreducible.

(3) P, is quasi-primitive, but not primitive.

(4) A2 # 1, in particular QZ(Hz) # 1.

(5) T is non-residually finite.

(6) [I", '] = I'g is perfect, but not simple.

Proof. (1) We compute

pv(bl) =0,
pl)(bZ) = (27 49 3)’
pu(D3) = (1,2, 3),

pv(ba) = 0,
pv(bs) = (),
pv(bg) = 0,

pn(a1) = (2,6,5,4,3)(7,8,9,10,11),
pnh(az) = (1,5)(2,3)(4,9)(6, 7)(8, 12)(10, 11).

(2) Figure 2.1 shows that we can apply Proposition 1.2(3a) using the fact that
aib1 = bjajg and that p, (b3) = (1, 2, 3) acts transitively on the set

{1,2,3) = Ep\ {a; '} = {a1, ap, a, 1} .
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a, as ap ai
> > g >
by b1 bs ba b3
> > g >
k—3
al az al al

Figure 2.1: Illustration to the proof of Theorem 2.27(2)

Note that the irreducibility criterion [17, Proposition 1.3] cannot be applied here,
since P, is not primitive and Kp, is a 3-group (|Kp| = 27).

(3) The group P, is quasi-primitive, since it is simple and transitive. It has the non-
trivial blocks {1, 12}, {5, 8}, {4, 9}, {3, 10}, {2, 11}, {6, 7}, and is therefore not
primitive.

(4) The set B := {b3, b3, b3, b3, b3, b3}*? is a subset of A, by Lemma 1.1(1b),
since foreach b € B and a € Ey we have p,(b)(a) = a and pn(a)(b) € B.

(5) We can apply Proposition 2.25.

(6) The first part of the statement is an easy computation. The group I'g is not
simple, since I'p N QZ(H>2) is a non-trivial normal subgroup of I'g of infinite
index, using part (4).

O

See Table 2.5 for the orders of some quotients of I'. The infinite quotients in this
list, denoted by “oc0”, correspond to elements in A».

| [T/quw)r| [ k=1]2] 3[4]5] 6|7|8] 9[10]11]12]
w = ay, a 2[4] 2]4]2] 4]2]4] 2] 4] 2] 4
b1,...,bs 214|000 |4|2|00|2|4]c0| 4| 2|

Table 2.5: Some orders of I'/{(wX))r in Example 2.26

Conjecture 2.28. Let I" be the group defined in Example 2.26. Then

ﬂ N=TIp.
fi

N<I



58

CHAPTER 2. NORMAL SUBGROUP STRUCTURE, SIMPLICITY

Note that by [17, Proposition 2.1], we have

(N> (1) x [H>, AgD) #1,

fi.
NI

where H7f°°) is the intersection of all closed finite index subgroups of Ho < Aut(7712),
but we do not know how to determine explicitly a non-trivial element in H7f°°).

Substituting the non-residually finite (196, 324)—group m1(#A13,17 X #A13.17) Of
Burger-Mozes ([17]) by the non-residually finite (4, 12)—group of Example 2.26, we
can simplify some constructions made in [17]:

Proposition 2.29. (1) (See [17, Theorem 6.4] for the same statement but with lower

(2)

3

Proof.

(2)

3)

bounds m > 109, n > 175. Note that the number 150 in [17, Theorem 6.4] is
a misprint and has to be replaced by 175) For every m > 9 and n > 13, there
exists a torsion-free cocompact lattice A < U (Azm) x U (A2n) which is virtually
simple and has dense projections.

(cf. [17, Theorem 6.5]) Any (2m, 2n)—group injects for any even natural num-
bersk > 4,1 > 4 in a virtually simple (Agm+14+k, Adn+2241)—group.

(cf. [17, Theorem 6.5]) Any (2m, 2n)—group such that P, < Aoy and P, < Aoy
are even permutation groups, injects for any even natural numbersk > 4,1 > 4

in a virtually simple (Aomy14+k, A2nt22+41)—group.

(1) We essentially imitate the proof of [17, Theorem 6.4], but replace the
(14, 18)—complex Ox — #1317 (Which is also described in Example 3.26)
by the (Ag, Ag)—complex of Example 2.2, and replace the (196, 324)—-complex
WX = A1317 K A1317 by the non-residually finite (4, 12)-complex of Ex-
ample 2.26. Note that we use in the proof that PSL2(5) < Si2 is even, i.e. a
subgroup of Apa.

We embed the given corresponding (2m, 2n)—complex by [17, Proposition 6.2]
ina (4m, 4n)—complex Y with even local permutation groups. Then we apply
[17, Proposition 6.1] to the case where (OX is the (Ag, Ag)—complex of Exam-
ple 2.2, WX is the non-residually finite (4, 12)-complex of Example 2.26 and
@x =V.

Same proof as in part (2), but without embedding the given (2m, 2n)—complex
ina (4m, 4n)—complex, since the local groups are already even by assumption.
O
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2.3 Virtually simple groups

We embed in this section the non-residually finite (4, 12)—-group I" of Example 2.26
into an (Ag, A1g)—group (Example 2.30), into an (Asg, A14)—group (described in Ex-
ample A.26), and into an (ASL3(2), A14)—-group (Example 2.33). All three examples
turn out to be virtually simple by results of Burger-Mozes. Therefore, their minimal
normal subgroup of finite index (in other words, the normal subgroup of maximal fi-
nite index) is a finitely presented torsion-free simple group. We believe that this index
is 4 in our three given examples.

A virtually simple (As, Aig)—group

Example 2.30.
alblal b 1, a1b2a2 b 1, albgal b 1,
ajhgza; b , aibsa; b , aibea; b ,
-1 -1 -1
a1b7a2b8 y albgazbg, a1b8 a2b y
alb;1a§1b7, albz_lazbg, a2b1a2 b 1,
R3g := 3

ashpasbst,  apbsa, by,  apbsa, byt

-1 -1 -1
azhea, "bs,  agbzasb; =, agbiaz b,

b -1 1 -1
as 2a3 b2, a3b3a3 b4 R a3b4a3 b1,

b -1 -1 -1
as 533 b3, a3b533 b6, a3b8a3 b5

Theorem 2.31. Let I" be the (6, 16)—group of Example 2.30. Then

(1) Py =

Ag, P, = Agg.

(2) T isnon-residually finite.

(3) T is a finitely presented torsion-free virtually simple group, in particular the

minimal normal subgroup of finite index in I"

is a finitely presented torsion-free simple group.

ﬂN

fi.
N«
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(4) We have amalgam decompositions
Fs *Fyq Fr =T =R * Faq Fi7

and
Aut(Tg) > Fi5 * Fgg Fis=To= Fs * Fgs Fs < Aut(77e) .

(5) [T, '] =T'gand I'g is perfect.
Proof. (1) We compute

pv(b1) = py(bg) = py(bs) = py(be) = (),

pv(b2) = (2,6,5),

pv(b3) = (1,2,5),

pv(b7) = (1,5, 3)(2,4,6),

pv(bg) = (1,5)(2, 6),

pn(@1) = (2,6,5,4,3)(7,9,8)(11, 12, 13, 14, 15),

pn(@2) = (1,5)(2, 3)(4, 13)(6, 11)(8, 10, 9)(12, 16)(14, 15),
pn(@3) = (1,13, 14,5,9)(2, 15)(3, 12, 8, 16, 4)(6, 11).

(2) The embedding of the (A4, PSL2(5) < Si2)-complex of Example 2.26 into X
(indicated by the twelve underlined relators in R3.g) induces a wr1-injection by
Proposition 1.9(1). Since the (4, 12)—group of Example 2.26 is non-residually
finite, I' is also non-residually finite.

(3) Apply [17, Corollary 5.4].
(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.
O

Conjecture 2.32. Let I" be the (6, 16)—group of Example 2.30. Then I'g is a finitely
presented torsion-free simple group. Equivalently,

ﬂ N=TIp.
fi

Nl
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A virtually simple (Ag, Ai4)—group

See Appendix A.4 for the definition of a finitely presented, non-residually finite,
torsion-free, virtually simple (Ag, A14)—group. It behaves as the (Ag, A1g)—group of
Example 2.30.

Remark. It seems to be impossible to embed the (4, 12)—complex X of Example 2.26
into a virtually simple (Ag, A14)—complex. However, it seems to be easy to embed X
into a virtually simple (A2m, A2n)—complex, ifm >3, n>8orifm>4,n>7.

A virtually simple (ASL3(2), Ais)—group

Example 2.33.
alblal b 1, a1b2a2 b 1, albgal b 1, a1b4a1 b l,
atbsa; tbgt, aibea; tbyt, ajbra;'bst, ajb;tasbs,
-1 1 -1 -1
albz a2b3, a2b1a2 b y a2b2a2b3 y a2b4a2 b4,
R47 := | a2b5a2 b 1, a2b6a2_1b6, a2b7a4 b7 1, asbjasbg, [ -

a3b2a3 b 1, a3b3a4 b 1, asbgsasb7, a3b5a4bg1,

a3b6a4b1_1, a3b;1a4b1, a3b51a4b5, a3b§1a4b6,

asbytasbzt, asbzlashy, agbylasbyt, asbsasb,t
Theorem 2.34. Let I be the (8, 14)—group defined in Example 2.33. Then
(1) Pnh = ASL3(2) < Sg, P, = A1
(2) T is non-residually finite.
(3) T is afinitely presented torsion-free virtually simple group.
(4) There are amalgam decompositions
F7xF, Fos = T = Fgxp,, Foo

and
Aut(Tg) > Fi3 *Fg; Fz=ETo=EF * Fgs F7 < Aut(T4) .

(5) [I',T'] =Tgand I'g is perfect.
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Proof. (1) We compute

pv(b1) = py(bg) = py(bs) = py(be) = (3,5)(4, 6),
pv(b2) = (2,8,7)(3,4,5),

pv(b3) = (1,2,7)(4,6,5),

pv(b7) = (1,2,4,6)3,8,7,5),

pn(@1) = (2,6,5,4,3)(9, 10,11, 12, 13),

pn(@) = (1,5)(2, 3)(4,11)(6, 9)(10, 14)(12, 13),
pn(@3) = (1,6,5,11)(2, 3)(4, 14, 8)(9, 10)(12, 13),
pn(@g) = (1,11, 7)(2,3)(4, 10, 9, 14)(5, 6)(12, 13).

(2) The embedding of the (A4, PSL2(5) < S12)—-complex of Example 2.26 into the
(8, 14)—complex X (indicated by the twelve underlined relators in R4.7) induces
a mrq-injection by Proposition 1.9(1).

(3) Apply [17, Corollary 5.3] (cf. Example 2.21 for the role of ASL3(2)).
(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.
0]

Conjecture 2.35. Let I" be the (8, 14)—group defined in Example 2.33. Then the sub-
group I'g is a finitely presented torsion-free simple group.

2.4 Two examples of Wise

We recall in this section two interesting groups of Wise ([68]).

Example 2.36. (See [68, Section 11.2.1], the transition from Wise’s notations to ours
isgivenby X — ai, y +— az, a +— by, b — by, ¢ — b3.)

aiboa; tort, asbrasthr?,

. -1,-1 -1,-1
Ro.3 = albgaz b3 , a1b1a2 b2 ,
azblal‘lbgl, a2b3al_1b2_1

Theorem 2.37. (Wise [68]) The (4, 6)—group I of Example 2.36 is irreducible and
not (b1, bo, b3)-separable.
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Proof. See [68]. Let G be a group and H < G a subgroup. Recall that G is said to be
H-separable, if for each element g € G \ H, there is a homomorphism ¢ : G — Q
onto a finite group Q suchthat ¢ (g) ¢ v (H). Itisshown in [68, Corollary 11.4.4] that
1/f(a1a2_1) € V¥ ({by, ba, b3)) for every homomorphism ¢y : I' — Q with finite Q. [

Remark. The proof of Theorem 2.37 given in [68] is based on the fact that the two
elements ap, bz have no commuting non-trivial powers (this phenomenon is called
anti-torus and is proved in [68, Proposition 11.3.8]. Much more about anti-tori can be
found in Section 3.6). Note however, that (a», b3) is not a free subgroup of I" since we
have for example the non-trivial relation by a‘sbzazbglazbgaz =1inT.

Using the separability property of the (4, 6)—group I" described in Theorem 2.37
and the following lemma of Long-Niblo ([44]), a doubling of T" along its subgroup
(b1, bo, b3) (geometrically, doubling X along its vertical 1-skeleton ({x}, E,)) leads
to the non-residually finite (8, 6)—group of Example 2.39. (By a double or a doubling
of a group G along a subgroup H, we mean the amalgamated free product G *, _ G,
where G < H is an isomorphic copy of G < H.)

Lemma 2.38. (Long-Niblo, see [44, Lemma, p.211]) Let 6 : G — G be an automor-
phism of a residually finite group G. Then G is Fix(6#)—-separable, where

Fix(0) :={g € G :6(9) =g}

is the subgroup of elements fixed by the homomorphism 6.
More precisely, if 6 : G — G is an automorphism and G is not Fix(6)—separable,

then
xt0x) e (| N,
NSG
where x € G \ Fix(0) is any element such that v (x) € ¥ (Fix(6)) for all homomor-
phisms ¢ : G — Q onto finite groups Q.

Proof. See [44]. Note that the same result is true for endomorphisms 6 : G — G of
finitely generated residually finite groups G, see [68, Theorem 11.5.2]. O

Example 2.39. (See [68, Section 11.5], where this example is called D)

albzal bl 1, a2b2a2 bl 1, a1b3a2 b3 1, a1b1a2 b l,

Ragz:= 1 azha; b3 , aghza; b2 , agbpag b1 , agboay b ,

a3b3a4 b3 , a3b1a4 bzl, a4b1a§1b§1, a4b3a§1b2_1

The six underlined relators are the relators of Example 2.36 which is embedded in
Example 2.39.
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Theorem 2.40. (Wise [68, Main Theorem 11.5.5]) The (8, 6)—group I of Example 2.39
is non-residually finite.

Proof. By [68], we have for example

aza;taza; e [ N.

fi.
N«

2.5 Constructing simple groups

Using an appropriate embedding of Wise’s non-residually finite group described in
Example 2.39 above, we construct in this section a virtually simple (A1, A1p)—group
(Example 2.43). Moreover, we are able to prove in Theorem 2.45 that its index 4
subgroup I'g is a simple group. Therefore, we get an explicit description of a finitely
presented torsion-free simple group in Aut(710) x Aut(T10), which moreover has the
form Fg s, Fo.

At first, we give two very elementary but crucial lemmas used in the proof of
Theorem 2.45.

Lemma 2.41. Let G be a group, H < G a non-residually finite subgroup of G and
h € H an element such that

1#he ﬂ M.

M<H

heﬂN,

fi.
NG

in particular G is also non-residually finite.

Then

Proof. Let N <1 G be any normal subgroup of finite index in G. Obviously,
NNH<GNH=H.

Moreover
[H:(INNH)] <[G:N]

is finite by Lemma 2.8, hence
heNNH <N

and we are done. O
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Lemma 2.42. Let G be a non-residually finite group and g € G an element such that
1#ge [ N.
NG
Moreover, assume that the normal subgroup {(g)) g has finite index in G. Then
ge=[]N.
Vic
Proof. By assumption, ((g))c is a normal subgroup of G of finite index, hence
g2 [ N.
NEG
The other inclusion follows directly from
ge [N <G,
NG
by definition of the normal closure of g. O
Now, we are ready to describe one of our main examples:

Example 2.43. Let Rs.5 be the set of 25 relators

a1b1a2 b 1, albzal bl l, a1b3a2 bsl, a1b4a2b5 , a1b5a5‘1b4,

albglagb‘l, alb;1a3b5, albglaz_lbz, albl‘laz‘lbg, a2b2a2 bl 1,

1 22bsa; b, asbsasbyt,  agbia; byt aghpazlbyt, asbsagthzt, -
asbaasbs, a3b§1a4b4, agbglaglbz, agbl_lallbg, a4b2a4 b 1,
asbzlag byt asbiagtbs,  ashpag'bgt, asbsag byt asbaagth,?

Proposition 2.44. Let I" be the (10, 10)—group of Example 2.43. Then
(1) Pn = Ao, Py = Ao
(2) T is non-residually finite.

(3) I is a finitely presented torsion-free virtually simple group.
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(4) There are two amalgam decompositions
I'=Fs *Fy F21
and two amalgam decompositions

o = Fg xpg Fg < Aut(770) .

(5) [I',T'] =Tgand I'g is perfect.

(6) The number of generators d(I'K) grows linearly to infinity for k — oo, but
d(rg) < 3forallk e N.

(7) Zr(as) = Nr({as)) = (as).
(8) by e Zr(ag‘), in particular I" is not commutative transitive.

Proof. (1) We compute

pu(b1) = (7, 8)(9, 10),

pu(02) = (1,2)(3,4),

pu(b3) = (1,2)(3,4)(7, 8)(9, 10),
pu(ba) = (1,8,4,5)(2,7,3, 10),
py(bs) = (1,9,4,8)(3, 10,6, 7),
pr@1) = (1,2)(4,6,7,5)(8,10,9),
pr(@z) = (1,2,3)(4,5,7,6)(9, 10),
pn(@3) = (1,2)(4,5,7,6)(8,10,9),
pn(@a) = (1,2,3)(4,6,7,5)(9, 10),
pn(as) = (1,3, 10,8)(2,4,6,9,7,5).

(2) The embedding of the non-residually finite (8, 6)—complex of Example 2.39 into
the (10, 10)—complex X, indicated by the twelve (single or double) underlined
relators in Rs.5, induces a w1-injection by Proposition 1.9(1). The six relators
coming from Example 2.36 (which is embedded in Example 2.39) are doubly
underlined.

(3) Apply [17, Corollary 5.4].
(4) We use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.
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(6) We apply results of Wiegold-Wilson ([67]). First note that d(I") = 2, since for
example I' = (aj, bs), and that d(T"g) = 2, since I'g = (af, b5b1‘1> (this can be
easily checked with GAP ([29])). By [67, Theorem 2.2], we have d(I'K) = 2k,
if k > 18. However, using the simplicity of I"'g which is shown in the following
Theorem 2.45, the result [67, Theorem 4.3] implies d(F'g) <d(Tg)+1=3for
allk € N.

(7) This follows from Proposition 1.12.

(8) We compute agb; = byag. Obviously, as and ag commute. Part (7) shows that
as and b1 do not commute and we conclude that I" is not commutative transitive.
O

Theorem 2.45. Let I" be the (10, 10)—group of Example 2.43. Then the subgroup I'g
is a finitely presented torsion-free simple group.

Proof. Using Proposition 2.44, we “only” have to show that
I'p = ﬂ N .
N

Take w := apa; *aga; * € To. Then by Theorem 2.40 and Lemma 2.41 we have

weﬂN,

fi.
NIl

hence by Lemma 2.42, using the fact that every non-trivial normal subgroup of I" has
finite index in I" (applying Proposition 2.1), we have

{(whr= () N.
N
A computer algebra system like GAP ([29]) immediately checks that
[T : {w)r]l=1(as,...,as, by, ..., b5 | Rss, w)| =4.
Since [I" : T'g] = 4 and w € I'g, we conclude that
[ N = (whr =To.
i
Alternatively and more explicitly, one proves {w)r = I'g by checking that

o = {aa,*, babyt, babgh)
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a1, t = (babswbg by Y (bsw b Y) € (w)r

bsb;t = (b7 *bsw bz *b1) (bibswbg tbrh) € (w)r

babg* = (b7 by twbaby) (bsby tw bty € (w)r .

A finite presentation of the simple group I'g is given as follows: We take the 37
., 537 and the 100 relators of Table 2.6.

S24534, $10523533, 511524535, S12519537, 513527531,

518520536, S17520532, 516524529, $14524530, 51510524533,
51512524532, 51513521536, S2526534, 52510525533,  S2511526535,
S2512521532, 52518521531, S2516526529, S2514526530, S3510526533,
53518527536,  S4527S30, S4510527537,  S4511527533,  S4512527534,
55510519533, S5534, 55511519535, S5513524S36, S5517522537,
55512525532, S5518525531, S5515519530, S5516519528, S6519534,

56518519536, 56512526537, S7510521533, S7520534, 57511521535,
57518526536, S7517526532, 57515521530, S7516521528, S8521534,

58512522532, 59516522533, 59513522534, S9522S535, 59510522536,
56515528, S5514529, 56516530, 51518531, 59512532,

S2817537, 52513536, 56510535, 56511533, 56514519529,
56513519531, 53517519532, 58515520528, S7514520529, S8516520530,
53513520531, 53512520537, S8510520535, S8511520533, 58514521529,
59517521537, 59511522528, S9518522529, S9514522S30, S9515522531,
51514523529, 515523528, 51516523530, S6517523532, S4518523536,
57513523531, S7512523537, 51511523534, S1523S35, 51515524528,
51517524537, 58518524531, S3514525529, S2515525528, S3516525530,
58517525537, 58513525536, S3511525534, S3525535, 53515526528,
S4513526531, 54514527535, S4515527532, S4516527528, S4517527529

Table 2.6: Relators of the simple group of Theorem 2.45

Of course, this presentation can be slightly simplified, for example using the iden-
mES%::&4:s§FApManmeGAPcommmM(B%)

SimplifiedFpGroup(G);

we get a presentation of I'g with 3 generators and 66 relators of lengths between 18
and 113. Note that the deficiency of I'g is —63, cf. Section 4.6.
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Remark. The smallest finitely presented torsion-free simple group coming from the
construction given in [17, Section 6.5] either has amalgam decompositions

AUt(T48) > F7919 * Fag0065 F7919 = F47 *Fapa301 F47 < AUt(%QZO) >

if we take k = 3,1 = 44, P, = Ag, P, = Agg, or has amalgam decompositions

Aut(T28) > Fgo79 *Fagraus F8279 = Fa7 % Fagee Fa7 < Aut(Tg2g0)

ifwetakek = 3,1 =45and Y = w5 gg, using the notation of [17]. Observe that both
groups need more than 360000 relators in any finite presentation. Also the smallest
candidate for being a finitely presented torsion-free simple group in the construction
leading to [17, Theorem 6.4] has complicated amalgam decompositions

AUt(T218) > F349 *Fpepes Faa9 = F217 *Fggy, F217 < AUt(T350) ,

needing more than 75000 relators. Obviously, it would be an enormous work to write
down a presentation of such a group.

More simple groups

Using exactly the same ideas as in Theorem 2.45, we embed now the non-residually
finite (8, 6)—complex of Example 2.39 into several (2m, 2n)—complexes with virtually
simple fundamental groups I". See the following list (Table 2.7) for examples with

(2m, 2n) € {(10, 10), (10, 12), (12, 8), (12, 10), (12,12)}.

As before, the group
M := (] N = (@aza; "aza, ")r
N

is finitely presented, torsion-free and simple. In the list, we use the following notation:
In the third column, [2, 2] stands for Z% etc. and in the last column, for example
(9, 81, 9) means an amalgam decomposition Fg xr,, Fg. Note that I'g and I'* always
have two amalgam decompositions, a horizontal and a vertical one. Since I'* < TI'g
is a subgroup, the index [I" : I'*] is a multiple of 4. In most (but not all) examples
listed below, we have [T, '] = I'*, in particular for these examples || = [I" : I'*]
and [I", I'] is simple. In all examples (in particular for those with I'* < [T, T']), we
compute that I'* is the group

{([a1, az], [a1, b1], [a1, b2l, [a1, bal, [az, b1l,
[az, b2], [az, ba], [b1, b2], [b1, ba], [b2, b3])r .

If [I": T'*] > ||, we give the non-abelian quotient I'/ I"*.
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Ex r rab r/r* | P3| | I* = (aay taga; Hir
243 (A1, Aro) [ 12, 2] 47 (9,81,9 =(9,81,9)
(A0, Ar0) | [2,2,2] 8 | (17,161,17) = (17, 161, 17)
(A10, Ar0) | 12, 4] 8 | (17,161, 17) = (17, 161, 17)
(A10, A10) | [2, 6] 12 | (25, 241, 25) = (25, 241, 25)
(A0, Ar0) | 12,2, 4] 16 | (33,321, 33) = (33, 321, 33)
(A0, Aro) | 12, 8] 16 | (33,321, 33) = (33, 321, 33)
(A10, Aro) | [2,10] 20 | (41,401, 41) = (41, 401, 41)
(A0, A10) | 12,2, 6] 24 | (49, 481, 49) = (49, 481, 49)
(A10, Aro) | [2,12] 24 | (49, 481, 49) = (49, 481, 49)
(A0, A10) | 12,2, 8] 32 | (65,641, 65) = (65, 641, 65)
250 | (Ao, Aro) | 12, 20] 40 | (81, 801, 81) = (81, 801, 81)
(A0, Ap) [ 12, 2] 47 (11,101,11) = (9,97.9)
248 | (A, App) [ 12.2] De 4| (31,301, 31) = (25, 289, 25)
(A, Ap) [ 12,2, 2] 8 | (21,201, 21) = (17,193, 17)
(A10, A1) | [2,2,2] | Sg x 73 8 | (61, 601, 61) = (49, 577, 49)
(A0, Ap) | 12, 4] 8| (21,201, 21) = (17,193, 17)
2m =12
(A, Ag) [12,2] 41 (1,73,7) = (11,81,11)
(A, Ag) | [2,4] 8 | (13,145, 13) = (21, 161, 21)
246 | (M1, Ag) | 12,2] 41 (7,73,7)=(11,81,11)
(A1, Aro) [ 12, 2] 47 (9,97,9) = (11,101, 11)
(A1, Aro) | 12, 2] De 4| (25,289, 25) = (31,301, 31)
(A, A1) [ 12,21 | Ds x Zp 4| (41,481, 41) = (51,501, 51)
(A, Aro) [ 12,2, 2] 8 | (17,193,17) = (21,201, 21)
(A1, Aro) | 12, 4] 8 | (17,193,17) = (21, 201, 21)
(A12, A10) | [2,2,2] | Da x Zp 8 | (33,385, 33) = (41, 401, 41)
(A1, Aro) | [2, 6] 12 | (25, 289, 25) = (31, 301, 31)
(A1, Aro) | 12, 8] 16 | (33, 385, 33) = (41, 401, 41)
(A1, Aro) | [2,10] 20 | (41,481, 41) = (51,501, 51)
(A1, Aro) [ 12,2, 6] 24 | (49,577, 49) = (61, 601, 61)
(M12, Ay | 2, 2] 4] (9,97,9) = (11,101, 11)
(A, Ap) [ 12,2] 471(11,121,11) = (11,121, 11)
(A, Ap) | 12,2,2] 8 | (21,241, 21) = (21, 241, 21)
(A1, Ap) | 12, 6] 12 | (31, 361, 31) = (31, 361, 31)

Table 2.7: Many simple groups I'*
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Three more examples appearing in Table 2.7 (namely Example 2.46, Example 2.48
and Example 2.50) will be described now. We have chosen these three examples for

the following reasons:

e In Example 2.46, P, = M1, the fascinating Mathieu group.

e InExample 2.48, I'* < [T, I'].

e In Example 2.50, [T" : I'*] = 40 is the largest such index in Table 2.7.

Here is the description of a (M12, Ag)—group:

Example 2.46.
1 1 1
a1b1a2 b y albzal bl R a1b3a2 b R a1b4a3b4,
albglazb_l, albglaz‘lbz, albIlaz_lbg, a2b2a2 b l,
a2b4a5b4, a3b1a4 b 1, a3b2a3 bl 1, a3b3a4 b3 R
Re.4 := 1
asbyta; oy, asbzla;’bs, asbytay’bs, asbpay byl
-1 -1 -1
asb,"ash,~, asbiagbz, asbrag b2 , asbgag b3 ,
a5b2‘1a6‘1b1‘1, a5b1_1a6‘1b1, aebgaglbgl, aeb48.6_lb3

Theorem 2.47. Let I" be the (12, 8)—group defined in Example 2.46. Then

(1) Ph= My, P, = Ag.

(2) T isnon-residually finite.

(3) I' is a finitely presented torsion-free virtually simple group.

(4) There are amalgam decompositions
Faxpy, Flo =T = Fgxp, Fo1

and

Aut(T12) > F7 *Fog F=TI0=Fn1 *Fgy Fi11 < Aut(7g) .

(5) [I',T'] =Tgand I'g is perfect.

(6) TI'ois a finitely presented torsion-free simple group.
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Proof. (1) We compute

pu(b1) = (5,6)(7, 8)(9,10)(11, 12),
pv(b2) = (1,2)(3,4)(5,6)(7, 8),

pu(b3) = (1,2)(3, 4)(9,10)(11, 12),
ov(bg) = (1,11,5,9,10)(2, 12, 3,4, 8),
ph(@1) = pn(@3) = (1,2)(4,5)(6,8,7),
ph(@2) = pn(@s) = (1,2,3)(4,5)(7, 8),
pn(@s) = (1,7)(4,5),

ph(@e) = (2,8)(3,5,6,4).

(2) The embedding of the non-residually finite (8, 6)—complex of Example 2.39
into the (12, 8)—complex X (indicated by the twelve underlined relators in Rg.4)
induces a swr1-injection by Proposition 1.9(1).

(3) We use [17, Corollary 5.3] and conclude as in [17, Corollary 5.4].

(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.

(6) The proof is in the same spirit as the proof of Theorem 2.45.

O

Our next example is an (Ao, A12)—group I" with a simple subgroup I'* of index 12
such that '/ T'* is non-abelian:

Example 2.48. Let Rs.g be the set of relators

aibia; to,t,  agbpa; byt asbsaybzl, ajbsasbyt,  asbsasbgt,

aibea; tbs,  aibglasbs, aibg'ay'bs, aiby'az'bgt, aibsta,'hy,

albIlaz_lbg, a2b2a2 b l, a2b4a3 b l, a2b6a3 b l, azbglagbs,
1

agbia; tb, 1, agbpaz by, asbsa;’bzl, ashsasbs, asbsa, b, t,

asbgla 'hot, asbzla;lby, asbilaylbs, asbraglbrt.  asbytasb:’,

a5b1a5 b , a5b2a5_1b2, a5b3a5_1b5, a5b4a5 b , a5b6a5_1b6
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Theorem 2.49. Let I' be the (10, 12)—group defined in Example 2.48 and let

.= ﬂ N .
Then
(1) Pnh= A1, Py = A12.
(2) The group I'* is finitely presented, torsion-free and simple.

(3) The finite index subgroups of I and the normal subgroups of I are completely
known (and explicitly described below).

Proof. (1) We compute

pv(b1) = (7, 8)(9, 10),

pu(02) = (1,2)(3,4),

pu(b3) = (1,2)(3,4)(7, 8)(9, 10),
pu(bs) = (1,9,8,5,7,10,2,3,4),
pu(bs) = (1,9, 10,2)(3, 4,6)(7, 8),
pv(be) = (1,4,10,7)(2,3,9,8),

pn(ag) = (1,2)(6,9)(10, 12, 11),
pr(@2) = (1,2,3)(4,6)(11, 12),

pn(@z) = (1,2)(4,5, 8)(7,9)(10, 12, 11),
pn(ag) = (1,2,3)(4, 75, 9,8)(11, 12),
pn(@s) = (2,11)(3, 4, 8)(5, 10, 9)(6, 7).

(2) Same proof as in the previous theorems.

(3) We have used GAP ([29]) for the computations. Look at the following diagram
(Figure 2.2), which describes all subgroups of I" of finite index (I" has no non-
trivial normal subgroups of infinite index by Proposition 2.1).

Here are some explanations: N1, N2, N3, N4 are normal subgroups of I". The
subgroups Hi, Hy, Hz are not normal. The index in I" is given on the left hand
side of the diagram. All arrows are inclusions. The subgroups of I" are defined
as follows:

Ny :=ker(I' = Sp), aj = (), bj — (1, 2)
No :=ker(I' = $2), aj — (1,2), bj — (
N3 :=ker(I' = $2), aj — (1,2), bj — (1,2).
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1 r

~
2 N1 %
3 Hi
4 I
6 Ha N4 Hs

L=

12 r*

Figure 2.2: Subgroups of Example 2.48

Ng := ker(I' — S3)
a, a2 (1,2)(3,5)(4, 6)
as, a4, as — (1, 3)(2,4)(5, 6)
b1, b2, bz, bg, bs = ()
bg — (1,4,5)(2,3,6).

Hi := (a1, asaz ', by)
Hy := (a1, asagt, boby )

Hz := (a5a§1, blal_l, bzal_l) .
We have

[/T* = Dg, I'/Nga=S3, Hy/T* =72,
N1/ [ = Sz, N2/ ' = Zs, N3/ [ = Sz,
[[, '] = [N1, N1] = [N3, N3] =TI,
[To, Fol = [N2, N2] = [Na, N4l = [H1, Hi] = [Hz, Ho] = [H3, H3] =T*.

The following commutators are not in I"*:

[a1, azl, [a1, asl, [a1, as], [a1, bel,
[az, az], [az, aal, [az, as], [az, bel, [a3, bsl, [a4, bel, [as, be] .
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[ r/Gw)r[[k=1] 2]3] 4[5] 6[7] 8]9[10[11]12]

w=a4aj,...,a5 211212122122 |12 |2 |12 | 2|12
b1,...,bs 6112|6126 |12 6|12 |6 (12| 6|12
be 2| 416 412|122 4|6| 4| 2|12

Table 2.8: Some orders of I'/ (w*) - in Example 2.48

In addition, see Table 2.8 for the orders of some quotients of T".
U

Here is an example of an (A1g, A1p)—group with a simple subgroup of index 40:
Example 2.50. Let Rs.5 be the set

aibia, b , aiboa; b , aibsza, b , aibaasba, absa; b ,
2 1 2 1

alelazb_l, albglaz_lbz, albl‘laz_lbg, a2b2a2 b l, asbgasba,

1 a2b5a5 b 1, a2b§1a§1b5, a3b1a4 b l, a3b2a3 b l, a3b3a4 b 1, [ -

asbsasb, ',  asbglasbzt, asbylasbs, agbzla;’by, agb;ta;’bs,

a4b2a4 b 1, a5b1a5 b3 , a5b2a5 b2 l, a5b3a5 b4, a5b4a5‘1b1
Theorem 2.51. Let I" be the (10, 10)—group of Example 2.50 and define
=[N
fi.
Nar

Then

(1) Ph = A, P, = Aso.

(2) T*is afinitely presented torsion-free simple group.

(3) All finite index subgroups of I" are normal. They are visualized in the following
diagram (Figure 2.3), where all arrows are inclusions.
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1 r
o

2 Ny { N3

]
4 N4 Ns Ng

T
8 Ng
5 N7
T
10 N11 N1o No
| 2
20 N4 N13 N12
|

40 r*

Figure 2.3: Subgroups of Example 2.50

Proof. (1) We compute

pv(b1) = (7, 8)(9, 10),

pu(b2) = (1,2)(3, 4),

pu(b3) = (1,2)(3,4)(7, 8)(9, 10),
pv(bg) =(1,9,4,8)(2,10,3,7),
pu(bs) = (2,5)(3,7)(4,8)(6, 9),

pn(@1) = (1,2)(4,7)(8, 10,9),
pn(@2) = (1,2, 3)(4,7)(9, 10),
pn(@3) = (1,2)(4,5,6,7)(8, 10,9),
pn(@s) = (1,2,3)(4,5,6,7)(9, 10),
pn(as) = (1,7, 3)(4, 8, 10).

(2) We apply the same strategy as in the previous theorems.
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(3) Using GAP ([29]), we have computed

N1 = (af, aaba))r
N bi)r
N ar)r
N aiba)r
N aibs)r
N a?)r =To
N a2, bY)r
Ng = (af)r
N aZaz t)r
Nio = (afbgthr
N ai’, aib)r
N a1%)r
N1z = (@ibi))r
Ni4 = (bsagt)r
' =[I,T]
aja, Yyp
af%)r
b

/Ny = 7
I'/Na = 7
/N3 = Zo
T/Ng = Zy
/N5 = Z4
I'/Ng = 72
I'/N7 = Zs
I'/Ng = Zo x Zg
I'/Ng = Z1o

I'/N1o = Zao
I'/N11 = Zo
['/N12 = Zo X Z10
I'/N13 = Z2o
I'/N1g = Zoo

L/T* =7y x Zyg.

See Table 2.9 for the orders of some quotients of I":

[ o/ [k=1]2]3]4] 5]6]7]8]9[10[11]12]20|

w =aig,..

., d5

2

4

2

8

10

4

2

81220 2

8

40

by, ..

., bs

2

4

2

8

10

4

2

81220 2

8

40

Table 2.9: Some orders of I'/ (w*) - in Example 2.50

77

See Appendix C.7 for a long list of other embeddings of the non-residually finite
(8, 6)—complex of Example 2.39 into (10, 10)-complexes X such that P, and P, are

both primitive permutation groups.
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2.6 A non-simple group without finite quotients

We use an embedding of the non-residually finite (8, 6)-complex of Example 2.39
into a (10, 10)—complex to get a non-simple group I'g < Aut(710) x Aut(T10) without
proper subgroups of finite index.

Example 2.52. Let Rs.5 be the set of relators

alblaz‘lbz‘l, albzal_lbfl, albgaz_lbgl, a1bsabs, albglazb_l,

-1,-1,-1 -1,-1 -1,-1 11
a1b4 a, b4 R a1b3 a, b2, albl a, b3, a2b2a2 bl y a2b4a2b5,

v~

~1_-1p-1 11 11 11 -1
1 azb,"a; b, ", aghbia, “h, ", aghpa; by, ashbsa, by, asbsasb, ",

-1,-1,-1 -1 -1,-1 -1,-1 11
a3b5 a5 b5 R a3b4 a4b5, a3b3 a4 b2, a3b1 a4 b3, a4b2a4 bl y

asbgtasb;t,  asbiasha, asboa; 'bs,  asbsag by,  ash,'asb;?
Proposition 2.53. Let I" be the (10, 10)—group defined in Example 2.52. Then
(1) Pp < Sqg is transitive, but not quasi-primitive; P, = Sqo.
(2) [T, '] =T'gandI'gis perfect.
(3) There are two amalgam decompositions
' = Fs g, Fu
and two amalgam decompositions

o = Fg xpg F9 < Aut(770) .

(4) T isnon-residually finite, in particular not linear over any field and irreducible.

Proof. (1) We compute

pv(b1) = (5,6)(7, 8)(9, 10),

pu(02) = (1,2)(3, 4),

pu(b3) = (1,2)(3,4)(7, 8)(9, 10),
pu(ba) = (1,4,8,9,2,3,7,10)(5, 6),
pu(bs) = (1,9,2,10)(3,5,7)(4, 6, 8).
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These permutations generate a transitive group P < Sjo of order 3840 which
is not quasi-primitive, since Py has a normal subgroup of order 2 generated by
the element (1, 2)(3, 4)(5, 6)(7, 8)(9, 10) = p,(b1)py(b2).

pn(a) = (1,2)(4,7,5,6)(8, 10, 9),

pn(az) = (1,2,3)(4,7,5,6)(9, 10),

pn(az) = (1,2)(4,5,6,7)(8,10,9),

pn(as) = (1,2,3)(4,5,6,7)(9, 10),

pn(@s) = (1,7)(2,8)(3,9)(4, 10)(5, 6).

(2) These are easy computations.

(3) We use Proposition 1.3 and Proposition 1.4. To apply Proposition 1.4, the only
thing to check is that p,,(Frﬁz)) < Som IS transitive, but here we have

Ph = (py(0%), pu(b1b2), pu(baba), py(b3))
in particular ,o,,(Frﬁz)) = py(Fn) = Py in the notation of Proposition 1.4.

(4) We use the fact that the non-residually finite (8, 6)-complex of Example 2.39
embeds into the (10, 10)—complex X, see the twelve underlined relators in Rs.s.
O

Theorem 2.54. Let I" be the (10, 10)—group defined in Example 2.52. Then
(1) The subgroup I'g has no proper subgroups of finite index.
(2) Tgis notsimple.

Proof. (1) By construction, the non-residually finite complex of Example 2.39 is
embedded into X. Take w := a,a; ‘asa; * and

.= ﬂ N .
N
As in Theorem 2.45, we observe that (w))r = Io, in particular {(w))pr > I'*.
Since w € I'’*, using Theorem 2.40 and Lemma 2.41, we conclude that

(whr =TI*=TYo.

Assume now that M is a finite index subgroup of I'. Then M also has finite
index in T" and therefore

M > ﬂl.: ﬂ N =T*=TYy,
L Nr

using Lemma 2.6, hence M = I'.
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(2) QZ(Hy) N Tg is a non-trivial normal subgroup of infinite index in I'p. More
precisely, let A be the set

—-1\2 -1,.4\2 -1\2 —1,.\2 4+l

Then A C A1NTg < QZ(Hy) NI, since foreacha € Aand b € E, we have
pnh(@)(b) = band p,(b)(@) € A, using Lemma 1.1(1a).

Note that we have |Fg1\ Fgo/Fg1| = 3 for the vertical amalgam decomposition of
o = Fg xr Fg (more than 2 by Proposition 1.6, since Py is not 2-transitive),
and I'g is therefore even SQ-universal, according to Proposition 1.7.

O

Remarks. (see Appendix D.1 for much more history)
(1) Higman’s group
H = (a,b,c,d|btab =a? cthc =b? dtcd = c? a~tda = d?

introduced in [34], has no proper subgroup of finite index. There is another
similarity to the group I'g of Example 2.52: Using small cancellation theory,
Schupp proved in [62] that H is SQ-universal. By the way, H was used to show
the existence of a finitely generated infinite simple group (one takes the quotient
of H by a maximal normal subgroup of H), thus answering a question posed by
Kuros ([42]).

(2) Bhattacharjee has constructed in [7] an amalgam F3 xf,, F3 without non-trivial
finite quotients. It is not clear if it has proper infinite quotients.

(3) In [68], Wise gave a construction of a square complex, whose fundamental
group has no non-trivial finite quotients.

As usual, we give in Table 2.10 orders of some quotients of the group I defined in
Example 2.52. The infinite quotients in the table correspond to elements in A .

[ Jr/uwyr][k=1]2[3] 4[5]6[7] 8[9]10]11[12]

w=aig,...,as 21412 412|412 4|12| 4| 2| 4
as 21412024200 |2 4] 2|0
b1,...,bs 21412 412|412 4|12| 4| 2| 4

Table 2.10: Some orders of I’/ (w*)r in Example 2.52
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2.7 A group which is not virtually torsion-free

Using an idea of Wise ([68, Section 11.6]), we construct a finitely presented infinite
quotient Q of an (8, 8)—group such that Q is not virtually torsion-free, i.e. each sub-
group of Q of finite index has non-trivial elements of finite order.

Lemma 2.55. (Wise, cf. [68, Easy Lemma 11.6.1]) Let G be a non-residually finite
group and g € G a non-trivial element such that

geﬂN
NG

and assume that g ¢ )c for some n > 2 (equivalently: (g")c < (g)c). Then
the quotient G/ (9" ) g |s non-residually finite and not virtually torsion- free

Proof. (cf.[68, Proof of Easy Lemmall.6.1]) Let H < G/{g"))c =: Q be asubgroup
of finite index (say of index k). Let v = ¢ o  be the composition homomorphism

VG605,
where 7 is the canonical projection and ¢ is induced by left multiplication on left

cosets in Q/H, i.e. p(q)(giH) := qq; H (cf. proof of Lemma 2.6). Since ker ¢ < G
and [G : ker ] < |Sk| = k! is finite, we have g € ker ¢, hence

7(9) = g(9")c € kergp < H.

By assumption g ¢ ((g")c, which implies g(g")c # 1g. We conclude that Q is
non-residually finite.
H is not torsion-free, since (g{g")e)" = (9")c = 1H. O

Example 2.56.

a1b1a2 b l, albzal b 1, a1b3a2 b 1, a1b4a2_1b4,

atb;tay b, asbzlas;thy, aibrtaytbs, asbrastbil,

Rag := ; -
1 1 -1
a3b1a4 b y a3b2a3 bl R a3b3a4 b3 R a3b4a3 b4,

-1,-1 -1,-1 -1K-1
a3b3 a4 b2, agbl a4 b3, a4b2a4 b R a4b4a4 b4
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Theorem 2.57. Let T" be the (8, 8)—group defined in Example 2.56 and let w be the
element a,a; *aza, . Then Q := I'/{w?)r is non-residually finite and not virtually
torsion-free. More precisely, the element

wiw?re [ N<Q
o
has order 2 in Q.

Proof. The non-residually finite (8, 6)—-complex of Example 2.39 embeds into the
(8, 8)—complex of Example 2.56 and induces a m1-injection by Proposition 1.9(1),

in particular
w e ﬂ N
N
by Lemma 2.41. Note that w ¢ A1, since pp(w)(bg) = b;l = by (see Figure 2.4).

a1 as as aq
> < > <
bs A vy by ADby vy by vy by
> < > <
az ai as aq

Figure 2.4: lllustrating pn(w)(bs) = b, * in Example 2.56

However, by Lemma 1.1(1a), the set
A= {w? (a13; "a4a3 )%, (a1a; ‘asa, )7, (a2a; ra4az %)

is a subset of A1, since foreacha € Aand b € E, we have ph(@)(b) = b and
pv(b)(@) € A. Using w? € A1 < T, we conclude that (w?)r < A1 and therefore
w ¢ (w2)r. Now apply Lemma 2.55 to the quotient I'/ {w?) . O

Remark. Let I" be a (2m, 2n)—group such that every non-trivial normal subgroup of I"
has finite index, for example by Proposition 2.1. Then every quotient of I" is either
torsion-free (if the quotient is I'/1 = I') or finite, in particular virtually torsion-free.

2.8 Locally primitive, not 2-transitive

To guarantee that an irreducible (2m, 2n)—group has no non-trivial normal subgroup
of infinite index, it is required in Proposition 2.1 that both local groups P, and P,
are 2-transitive. We construct now an irreducible (Ag, P,)—group, where P, < Sio
IS primitive, but not 2-transitive. All primitive permutation groups are 2-transitive in
degree 2, 4, 6, 8, 12 and 14, see Table C.1.
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Example 2.58.
alblal_lbz‘l, albzaz‘lbgl, albgaz‘lbl,
a1b4a2_1bg1, a1b5a2‘1b5, albglaz‘lbgl,
R35 := { albglazb_l, albglaz‘lbg, a1b2_1a2b4, .

ahiagthy,  aghpazths,  aghiashy,

asbzaz'hzt, asbsagh,’,  ashsaz'bs
Theorem 2.59. Let I be the (6, 10)—group defined in Example 2.58. Then
(1) Pn = Ag; Py, = S5 < Sqg Is primitive, not 2-transitive.
(2) There are two amalgam decompositions of I":
Fsxps F1I3 =T = Faxp, F11.
There is a vertical decomposition of I'g
I'o = Fg*py o,

acting locally like Ag (but possibly not effectively) on the tree 75, = 76, and a
horizontal decomposition

I = Fsg *Fyy Fs < Aut(710),

where the (effective) action on T7g is locally like Ss < Sy, in particular locally
primitive, but not locally 2-transitive.

) Hg(F; R) is infinite dimensional as R-vector space (cf. Theorem 2.3(8)).
(4) T is SQ-universal, in particular not virtually simple.
(5) [, T'] =Tgand Iy is perfect.
(6) T isnot linear over any field, in particular irreducible.
Proof. (1) We compute

pv(b1) = (1,5,4,3,2),

pv(b2) = (2,6,5,4,3),

pv(D3) = py(bs) = (1, 2)(5, 6),
pv(bs) = (1,2,6,5)@3, 4),
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pn(@1) =(1,7,9,10,3,2)(4,6,5),
ph(@2) = (1,8,9)(2,4,10)(5, 6, 7),
pn(@3) = (1,9)(2, 10)(5, 6).

The action of P,,(Z) on the sphere S(x,, 2) has two orbits of size 60 and 30,
respectively. Observe that in general the action of Pv(z) on S(Xy, 2) is transitive
if and only if P, is a 2-transitive permutation group. Note that P, acts like Sg
on the set of 2-element subsets of {1, 2, 3, 4, 5}.

(2) Use Proposition 1.3 and Proposition 1.4. The explicit horizontal decomposition
of I'p can be found in Appendix A.5.

(3) In the horizontal amalgam decomposition I' = F3 *g,, F11 we have
|F21\F3/F21| =3 and |F11/F21| = 2.

See Proposition 1.6 for an easy method to compute |F21\F3/F21]. Now we
apply a result of Fujiwara ([28, Theorem 1.1]), which states that Hbz(A*C B; R)
is an infinite dimensional R-vector space if [C\A/C| > 3and |[B/C| > 2.

Note that the assumptions of Fujiwara’s theorem are not fulfilled in the two
(F3 *f,; F7)—decompositions of Example 2.2, since |F13\F3/F13| = 2 due to
the 2-transitivity of P, and P, in Example 2.2.

(4) Apply Proposition 1.7 to I' = F3 xp, F11. Observe that I' does not satisfy the
assumptions of the normal subgroup theorem [17, Theorem 4.1], since Ha is not
locally 2-transitive and consequently not locally co-transitive.

(5) This is a short computation.

(6) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.
O

Proposition 2.60. Let I" be as in Example 2.58. Then
(@ =To, ifk € {2+6l,4+6l}, 1 € Ng.
Moreover, (af)r = (a;®)r = (ai®)r = Io.

Proof. For the first part, we only give the idea of the proof, which is essentially the
same as in the proof of Proposition 2.12: show that ((babs)r = o and ((b2)r = o,
then show that for | € Ng

bsbs, k=246l

K-l Kp—1
a;  (bg"bzajbs "bs) = b2 K—d16l.

We have checked the second part of the proposition with MAGNUS ([50]). O
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Conjecture 2.61. The group I" of Example 2.58 is non-residually finite and

m N=TIp.

fi.
NI’

See Table 2.11 for the orders of some quotients of T.

| T/ [ k=1]2[3]4]5]6]7[8]9]10[11]12]
w = ay, a, a3 2]4f2]4]2]4]2]4]2] 4] 2] 4
b1, ....bs 2]4]2]4]2]4]2]4a]2] 4] 2] 4

Table 2.11: Some orders of I'/ {(w*) in Example 2.58

We also would like to construct an explicit non-trivial infinite index normal sub-
group of I'', for example given as normal closure of one element or of several elements,
but we did not manage to do this. What follows is a mix of ideas to achieve this goal, a
possible application to Kazhdan’s property (T), and some remarks on SQ-universality.

Conjecture 2.62. Let I" be the group defined in Example 2.58 and x, a vertex in 71o.
Then every orbit of the Ha(x,)—action on 9., 710 IS uncountable.

“Proof”. Studying the orbits of the local action of H, on finite spheres S(x,, k), we
believe that the orbit of any boundary point w € 0,710 under the Ha(x,)—action
contains the uncountable boundary at infinity d.,770.4,7 Of a certain infinite subtree
T10.4.7 C T10. This subtree contains S(x,, 1) and the valency of any vertex y, # X, is
either 4 or 7 (depending on w), but constant on finite spheres S(x,, k).

More precisely, we imagine reduced paths in 73 originating at x,, to be labelled by
freely reduced words in the free group (b1, ..., bs). Using the explicit isomorphism
E, = {1, ..., 10} described in Section 1.4, we identify the sphere S(x,, k) with the
set of k-tuples

{(e1,...,e) €{1,...,10): e + 641 # 11 foreachi e {1,...,k — 1}}.

For each k > 2, we define an equivalence relation ~ on S(x,, k) as follows. First,
~5 gives a partition of S(x,, 2) into two equivalence classes consisting of 30 and
60 elements, respectively. The equivalence class with 30 elements is the set {(1, 3),
1,5), (1,9), (2,6), 2,7), (2,10), 3,4), 3,9), 3,6), (4, 1), 4,4), (4,9), (5,2),
(5,8), (5,9), (6,1), (6,8), (6, 10), (7,3), (7,7), (7,8), (8,2), (8,4), (8,10), (9,1),
(9, 3), (9,6), (10, 2), (10, 5), (10, 7)}. For k > 3 we define

(e1,...,ex) ~k (f1,..., fx) <= (&, €i11) ~2 (fi, fiyn) Vie{l,...,k—1}.

Note that we have 2K—1 equivalence classes on S(x,, k) with respect to ~|, where the
number of elements in each class is 10 - 6/ - 3k~ for some j € {0, ..., k — 1}. We
have checked that the Ha(x,)—action induces exactly the equivalence relation ~ on
S(X,, k) fork = 2, 3, 4. O
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As a “corollary” of Conjecture 2.62, we have
Conjecture 2.63. Let I" be the group of Example 2.58. Then QZ(H>) = 1.

“Proof”. If Conjecture 2.62 holds, then we follow verbatim the proof of [16, Propo-
sition 3.1.2, 1)]: Let S C 04710 be the set of fixed points of hyperbolic elements
in QZ(H2). Then S is countable, since QZ(H>) is countable, which follows directly
from the fact that QZ(H>) is discrete (see [16, Proposition 1.2.1, 2)]). Moreover, S is
Ho-invariant, since QZ(H>) is a normal subgroup of H,. We could conclude by Con-
jecture 2.62 that S is empty, in other words QZ(H2) has no hyperbolic elements. On
the other hand, QZ(H>) acts by [16, Proposition 1.2.1, 2)] freely on the vertices of 719
(in particular, there are no elliptic elements in QZ(H») \ {1}), hence |QZ(H2)| < 2.
But then, QZ(H2) € Z(Hy) = 1. O

See the subsequent Table 2.12 to check that small powers of by, ..., bs are not in
the group A2 < QZ(H>) (see also Appendix A.5 for a computation of |,of)k)(w)| for
all words w of length 2 and k < 5).

| p ] [k=1] 2] 3] 4] 5

w = by, by 5|10 | 100 | 600 | 3000
b3 2 (10| 50 | 100 | 1000
by 41 8| 40| 200 | 1000
bs 2| 4| 20| 40| 1200

Table 2.12: Order of p,Sk)(w) in Example 2.58

For instance, it follows from this table that b{ ¢ Ao, if 1 < j < 3000, using the
following general lemma.

Lemma 2.64. LetI" = (ai,...,am,b1,...,bn | Rmn) be a (2m, 2n)—-group and
b € (b1, ..., bn) an element such that b! € A, for some j € N. Then 1P b)) < |
for each k € N.

Proof. Fix any k € N. Using the identification
Ap = () kerp
keN
we get

K j K (hi
(00 0)" = PP (b)) =1 0,

hence |p$ (b)] < j. O



2.8. LOCALLY PRIMITIVE, NOT 2-TRANSITIVE 87

'@ [k=1] 2] 3] 4]

w = az 6|12 |72 | 432
az 3| 6|12| 72
as 2| 4| 8] 16

Table 2.13: Order of pék)(w) in Example 2.58

Compare Table 2.12 to Table 2.13, where we already know that QZ(H1) is trivial
by [16, Proposition 3.1.2, 1)].
Conjecture 2.63 implies another conjecture:

Conjecture 2.65. Let I" be the group of Example 2.58 and let N <1 I" be a non-trivial
normal subgroup of infinite index. Then I'/N is an infinite group having property (T)
of Kazhdan.

“Proof”. We know that QZ(H;) = 1 (see [16, Proposition 3.1.2, 1)]) and assume
that QZ(H2) = 1 (see Conjecture 2.63). For1 # N < T'andi = 1,2, we have
1 # pr;(N) < Hi. By [16, Proposition 1.2.1] H;/pr; (N) is compact. We can apply
[17, Proposition 3.1] to conclude that I'/N has property (T).

Note that there are uncountably many non-isomorphic infinite quotients I'/N,
since I' is SQ-universal by Theorem 2.59(4) (see [56], the proof is based on the
fact that there are uncountably many non-isomorphic finitely generated groups, but
each quotient I'/N, being countable, has only countably many finitely generated sub-
groups). O

A homomorphism of B. H. Neumann

Proposition 2.66. (Neumann, see [55]) Let A, B, C be groups, ia : C — A and
i : C — B two injective homomorphisms and assume that A # 1. Then there is a
surjective homomorphism

p:AxcB—» P <Sym(A x B),

suchthat P # 1. In particular, if p is not injective, we get a non-trivial proper quotient
P = (A xc B)/ker p of A xc B, and if p is injective, then A xc B < Sym(A x B).

Proof. (cf. [55]) We fix right coset representatives Sa := {a1 = 1,a»,as, ...} and
Sg:={b1 =1,by, b3, ...} of Cin A and B, respectively, i.e.

A:UCai and B =L|ij.
i j
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We will define two homomorphisms
oa:A— Sym(A x B) and pg : B — Sym(A x B)

as follows. Let (x,y) € A x B, then pa(@)(x,y) := (ax,y). Obviously, pa is a
homomaorphism:

pa(@d) (X, y) = (adx, y) = pa(@)(@x, y) = pa(@)pa@(x,y).

To define pg(b)(X, y), note that with respect to the chosen (fixed) right coset repre-
sentatives, we have unique decompositions

X = Cxax, Y = Cyby, bexby =czb, (cx,Cy,C; € C, ayx € Sa, by, b, € Sg).
Now we define pg(b)(X, y) := (Czax, Cybz) and check that pg is @ homomorphism:
pe(BD)(X, ) = (crax, cyby) ,
where bBCbe = ctbt (¢t € C, by € Sg) is the unique decomposition. We have
pe(®)(X, ) = (crax, cyby),
where chby =c¢rby (¢ € C, by € Sg) is the unique decomposition. Hence,
pe(0)pB(D)(X, y) = pa(b)(Crax, cybr) = (Crax, cybr) = pa(bb)(x, y),
since ber by = bbekby = ciby. Letc € C, then
pB(C)(X, ) = (CCxax, Cyby) = (cX, y) = pa(C)(X, Y),

in other words, pa o ia = pp o ig. By the universal property of A x¢c B, the desired
homomorphism p : A xc B — P exists (see the following diagram), where the group
P < Sym(A x B) is generated by {pa(A), pa(B)} € Sym(A x B). Obviously, P # 1,
since A # 1 (by assumption) and pa(a)(1a, 1g) = (a, 1p).

O

Question 2.67. Let I' be the group defined in Example 2.58. Is there an amalgam
decomposition A xc B of I" (or of its subgroup I'g) such that the homomorphism p of
Proposition 2.66 is not injective?



2.8. LOCALLY PRIMITIVE, NOT 2-TRANSITIVE 89

A result of Lyndon

Perhaps useful in the construction of infinite quotients of amalgamated free products
could be the following proposition of Lyndon:

Proposition 2.68. (Lyndon [48, Proposition 1.3]) Let G = Axc B be an amalgamated
free product. Let Na < A, Ng <1 B be normal subgroups such that NANC = NgNC.
Then

G/N = A/NA *C/Nc B/NB y

where Nc :=NaoNC =NgNCandN := {(NaUNpg)g.

Proof. See [48] or [22]. O

Blocking pairs

One method to prove the SQ-universality of an amalgamated free product is a criterion
of Schupp ([62]) using the notion of a blocking pair. The following definition is taken
from [62]: Let C < A be groups. A pair {x1, x2} of distinct elements in A\ C is called
a blocking pair for C < A'if

i) xfx].S ¢ C\ {1}, foralli, j=1,2;¢,8 = +1.
i) xfex? ¢ C,ifce C\ (1}, j =1,2¢,8 = £1.

Proposition 2.69. (1) (Schupp [62]) If there is a blocking pair for C < A or a
blocking pair for C < B, then the amalgam A xc B is SQ-universal.

(2) If there is a blocking pair for C < A, then |C\A/C| > 3.

(3) LetT be a (2m, 2n)—group. Suppose that Py, < Som is transitive. Then there is
no blocking pair for C < B and no blocking pair for C < A, where

Bxc A= Fn*F_pmiom Fl-mimn =T
is the vertical decomposition given by Proposition 1.3(1a).
Proof. (1) See [62], the proof uses small cancellation theory.

(2) Let {x1, X2} be a blocking pair for C < A. Obviously Cx;C # C # Cx»C.
Assume that Cx1;C = Cx»C, thus there exist ¢1, ¢ € C such that X1 = ¢1X2C>.
If c1 = 1 and cy = 1, then X3 = Xo, a contradiction. If c1 # 1, then we get the
contradiction x; *c1x2 = ¢;* € C. If c2 # 1, then xpcox; * = ¢;t € C, again
a contradiction to the blocking pair assumption.
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(3) By part (2), there is no blocking pair for C < A, since
IC\A/C| <|A/C|=2<3.

Let x1 be in a blocking pair for C < B. Let b be a non-trivial element in
ker(py, : (b1, ..., bn) — Pp). Since [B : C] = 2m is finite, there is an integer
k € N such that bk € C. Let c := b, then ¢ € ker p, \ {1} fixes the 1-sphere
around the vertex “B” in the corresponding Bass-Serre tree (see Figure 2.5), in
particular c fixes the edge “Cx1”, hence Cx;1¢ = Cx4, but then xlcxl_1 eCisa
contradiction to the assumption that x4 is in a blocking pair for C < B.

AX1

CX1

Figure 2.5: Illustration in the proof of Proposition 2.69(3)

2.9 Three candidates for simplicity

So far, we have presented many simple groups and many candidates. In this section,
we give three more candidates for simplicity coming from three different construc-
tions. The third one (Example 2.77) has very small finite presentations and is therefore
particularly suitable for computer experiments.

A non-linear (4, 6)—group
Let I" be the (4, 6)—group defined by

alblal‘lbz 1, albzaz‘lbl‘l,
Ra.g:= bsa; b b tasb
23 =y aibsa, "D, a105 "agbs,

aibya; oz t, apbia; thy
Some properties of I will be described in Section 4.2, in particular I" is not linear.

Question 2.70. Let I" be as above. Is I'g simple?
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Embedding the (4, 6)—group of Wise
Recall Wise’s (4, 6)—group of Example 2.36:
aiboa; tort, asbras thr?,
Ros:={ aibsa,'bst, aibia, byt
aghiar 'zt aphsa; th,?

Lemma 2.71. Let " be the group defined in Example 2.36 and let 6 : ' — T,
y + baybz* be the conjugation by bs. Then Fix(8) = (bg).

Proof. Note that Fix(¢) = {y € I" : bgybg1 = y} is the centralizer of b3 in I". The
statement follows now from Proposition 1.12(1b). O

Proposition 2.72. Let I" be the (4, 6)—group defined in Example 2.36 and let S be the
subset

S:= [ |(ba)(b5Nr \ (ba) C T

keN

(1) If S is non-empty, then I" is not (b3)-separable.

(2) If y € Sforsome y € I', then I" is non-residually finite such that

y o) =y tbale (| N.

fi.
NI’

(3) Ifaja,* € S, then the index 4 subgroup [g of the (Ag, Ag)-group I" which is
given by

aibiay 'y, abpa;tort,  asbsay bzl aibasag tha,

alelazbil, albglaz_lbz, albl‘laz‘lbg, a2b2a2 b 1,
Rag := ] s

asbgaszba, asbiasbo, a3b3a4 b3 , a3b;1a;1b3,

—1b—1

asbz'a,'h,*, ash,’a asby tasbrt,  asbiasb;?

is a finitely presented torsion-free simple group isomorphic to an amalgam of
the form F7 xg,, F7.
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Proof. (1) Let y be anelementin S, lety : ' — Q be a homomorphism onto a
finite group Q and let k be the order of vy (b3) in Q. Then b§ € ker(y) and
can be written as a composition

r - /g2y 25 r/gbkr 2 Q.

Hence

V() = Yava(y (bFNr) € Yava((bs) (b5)r) = wa((bs) (b5)r) = ¥ ((ba))
and I is not (b3)-separable.
(2) It follows from Lemma 2.38, using part (1) of this proposition and Lemma 2.71.

(3) Using part (2) of this proposition, the claim follows as in Section 2.5, because
the (4, 6)—co[nplex corresponding to I embeds intp the (8, 8)-complex corre-
sponding to I, and (([aza; %, ba])p has index 4 in T,

O

Lemma 2.73. Let I be the group of Example 2.36. Then [[', '] = ((alaz_l»r and
/[T, 1= (a1, by | aths = biag) = 72

Proof. The inclusion [, T'] > (aia, ")r follows from aja,* = [a1, bz '] € [T, 1.
Let N < I" be any normal subgroup containing alaz_l, for example N = ((alaz‘l))r.
Then aiN = asN, hence

azblN = alblN = bzazN = bzalN = a2b3N y

and
boapN = a;b1N = asb1N = bza;N = bzasN,

which implies byN = boN = b3gN. Moreover, bjaiN = ajboN = ajbiN, in
particular, the group I'/N is generated by {a;N, b1 N} and abelian, therefore [I", '] is
a subgroup of N. O

Lemma 2.74. Let I" be the (4, 6)—group defined in Example 2.36. Then

([aza; ™, bal)r = (a1a, Hhr .

Proof. We have checked the statement using MAGNUS ([50]). The inclusion
([aza; *, bal)r < (asa; H)r

is obvious, since [aza; *, ba] € [T, '] = ((a1a, ') by Lemma 2.73. O
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Conjecture 2.75. Let I be the group of Example 2.36. Then for eachk € N

a1, * € (b3) (bF)r,
in particular Proposition 2.72 can be applied.

Conjecture 2.76. Let I" be the group of Example 2.36. Then

ﬂ N = [T, I].
fi

Nl

Remarks. Let I be the group of Example 2.36. Then

(1) {b3hr # (byhr, ifi # jandi, j € N, since ('/(bs)r)® = Z x Z;.

(2) It follows from Lemma 2.73 that a1a,* € (bZ¥)r if and only if T'/(bZ¥)r is
abelian. Using MAGNUS ([50]), we see that F/«bg»r‘ is not abelian, in other
words aja, * ¢ (bS)r.

(3) If k < 10, then the number of subgroups of index k is the same for the group I"
and the group Z2.

A 4-vertex construction

A (2m, 2n)—group I" is never simple, since I'g is a normal subgroup of index 4. How-
ever, we have conjectured I'g to be simple in Example 2.2, 2.18, 2.21, 2.30, A.26
and 2.33, and proved it to be simple in Example 2.43 and in many more examples listed
in Table 2.7. The corresponding square complex Xg has 4 vertices and T2m X T2n as
universal covering space. In this section, we directly construct a 4-vertex square com-
plex Y, which is not a 4-fold covering of a (2m, 2n)—complex. Its universal covering
space Y is 73 x 74. Observe that due to this more general construction, the valencies
of the regular trees in Y are not necessarily even. As a consequence, the number of
geometric squares in Y is only 12 (this is small, compared to the 36 geometric squares
of Xg in Example 2.2 or the 100 geometric squares of Xg in Example 2.43) and we get
therefore relatively short presentations of 1Y . The construction of Y is done in such
a way that Y is irreducible, all the “local groups” are at least 2-transitive and 71Y is
perfect. This seems to give some reasons to hope that 1Y is a simple group.

Note that we have introduced the local groups and the notion of link in Section 1.2
only for (2m, 2n)—complexes, but they can also be defined similarly, now depending
on the vertices, for more general square complexes, see [17, Chapter 1]. In the fol-
lowing, we denote these local groups by Pék)(a), Pv(k)(oz), Pék)(ﬂ), Pv(k)(ﬂ), Pék)(y),
PR (), P 8), P (5), and the links by Lk(a), Lk(B), Lk(y), Lk(8), where o, 8,
y, & are the four vertices of Y and k € N.
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) CL ¥y

dq b1
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d1 ba
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Figure 2.6: The 4-vertex square complex Y of Example 2.77

Example 2.77. LetY be the 4-vertex square complex illustrated in Figure 2.6.

Proposition 2.78. Let Y be the 2-dimensional cell complex of Figure 2.6 with four
vertices «, B, y and 8. Then

(1) The links are Lk(a) = Lk(B) = Lk(y) = I:k((S) = K3 4 (complete bipartite

graph), the universal covering space of Y isY = 73 x T3.

(2) We have local groups

Ph(a) = Pn(8) = Ss,
Py(a) = Py(B) = Sa,

(3) The complex Y is irreducible.

Ph(B) = Pn(y) = S3
Py(y) = Py(8) = S4.

(4) The fundamental group 1Y is a perfect group.

(5) There are amalgam decompositions F3 g, F3 = 1Y = Fo xp, Fo.
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Proof. (1) It can be directly read off from Figure 2.6.

(2) This follows from the definitions (see [17, Chapter 1]) and Figure 2.6. Note
that for example P («) and Pn(8) could a priori be different, since « and g are
not in the same connected component of the vertical 1-skeleton of Y. For an
example where indeed Pn(a) 2 Pnh(B), see Example A.29.

(3) We compute
P2@|=[P2®)] = P2 )] =[P )] =24-6".

The claim follows now from an obvious generalization of [17, Proposition 1.3]
to the case where the horizontal 1-skeleton is not connected.

(4) This follows directly from any of the explicit presentations of 71Y given in the
proof of part (5).

(5) We give three presentations of 1Y and the corresponding isomorphisms be-
tween them. If we choose the vertex « as base point and the edges aj, by, d1 as
“spanning tree” in the 1-skeleton of Y, we immediately get the following finite
presentation of 71(Y, «):

m1(Y, ) = (ap, as, b, bz, by, c2, c3, d2, d3, ds |
bo = dp, b3 =ds, by =dscCo,
az = Cz, azhy = daCz, azhz = dac3, azbs = dg,
a3 = O3Cs, agby = dscs, azbz =dacy, azhs =c3),

and after replacing co, d2, d3 by ap, b and bs, respectively, we get

m1(Y, ) = (ap, az, by, bz, by, c3, da |
bs = daap, azby = bzap, ahz = bocs, ashs = da,
az = b3Cs, azby = dsc3, azbz = boap, agbs =c3).

Using the GAP-commands ([29])
GG := SimplifiedFpGroup(G); and RelatorsOfFpGroup(GG);

where G describes the group 71(Y, o) as given above, and writing ap, bz as x
and y, respectively, we get a presentation of 1Y with two generators x, y and
three relators

xy2x 2y~ Ixyx~1y—1x
xyx—2y~2x2yxy~tx—2y2x2y 1,

x~Lyxy~Ix~2yx2y~Ix—2y2xy " Ix2y
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The two decompositions of 1Y as amalgamated free products of free groups
follow from [68, Theorem 1.1.18].

F3*g, F3 = (b2, b3, ba, dp, d3, ds |d2 = by, d3 =bs, d = b,
dadad; * = bgbab?,
dad2d; ™ = babzb thzb, *,
dad; tdadod; = babzthoby toshy,
dad, tdadad; b = babz o, thabyt) .

4 -1
F2xp; F2 = (a2, as, C2, C3 |a2 = C2, a3 = C3C, "C3C2C3,
P R, s g |
a3 apa; “~ = C3 C2C3 C2C5 7,
~1 —1.-1 .2 -1.3
agagag ~ = C3C, C5~, azagaz = C3C, C3).
Isomorphisms between these three groups are given as follows:

—

4 N Foxp o > m1(Y, a) > Faxp, F3 ~ T3

dy <—> az <> d4b4
ag <— ag < dd; bsbzt
aytascz ey <« b, <« by
agcgl <~ b3 <~ b3
ag 103 <«—> by «~— by
Cr <«— Co <~ d4bZ:L
3 «— 3 <« dytd; hybs
a,tasc; ' «— d, s do
a3C§1 <~ ds <~ d3
aa; 'ty «— dy <« dg.

Question 2.79. Let Y be as in Example 2.77.
(1) Isittrue that 71Y does not have proper subgroups of finite index?
(2) Is m1Y anon-residually finite group?
(3) Does every non-trivial normal subgroup of 71Y have finite index?
(4) Is 1Y asimple group?

Remark. We have checked with GAP ([29]) that ((w"))ﬂly = m1Y, where w is any
generator of 1 (Y, «) in the first presentation given in the proof of Proposition 2.78(5),
andk =1, ...,8.



Chapter 3

Quaternion lattices in
PGL2(Qp) x PGL2(Q))

In Section 3.1, we provide some concepts which will be used throughout this chap-
ter, in particular we study Hamilton quaternion algebras over commutative rings.
To any pair of distinct prime numbers p,l = 1 (mod 4), Mozes has associated a
(p+ 1,1+ D—group I'p; < PGL2(Qp) x PGL2(Qy). There is a strong interplay
between properties of quaternions and the group I'pj, for example I'p turns out to
be commutative transitive. We recall the definition of I'p in Section 3.2 and prove
that it is a normal subgroup of index 4 of the group of invertible elements of the
Hamilton quaternion algebra over the ring Z[1/p, 1/1], modulo its center, adapting
some ideas from Lubotzky’s book [45]. These ideas are also useful to realize I'p
as a subgroup of SO3(Q) or PGL2(C), and to construct homomorphisms onto finite
groups PGL2(Zq) or PSL2(Zq) for each odd prime number q different from p and I.
These and other results are illustrated by concrete examples. In Section 3.3 and 3.4,
we generalize and adapt the construction of I'p; to the other cases of prime num-
bers p,1 =3 (mod 4) and p = 3 (mod 4), | = 1 (mod 4), prove that these groups
are also (p + 1,1 + 1)-groups, and again give many examples. In total, we have
made computations in 130 examples. They lead to some conjectures in Section 3.5,
in particular about the abelianization of I"p |, generalizing a conjecture of Kimberley-
Robertson given for the classical case. It also seems that the abelianization of the
subgroup (I'p,1)o is independent of p and |, except if p = 3 or | = 3. The notion of an
anti-torus was introduced by Wise, and only very few examples are known. We give
in Section 3.6 an easy criterion for the existence of anti-tori in commutative transi-
tive (2m, 2n)—groups and combine it with earlier results on centralizers. In particular,
these results can be applied to the groups I'p |, and can therefore also be expressed
in terms of integer quaternions. It turns out that the groups I"p | have many anti-tori.
Then we study relations between free anti-tori in I'p |, free subgroups of SO3(Q) and
quaternions generating a free group. As an application, we prove for example that

97
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the two quaternions 1 + 2i and 1 + 4k do not generate a free group, which is quite
surprising. In Section 3.7, we give a different construction for p = 2, | = 5, also
based on quaternion multiplication.

3.1 Some notations and preliminaries

At first, we define quaternions over a commutative ring, following [23, Section 2.5]:
Let R be a commutative ring with unit. Then the Hamilton quaternion algebra over R,
denoted by HI(R), is the associative unital algebra defined as follows:

e H(R) = {Xo + X1i + X2 + X3K : X0, X1, X2, X3 € R} is the free R-module with
basis 1,1, J, k.

e 1 =1+ 0i 4+ 0j + Ok is the multiplicative unit.

o i2=j2=k>=—1.

e ij=—ji=k, jk=-kj=i, ki=—-ik=j.
This gives the multiplication rule in H(R)

(Xo + Xai+X2] + X3K) (Yo + Yai + y2] + y3k)
= XoYo — X1Y1 — X2y2 — X3Y3
+ (XoY1 + X1Yo + X2y3 — X3Y2) i
+ (XoY2 — X1Y3 + X2Yo + X3Y1) ]
+ (XoY3 + X1Y2 — X2Y1 + X3Yo) K.

For a quaternion X = Xg+ X11 + X2] + X3k € HI(R), let X := Xo — X1i — X2] — X3k be
its conjugate, |x|? := XX = XX = X3 + X + X3 + x3 € R its norm, and %(x) := Xo
its “R-part”. Note that [xy|? = |x|?|y|2.

We divide quaternions x = Xg + X1i + X2 + X3k € H(Z) with odd norm |x|? into
eight classes (and say that these quaternions have type 0g, 01, 02, 03, €g, €1, €2 Or €3)
according to Table 3.1.

This terminology of types is not standard, but useful to simplify some definitions
and statements. Moreover, we say that x has type o if it has type 0g, 01, 02 or 03. Note
that x has type o if and only if |x|2 = 1 (mod 4). Finally, we say that x has type e if
it has type eo, €1, €2 or e3, which happens if and only if [x|? = 3 (mod 4).

If R is a ring with unit (denoted by 1), let U (R) be the group of (left and right)
invertible elements in R, i.e. elements x € R such that there are y1, y2 € R satisfying
y1X = Xy2 = 1. Observe that then y; = y». This element is uniquely determined by
x € U(R) and is usually written as x ~2.

The following elementary lemmas characterize invertible and central elements in
the Hamilton quaternion algebra H(R).
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X X0 X1 X2 X3
type oo | odd even even even
01 | even odd even even
02 | even even odd even
03 | even even even odd
eo | even odd odd odd
e;1 | odd even odd odd
e, | odd odd even odd
ez | odd odd odd even

Table 3.1: Types of integer quaternions x with odd norm |x|2.

Lemma 3.1. Let R be a commutative ring with unit. Then
U(H(R)) = {x € H(R) : |x|> € U(R)} .

Proof. “2” Take x 1 = (|x|%)~1x.
“c” Letx € UMH(R)) and y := x~1, then 1 = |xy|2 = |x||y|? = |y|?|x|% and it
follows |x|? € U(R). O

Lemma 3.2. Let R be a commutative ring with unitand let X = X+ X1i + X2 + X3k,
Yy = Yo+ Y1l + Y2] + y3k € H(R). Then xy = yx if and only if the following three
equations hold:

2(X2y3 — X3y2) =0
2(X3y1 — X1y3) =0
2(X1y2 — X2y1) = 0.

Proof. This is an elementary computation. We only use the multiplication rule for
quaternions in H(R). O

Lemma 3.3. Let R be a commutative ring with unit.

(1) The central elements in H(R) are

{x e H(R) : xy = yx, Yy €e H(R)} = {x € H(R) : x = X} .

(2) ZU(H(R)) = {x € UH(R)) : X = X}.

Proof. (1) Letx = Xo+X1i+X2]J+Xx3k € H(R). The condition x = X is equivalent
to the condition
2X1 = 2X2 =2%x3 =0,
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thus if x = X, then xy = yx for each y € H(R) by Lemma 3.2. Conversely,
suppose that xy = yx for each y € H(R). Taking y = i gives xi = ix, which
is

—X1 + Xol + X3] — Xok = —X1 + Xoi — X3 + X2k,

hence 2x, = 0, 2x3 = 0. Moreover, taking y = j, we conclude in a similar way
2X1 = 2x3 = 0and get x =X.

(2) We can use the same proof as in part (1), since i(—i) = j(—]j) = 1, which
shows that i, j € U (H(R)).
0]

Remark. If R is a subring of C with unit, then
{x e H(R) : xy = yx, Yy € H(R)} = {x € H(R) : x = R(X)}
and
ZUMH(R)) = {x e UMH(R)) : x =RX)} = UMH(R)) N ZU (H(C)).
However, for example the case R = Z, is different, since H(Z,) is commutative and
ZU (H(Z2)) = UH(Z2)) # {x € UH(Z2)) : x = N(X)} = {1}.
The following lemma, especially part (3), will be very useful in Section 3.2.

Lemma 3.4. Let R be a commutative ring with unit and let x = Xxo+ X11 + X2 + X3K,
Yy = Yo+ Yyii +Yy2j +yskand z = zg+ z1i + 22 + z3k be three quaternions in H(R).
Then

(1) xy = —yx if and only if the following four equations hold:

2(XoYo — X1y1 — X2Y2 — X3y3) =0
2(XoY1 + X1Yo) =0
2(XoYy2 + X2y0) =0
2(XoY3 + X3yo) = 0.

(2) Suppose that R is a subring of R with unit, xg # 0 and xy = —yx. Theny = 0.

(3) Let R be asubring of C with unit, X # Xg, Xy = yx and xz = zx. Thenyz = zy,
in particular U (H(C)) is commutative transitive on non-central elements.

Proof. (1) This is an elementary computations using the multiplication rule for
quaternions in H(R).
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(2) Using part (1), we have Xgyo — X1y1 — X2y2 — X3y3 = 0 and

—X1Yo —X2Yo —X3Yo
1= , Y2 = , Ya3= .
X0 X0 Xo
It follows " ) )
X1Yo  X5¥Yo0 = X3Yo
1 250 , 73 —0,

XoYo + +
X0 X0 Xo

and therefore yo|x|> = 0. Since |x|?> > x2 > 0, we conclude yo = 0 which
impliesy1 = 0, yo = 0 and y3 = 0, in other words y = 0.

(3) By Lemma 3.2, we have to prove y»z3 = Yy3Zp, Y321 = y1Z3 and y1Z2 = Y2Z1.
We only prove here y1z, = y»z3, the other two computations are completely
analogous: If xo = 0, then using the assumption xy = yx and Lemma 3.2,
we have X1y2 = Xoy1 = 0 and xgy2 = xoy3 = 0. This implies y» = 0
(otherwise x; = x3 = 0 and x = Xg). Moreover, using xz = zx, we have
X1Z2 = X2z1 = 0 and x3z2 = X2z3 = 0, which implies zo = 0. So, we conclude
that y1zo = 0 = y,z;. Assume now that x, # 0, then y1z, = %yzzz = o731,
using X2y1 = X1Yy2 and X2z1 = X1Z2.

O

Remark. The statement of Lemma 3.4(2) is not true in H(C). Take for example
X =1+ici, y = ic + 1, where ic denotes the imaginary unit in C, and check that
Xy =—-yx =0.

Throughout this chapter, let p, | be two distinct odd prime numbers. Then the ring
ZI1/p,1/11 := {0} U {tp"I°:r,s,t € Z; t # 0; t isrelatively prime to p and I}

is a subring of @, containing Z. Note that with this definition, any non-zero element
in Z[1/p, 1/1] uniquely determines a triple (t, r, s) having the properties required in
the definition, and vice versa. Of course Z[1/p, 1/1] could also be defined as
t
{ pr |S

Let (}) be the Legendre symbol. This means that (£) := 1, if p is a quadratic
residue modulo I, i.e. if the equation x2 = p (mod I) has an integer solution, and
(l—p) := —1, otherwise. See Table 3.2 for some small examples, where “+” and “—”
stand for 1 and —1, respectively. The definition of the Legendre symbol can be gener-
alized to non-prime numbers, but we do not need it here.

Let K be a field, K* = K \ {0} = U(K) the group of invertible elements and
GL2(K) the group of invertible (2 x 2)—matrices with coefficients in K. We denote
by PGL2(K) the quotient group

:teZ;r,s € Ng}.

PGLo(K) = GLZ(K)/{< g g ) e KX} — GL2(K)/ZGLa(K).
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Table 3.2: Legendre symbol (IE) for small distinct odd prime numbers p, |

If Aisamatrix in GL2(K), we write

[A] ::A{(é g):ker} € PGL2(K)

for the image of A under the quotient map GL2(K) — PGL2(K). We denote by
SL2(K) the kernel of the determinant map det : GL2(K) — K> and by PSL>(K) the
quotient group

PSL,(K) = SLa(K)/ {( g S ) L€ = 1} = SL,(K)/ZSLa(K).

The group PSL2(K) can be seen as a (hormal) subgroup of PGL2(K) via the injective
homomaorphism

0 : PSL2(K) — PGL2(K)

A{(g S>:62:1}|—>[A],

where A € SL>(K) < GL(K).

For g a prime number, we write GL2(q), PGL2(q), SL2(q), PSL2(q) instead of
GL2(Zq), PGL2(Zq), SL2(Zq), PSL2(Zq). Recall that Zq stands for the finite ring
(field) Z/gZ and not for the “q-adic integers”.
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Lemma3.5. Let K beafieldand B € GL(K). Then[B] € 8(PSL2(K)) = PSL2(K)
ifand only if det B € (K*)2:={A%2: 1 € K*}.

Proof. By definition, [B] € 8(PSL2(K)) if and only if there is a matrix A € SL2(K)
such that [A] = [B] € PGL2(K), i.e. if and only if there is a matrix A € SL2(K) and
an element A € K* such that
1, (2 O
B-1A = ( - 0 ) .

To prove the statement of the lemma, we first assume that [B] € 6(PSL2(K)). Then
(with A and X as above)

detB =detA- A2 =21"2 e (K¥)2.

To show the other direction, assume that det B = A2 for some A € K *. If we choose

2710
ama () ).

then A € SLo(K), since det A = 12 - A=2 = 1, and we have
1
1, (210
B ™A= ( 0 -l ) .

From now on, we will see PSL2(K) as a subgroup of PGL2(K) without mention
of the homomorphism 6.

O

Lemma 3.6. Let p, | be two distinct odd prime numbers. Then p+1Z € (le)2 if and
only if (£) = 1.

Proof. We have the following equivalences:

pP+1Z e (2))? < 3Ix +1Z € Z* such that (x +1Z)? = p +1Z
& 3xe{l,...,| —1}suchthatx’> +1Z=p +1Z
= 3Ixefl,...,| —1}suchthatx>=p (mod I)

< 3x € Zsuchthatx?=p (mod I)

= (-1

O
The next lemma gives a selection of results about the decomposability of prime

numbers as certain sums of squares of integers. They are all well-known in number
theory.
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Lemma 3.7. Let p be an odd prime number.

(1) (Fermat, Euler) p is a sum of two squares ifand only if p =1 (mod 4).

(2) (Gauss) Assume that p = 3 (mod 4). Then p is a sum of three squares if and
only if p = 3 (mod 8). More generally, an odd natural number s is a sum of
three squares if and only if s = 7 (mod 8).

(3) (Jacobi) There are exactly 8(p+1) representations of p as a sum of four squares
P = X5+ X2+ X3+X3; Xo, X1, X2, X3 € Z. For each such representation, three
integers in {Xo, X1, X2, X3} are even, if p = 1 (mod 4), and three integers are
odd, if p =3 (mod 4). It follows that for p =1 (mod 4)

X € H(Z) : x> = p}l =8(p+1),
|{x € H(Z) : |x]* = p, x has type 0o}| = 2(p + 1),
l{x € H(Z) : |x|?> = p, x has type 0g, R(x) >0}/ =p + 1.

Let p be an odd prime number. The following lemma applies for example to
the finite field Zy, the field of p-adic numbers Qp and algebraically closed fields of
characteristic different from 2 like C, but not to Z, or subfields of R.

Lemma 3.8. (see [23, Proposition 2.5.2]) Let K be a field of characteristic different
from 2, and assume that there exist ¢, d € K such that ¢ + d? + 1 = 0. Then H(K)
is isomorphic to the algebra M2(K) of (2 x 2)-matrices over K. An isomorphism of
algebras is given by the map

H(K) - M2(K)

Xo + X1€ 4+ x3d —X1d + X2 + X3C )

Xo + X1l + X2 + X3K ( —X10 — X2 4+ X3¢ Xg — X1€ — X3d

In particular, if c2 4+ 1 = 0 in K, i.e. if we can choose d = 0, then the isomorphism
above is given by

H(K) — M2(K)

_ _ Xo + X1C X2 + X3C
X0 + Xal + X2 + X3k > ( —X2 + X3C Xp — X1€ ) '

Proof. See [23, Proof of Proposition 2.5.2]. O

Note that the determinant of the image of x

Xo + X1€C + X3d —X1d 4+ X2 + X3C
det
—X1d — X2 4+ X3€C  Xg — X1€ — Xad

equals xZ — x2(c? + d?) + x3 — x3(c? + d?) = |x|?, i.e. the norm of x.
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3.2 Standard case p,| =1 (mod 4)

The following construction of the group I' is taken from [54], see also [53], [17]
and [41]. Let p,I = 1 (mod 4) be two distinct prime numbers. We first define the
map ¥ (a monoid homomorphism, as we will see):

v H(Z) \ {0} = PGL2(Qp) x PGL2(Qr)
i Xo+ X1lp X2+ X3ip Xo + X1l X2 + X3l
—X2 + X3i p Xo— X1l p ’ —X2 + X3l|  Xo — X1i| ’
where x = Xo + X1i + X2j + X3k, and ip € Qp, i € Q satisfy the conditions
if+1=0andif+1=0.

The assumption p,| = 1 (mod 4) guarantees the existence of such elements ip, i.
Note that v is not injective, but (for x, y € H(Z) \ {0}) we have ¥ (x) = ¢ (y) if and
only if y = Ax for some . € Q*. Moreover,

Xo—i—Xl!p X2+X3ip YO+YI!p y2+y3ip
—X2+ X3lp Xo— Xilp —Y2+Y3lp Yo—VYilp

. Zo+21ip 22+23ip
—22+23ip Zo—Z]_ip

where 2o, 21, 22, z3 are determined by the quaternion multiplication
20+ 210 + 22 + 23K = (Xo + X1i + X2 + Xx3K) (Yo + Y1i + y2] + y3K),
in particular ¥ (xy) = ¥ (X)¥(y) and

ker(y) := {x € H(Z) \ {0} : ¥ (X) = 1pGL,(Qp) xPGL2(Q)}
— (X e H(Z) \ {0} : x =X}
= H(Z) N ZU(H(Q)),

e = ([0 7)]|(0 7))

This implies that v (x) ™1 = ¥ (X) if x € H(Z) \ {0}, since

Y)Y X) = ¥ (xX) = P (x[%)
and |x|? € ker(y). Finally, let

where

Tpi = {¥(X) : X € H(Z) has type 0o, [x|> = p'I%; 1, s € Np}
= {Y(X) : X € H(Z) has type 0p, R(x) > 0, |x|> = p"I% 1, s € No}

be our desired subgroup of PGL2(Qp) x PGL2(Qy).
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Mozes has proved the following result:

Proposition 3.9. (Mozes, [54, Section 3]) If p,1 =1 (mod 4) are two distinct prime
numbers, then

Ip1 < PGL2(Qp) x PGL2(Q1) < Aut(Tp+1) x Aut(Fi4+1)

isa(p+ 1,1+ 1)-group.

See for example [45, Section 5.3] or [64] for the description of the tree (the
“Bruhat-Tits building™) 711 corresponding to PGL2(Qp) and its action on T 1.

The fact that I'p is a (p + 1,1 + 1)-group is mainly based on a factorization
property for integer quaternions, first proved by Dickson ([24]). However, it does not
follow that I" | is torsion-free; this is shown in [54, Proposition 3.6]. It is also known
that the groups I" | are irreducible (see Corollary 3.59(3)).

See [40] for an alternative proof that I'p; isa (p + 1, 1 4+ 1)—group.

Proposition 3.10. (Dickson [24, Theorem 8]) Let x € H(Z) be of odd norm and let
IX|2 = p1... pr be the prime decomposition of |x |2, where the factors p, are arranged
in an arbitrary but definite order. Then x can be decomposed as x = xV ... x® such
that x© e H(Z) and [x®|? = p,, ¢t = 1,...,r. This decomposition is uniquely
determined up to multiplication of the factors x © with a unit +1, +i, & j, +k € H(Z)
(if there is no prime number dividing x; this is somehow missing in Dickson’s original
statement, as noted and corrected by Kimberley [40]).

Before applying Proposition 3.10, we define the two subsets of I"p |

En := {¢(X) : x € H(Z) has type 0o, |Xx|> = p}

= {Y(x) : x € H(Z) has type 0g, R(x) > 0, |x|> = p},
E, == {¥(y) : y € H(Z) has type 0o, |y|* =1}

= {y(y) : y € H(Z) has type 0g, R(y) > 0, |y|? =1}.

If ¥(x) € Ep then also ¢ (X) = ¥ (x)™! € En. By Lemma 3.7(3), the set Ep, has
exactly p + 1 elements. For these reasons, we write

En={ar,...,apu}*"
2
and similarly
E, = {bl,...,bHTl}il.
As probably expected, all these definitions of Ey,, E,, a1, ..., aps1, b1, ..., buTl will

be compatible with the original ones for general (2m, 2n)—gr0upszgiven in Section 1.2
(here, we have 2m = p+1and 2n =1 +1).
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Corollary 3.11. Let p,I =1 (mod 4) be distinct odd prime numbers and recall that

)

(2)

3
4)

®)

Tpi = {¥(X) : x € H(Z) has type 0o, |x|*> = p'I%; r,s € No}.

Let x € H(Z) be of type 0g such that |x|2 = pl. Then there are integer quater-
nions y, ¥, z, Z € H(Z) of type og such that |y|? = |§|° = p, |z|2 = |Z|]° = |
and yz = x = Zy. The quaternions y, Y, z, Z are uniquely determined by x up
to sign.

Leta € En, b € E,. Then there are unique elements & € Ep, b e E, such that
ab="DbainTIy).

The group I' | is generated by {az, ..., aps1, by, ..., bHTl}.
2
Let {o1,...,@pi1, @pi1, ..., a1} be the set of quaternions
2 2

{x € H(Z) : x has type 09, R(x) > 0, |x|?> = p}

and let x € H(Z) be of type 0g such that |x|2 = p" for some r € No. Then there
IS @ unique representation

r EE—
X::I:p1wr2(a1,...,a%1,oz%1,...,al),

whererq,ro € Ng, 2r1 +r> =r and

UJrz(Ol]_,...,O[pTJrl,Ot%l,...,Ot_l)

denotes a reduced word of length r» in

{al’---’aﬁl,aﬁl»---’a_l}
2 2
(reduced means here that there are no subwords of the form «joq or oj«;).
There are two non-abelian free groups

(alv ceey a%lh"m = FDT-H. and (bl, ceey b|+1>]"p!| = F|+1 .

2 2

Proof. We defineamap u : {x € H(Z) : x has type o} — {1, 1, j,k} by

1, if x has type og
i, if xhastypeo;
j, ifx hastype o>
k, if x has type o3.

ux) :=

Note that u(1) = 1, u(i) =i, u(j) = j, u(k) = k and that xu(x) always has type 0o.



108

)

(2)

3)

CHAPTER 3. QUATERNION LATTICESIN PGL2(Qp) x PGL2(Q))

By Proposition 3.10 there are §, 2 € H(Z) such that |§|?> = p, |2|> = | and
X = y2Z. Since p,| = 1 (mod 4), the quaternions ¥ and Z have type 0. They
have both the same type since x = §Z has type 0o. If ¥ and Z have type 0o,
we take y := ¥, z := Z and are done. If § and Z have type 01, 02 Or 03, we
take y := —yu(y), z := u(2)Z and get yz = —yu(Y)u(2)2 = —y(-1)2 = x.
The uniqueness of y and z up to sign follows from the uniqueness statement in
Proposition 3.10. Analogously, one proves x = Zy.

The given elements a and b uniquely determine y,z € H(Z) of type 0g such
that R(y) > 0, R(z) > 0, |yI2 = p, 1z = land ¥ (y) = a, ¥(z) = b. It
follows that yz has type 0g and |yz|? = pl. By part (1), there are §, 7 € H(Z)
of type 0g such that |§|2 = p, |Z|2 = | and yz = Z§. Moreover, ¥, Z are
uniquely determined up to sign. In particular, there are unique ¥, Z € H(Z) of
type 0g such that |§|% = p, |Z]2 =1, R(§) > 0, R(Z) > 0and Z§ € {yz, —yz}.
Now take b := ¥ () € E, and & := ¥(J) € En. The claim follows, since
ab =y (Y)Y @) =¥ (y2) = ¥ (-yz) = Y(I§) = ¥ @y (J) = ba.

Fix any element x € H(Z) of type 0g such that |x|?> € {p"I° : r,s € Ng} and
M(X) > 0. We may assume thatr > 0 or s > 0. By Proposition 3.10, there is a

decomposition
x =y yOzD 6

such that y, ..., y™ e H(Z) have norm p, and zD, ...,z e H(Z) have
norm . Note that the quaternions y®, ..., y® zMD . 7z all have type o,
since p,I =1 (mod 4). Our goal is to have a decomposition

x =y g0zd 50

such that &, ..., 9@ and 2, ... 2© have norm p and I, respectively, and
are moreover of type 0g. To achieve this, we define the following algorithm:

§o = y®

gO =u@eyw, o =2...r

go =gOug®y, . =1,...,r—1
y(r) — y(r)u(y(r))’ if s>1

g = gO if s=0
D =u@z®,  ifr>1
;D =D ifr=0
76 =u@E% D)z e =2 .8

20 = 7Wy@Eky,  k=1,...,5—-1
70 =70,
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By construction, &, ..., 9@ =D 2D 26D have type 0g and
OE =150 =yF=p. =11,
2002 = 70P = 202 =1, k=1,...,5.
Moreover,
X = yDy@y® YO0 5®
— L yOuy @y Dy @ y® 0D 6

—§ —y(@
— :|:)7(1> y(Z)u(y(Z)) u(y(Z))y(3) o y(r)z(l) 70

:9(2) :y(s)

= 49D 9O uG)z® . 2©®
———

—5(D)
= 49D 9O 70uED)uE®)z@ .. 2©®
—5 —32

— :|:)7(1> o 9(02(1) _ 5D u(Z(S_l))Z(S>
[ —

=50

— 49D 903D 5O

It follows that also ¥ and 2® have type 0q. After replacing those ¥ and
209 satisfying R(YY) < 0and REZX) < 0 by —y©® and —2*), respectively,
we can assume that moreover

RYDy>0,....%97) >0 2P >0,....,02) >0
and still x = £9@ .. 9®2@ 2 But now,

Y(X) = 1/f(:|:)7(1) o y(r)i(l) .29y = I/I()A/(l)) o w(y(r))w(i(l)) (39,

where v (D), ..., v () € Epand v D), ..., v (2@®) € E,, and we are
done.

A shorter proof of part (3) would be to generalize part (4) as in Theorem 3.30(1)
and apply it as in Theorem 3.30(2).

(4) See [46, Corollary 3.2] or [45, Corollary 2.1.10]. The existence proof is based
on Proposition 3.10, the uniqueness follows from a counting argument; we will
reproduce it in a more general context in Theorem 3.30.
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(5) The first isomorphism (ay, ..., apu)r,, = Fpu isimplied by the uniqueness
2 ’ 2
statement of part (4), using
Eh—l/f({al» . DT a%l»---»a_l})'
The second isomorphism (by, . .. b%)rp, =F % 1 follows analogously.

0]
To summarize, we cansee I'p | asa (p + 1, I + 1)—group with a finite presentation
pl = (al,...,a%l,bl,...
where the %1 . ”71 relators in R,JT 141 come from Corollary 3.11(2), and as the
subgroup of PGL2(Qp) x PGL2(Q))
Tpi = {¥(X) : x € H(Z) has type 0o, [x|*> = p'I% r,s € No}.

For certain important subsets or subgroups of I, |, we thus get the following charac-
terizations:

{as,...,a +1}i1 = {¥(X) : X € H(Z) has type 0g, |X|> = p}
{br.....bua}* = {y(y) 1 y € H(Z) has type oo, |y|* =1}
1) = {Y¥(x) : x € H(Z) has type 0g, |X|?> = p'; r € No}

Fori E(ag, ..., apT
= (by.....ba) = {¥(y) 1 y € H(Z) has type 0o, |y|* = 1% s € No}

2

L
2
and

(Cp.)o = {¥(x) : x € H(Z) has type 0o, [x|* = p*1%%; 1,5 € No}
< PSL2(Qp) x PSL2(Q)) .

We can see PSL>(Qp) as a subgroup of PGL2(Qp) of index 4 = |Q§/(@;)Z|. With
the identification from above, we have

{ai, ..., a%l}il C PGL2(Qp) x PSL2(Q)) < PGL2(Qp) x PGL2(Q))
if and only if (£) = 1, and

{by,....ba}* c PSL2(Qp) x PGL2(Q)) < PGL2(Qp) x PGL2(Q))

l\.)

if and only if (5) = 1. This follows from Lemma 3.5 (and Hensel’s Lemma), see also
[16, p.134]. Note that our assumption p,| = 1 (mod 4) implies (£) = ('—p) by the
famous law of quadratic reciprocity, see e.g. [23, Theorem 2.3.2 (iii)].

The following theorem is motivated by Lubotzky’s book [45], and some parts are
obvious generalizations of results appearing there; nevertheless, we try to give very
detailed proofs here.
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Theorem 3.12. Let p,I =1 (mod 4) be two distinct prime numbers. Let G be the
group U (H(Z[1/p, 1/11)). Then

(1) The group I'p| is (isomorphic to) a normal subgroup of G /ZGp of index 4
suchthat (Gp,/ZGp))/Tp) = Z3.

(2) The group I'p| can be realized as a rational matrix group. More precisely, there
is a chain of subgroups

I'pi < SO3(Q) < SO3(R) < PGLL(C),
in particular I"p| is residually finite.

(3) If g is an odd prime number different from p and I, then there is a non-trivial
homomorphism z : 'y — PGL2(q).

(4) Lett : I'p) — PGL2(q) be the homomorphism constructed in part (3), where g
is an odd prime number different from p and |. Then its image is

PSLa(q), if (£) = ('a) =1

i) =
*(en) {PGLg(q), else.

Moreover, 7(a2) € t({bs, ..., bis)).
Proof. (1) To simplify the notation, we write G p := U (H(Qp)). Since

and Z[1/p, 1/1] is a subring of Qp and Q (which implies Gp; C Gp and
Gp, C G)), there is an injective diagonal homomorphism

XZGp| = (XZGp, XZGy).

The isomorphism H(Qp) — M2(Qp) of Lemma 3.8 (with i3 + 1 = 0) induces
an isomorphism

Gp =UH(Qp)) - UM2(Qp)) = GL2(Qp)

and consequently an isomorphism

Gp/ZGp — PGL2(Qp) = GL2(Qp)/ZGL2(Qp)

XZGp s | X0t Xulp X2t Xslp )|
—X2+ X3lp Xo— Xi1lp
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Let p be the injective composition homomorphism

Gpl/ZGpi <> Gp/ZGp x G|/ZG] —> PGL2(Qp) x PGL2(Qy),

explicitly given by mapping xZGp) € Gp/ZGp) to

J 00 = Xo+ X1lp X2+ X3ip Xo + X1l X2 + Xal|
o —X2 4+ X3ip Xo— X1ip ’ —X2 + X3l Xo — X1 ’
where X = Xo + X1 + X2] + X3k € Gp and z} is the natural extension of

from H(Z) \ {0} to H(Z[1/p, 1/1]) \ {O}.

Note that
UZ[1/p,1/1]) = {:l:prlS :r,seZ},

hence by Lemma 3.1
Gpi = {x e H(Z[1/p,1/1]) : [x|* = p'I%; 1,5 € Z}
and by Lemma 3.3(2)
ZGp) ={x e H(Z[1/p,1/1]) : x =X =xp"I% 1,5 € Z}.

Now let x € H(Z) be an integer quaternion such that x| = p'IS for some
r,s € No,thenx € Gp) and ¢ (x) = ¥ (X) = p(XZGyp)) € p(Gp,/ZGp)),
hence I'p| < p(Gp1/Z2Gyp)) = Gp1/ZGp,.

Note that each element in G /ZGp has a representative XxZGp such that
x € H(Z) and |x|?> = p'lIS; r, s € Np, by multiplying with large enough positive
powers of p and I, however I'p| # p(Gp1/ZGp,) since x must have type 0g
in the definition of I"p ;. More precisely, we can write

P(Gp1/ZGp1) =dolp 1 UgilpLgolp Lgsl'p) < PGL2(Qp) x PGL2(Q))

where for each « € {0, 1, 2, 3} we choose any element g, = v (x), such that
X = Xo + X1i + X2 + X3k € H(Z) has type o, and norm |x|?> = p'IS; 1, s € No.
For example, the simplest choice is to take r = s = 0 (i.e. [x|2 = 1) and

consequen VQO:: 1/,(1):([( )] [( )D
v ((5 (6 )
se=vi=([(25)][(23)])
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(2)

ovn-([(£ 5 )

To see the decomposition of p(Gp/ZGp ) given above, we first observe that
p'I° =1 (mod 4), since p,| =1 (mod 4). Therefore, each decomposition of
1x|2 = p"I® as a sum of four squares is a sum of squares of three even numbers
and one odd number (cf. Lemma 3.7(3)). If we take the quaternion multipli-
cation on the four classes of quaternions of type 0g, 01, 02 and 03 respectively,
then we get a group structure, where the class of type 0g quaternions is the
identity element. The group is isomorphic to Z3, as it is seen in the following
multiplication table.

- | typeop typeos typeop typeos
type oo | typeop typeos typeop typeos
type o1 | typeos typeoo typeos typeo,
type 0> | type o typeos typeop type oy
type 03 | type oz typeop typeos typeog

Table 3.3: Multiplication table for quaternions of type o

Because of v (xy) = ¥ (X)y¥(y), this group structure carries over to the cosets

{9olp,1, 91 p1, 9207p 1, 930 p 1}

in p(Gp,/ZGp,) and we are done. To summarize, we have shown that

4
Tpt < {¥(X): x € H(Z), [x|?=p"I 1,5 € N
zp(Gp,I/ZGp,I)

If G is a group, we denote here by G/Z the quotient group G/ZG of G by its
center ZG. We study the following diagram of group homomorphisms:
Ppt —=Gp1/Z —=U(H(Q))/Z —= U H(R))/Z —= U (H(C))/Z
SO3(Q) SO3(R) PGL2(C)

The homomorphisms in the top line are all injective: the first of them is de-
scribed in part (1) of this theorem. The other three homomorphisms are induced
by the natural injective group homomorphisms (which are induced themselves
by the chain of the corresponding subrings Z[1/p, 1/1]) c Q c R c C)

U H(Z[1/p, 1/1D)) — UH(Q) — UHR)) — UH(C)), 3.1)
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since
ZU H(Z[1/p,1/1])) Cc ZUH(Q)) c ZUH(@R)) c ZUMH(C)). (3.2)
Assertion (3.2) follows directly from (3.1) using the fact, see Lemma 3.3(2),
ZU (H(R)) = U (H(R)) N {x € UH(C)) : x =X},
which holds if R € {Z[1/p, 1/1], Q, R, C}.
The homomorphisms
Gpi/Z — UHQ)/Z — UHR))/Z — UH(C))/Z
are injective, since (3.1) directly implies
U (H(R1)) N ZU (H(R2)) < ZU(H(R1)),

whenever (R1, R2) € {(Z[1/p, 1/1], Q), (Q, R), (R, C)}. In fact, the equality
U (H(R1)) N ZU (H(R2)) = ZU (H(R1)) holds by (3.2).

To get U(H(Q))/Z = SO3(Q), first note that U (H(Q)) = H(Q) \ {0}. Now
define ¥ : U(H(Q)) — SO3(Q) by mapping x to the (3 x 3)-matrix

L X2+ X2 — X5 — X2 2(X1X2 — X0X3) 2(X1X3 + XoX2)
2(X1X2 + X0X3) X3 — X2+ X3 — X3 2(XpX3 — XoX1)

- 2 2
X2 2 w2 w2 2
2(X1X3 — XoX2) 2(X2X3 + XoX1)  XG — XT — X5 + X3

where X = Xo + X11 + X2] + X3k € U(H(Q)). Note that this is the matrix
which represents the Q-linear map Q° — Q3, y — xyx~! with respect to
the standard basis of Q3, where y = (y1, y2, ya)T € Q2 is identified with the
“purely imaginary” quaternion y1i + Y2 j +y3k € H(Q). Itis well-known that v
is a surjective group homomorphism. Even the restricted map

Hu@znjoy - H(Z) \ {0} — SO3(Q)

IS surjective, since ¥ (ax) = 9(x), ifa € Q* and x € U(H(Q)). For an
elementary proof of the surjectivity of @ i (z)\ (0}, See [43]. Moreover, it is easy
to check by solving a system of equations that

ker(v) = {x e H(Q) \ {0} : x =X} = ZU(H(Q)) .

Seeing v (x) as Q-linear map y — xyx ! as described above, it is even very
easy to determine the kernel:

ker(®) = {x € U(H(Q)) : xyx ! =y, Vy € H(Q) such that %i(y) = 0}
= {x e UH(Q)) : xy = yx, Yy € H(Q) such that %i(y) = 0}
={x e UHQ)) : x =X}.
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3)

Observe that if x € U (H(Q)) \ ZU (H(Q)), then the axis of the rotation ¢ (x) is
the line (x1, X2, X3)T - Q, and the rotation angle w satisfies

2 2 .2 .2
Xo — X3 — X3 — X3

X2

COSw =

Equivalently,
X
cos = = -0

2 X2
To prove U (H(R))/Z = SO3(R), replace Q by R above.
The isomorphism U (H(C))/Z = PGL2(C) follows from Lemma 3.8.

Note that the injective composition homomorphism I'p; — SO3(Q) can be
explicitly constructed as follows: if y € I'p) is given as y = v (X), where
X = Xo + X1i + X2] + X3k € H(Z) has type 0g and |x|%2 = p'IS; r, s € Np, then
the image of y in SO3(Q) is ¥ (x), independent of the possible choice of x. In
the same way, the image of y = y(x) in PGL2(C) is

Xo+ X1ic X2 + X3ic
—X2 + X3ic X0 — X1ic '

By a result of Malcev ([51]), finitely generated linear groups (over a field of
characteristic zero) are residually finite.

Let g be an odd prime number different from p, | and let

G, pi = U(H(ZIL/p. 1/11/9Z[1/p. 1/1])).

As in the proof of part (2), we denote by G/Z the quotient G/ZG of a group G
by its center ZG. We want to define the desired homomorphism

T :I'p) — PGL2(q)

as composition of the homomorphisms

~

Cpi <= Gpi/Z = Gq,pi/Z =, UH(Zq))/Z — PGL2(q) .

We describe now separately these four homomorphisms.
The injection I'p | < Gp,/Z is given by part (1) of this theorem.
The unital (quotient) ring homomorphism

Z11/p,1/11 — Z[1/p, 1/11/qZ(1/p, 1/1]
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extends to a unital ring homomorphism

H(ZI1/p, 1/1]) — H(Z[1/p, 1/11/9Z[1/p, 1/1])

mapping 1,1, j, k, to 1,1, j, k, respectively (see [23, Section 2.5]), and induces
a group homomorphism of the invertible elements G| — Gq,p,i. Since

by Lemma 3.3(2), it is not difficult to see that the image of ZG under the
homomorphism G| — Ggq,p, is contained in ZGq, p. This gives the second
homomaorphism

Gpi/Z = Gqpi/Z.

Now we attack the third one Gq p/Z = U (H(Zq))/Z. The map

¢ : Zq — Z[1/p,1/11/9Z[1/p, 1/1]
v+QqZ+— v+ QZ[1/p,1/1],

v € Z, is an isomorphism of rings (even of fields, since g is a prime number),
and ¢~ therefore induces isomorphisms

12

H(Z[1/p,1/11/9Z[1/p, 1/1]) — H(Zq)

Gq.p) = U(H(ZIL/p, 1/11/4Z[1/p, 1/1]) —> U (H(Zq))
and finally an isomorphism Gq p1/Z — U(H(Zq))/Z. The only non-trivial
thing to check is the surjectivity of ¢: First, we have

¢(0+9Z) =0+0qZ[1/p,1/1].

Now, take any element

tp'1°+qZ[1/p. 1/11 € Z[1/p. 1/1)/qZ[1/p,. 1/1],

wheret € Z \ {0} is relatively prime to p and |. To simplify matters, we assume
thatr,s < 0 (ifr,s > 0, then ¢—(tp"I® + qZ[1/p, 1/1]) = tp"IS + qZ; in
thecasesr > 0,s < Oandr < 0,s > 0 the proofs are similar to the proof for
the case r, s < 0 given now). Then gcd(p~"173, q) is 1 and therefore obviously
divides t, hence (see e.g. [36, Proposition 3.3.1]) there is an integer u such that
p~"I"Su=t (modq),iet—p"ISueqgZand

tp'I° —u=p" It — p~"17%u) € qZ[1/p, 1/1].
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4

This implies
tp'1°+qZ[1/p, 1/11 = u +qZ[1/p, 1/11 = ¢(u +qZ).

The isomorphism U (H(Zq))/Z = PGL2(q) follows from Lemma 3.8, since
there exist elements ¢ and d in the field Zq such that c2 +d? + 1 = 0 in Zg, see
[23, Proposition 2.5.3].

Therefore, if y € I'p) is given by y = ¥ (Xo + X1l + X2 + x3k) (where
we require as in the definition of I'p that x e H(Z) has type 0g and norm
IX|2 = p'IS; 1, s € Ng), and we have chosen ¢, d € Z such thatc2+d?+1 =0
(mod @), then t = 7¢ 4 : I'p) — PGL2(q) is explicitly constructed as

ted(y) = Xo 4+ X1€C + x3d +qZ —X1d + X2 + X3€ + qQZ
cdly) = —X1d — X2+ X3C+0Z  Xo— X1€ — X3d + qZ :

If for example g = 1 (mod 4), we can choosed = 0andc e {1,...,q — 1},
such thatc?+1=0 (mod q), and r = 7¢.0 then simplifies to

X0+ X1C +QZ X2+ X3C +QqZ
Y = .
—X2+X3C+0Z Xo— X1C +qZ

What happens if we take g = 27
The group G2 p; = U MH(Zo)) = Zg’ is abelian, hence

Gapi/Z =U(MH(Z2))/Z =1 # PGL2(2) = S3.
Note that the field Z, is excluded in the assumptions of Lemma 3.8.

At first, we show that 7(I'p) < PSLa(q) if and only if (ﬁp) = ('a) = 1. The
group I'p is generated by the set {ay, ..., aps1, by, ..., by}, hence we have
2

t(I'p,) < PSL2(q) if and only if

2

{tr(ay),..., r(a%l), t(by), ..., T(lerTl)} C PSL2(q) .

Since the elements 7(ay), ..., t(aps1) are represented by matrices in GL2(q)
2
with determinant p+qZ € Zq and 7 (by), ..., t(bi+1) are represented by matri-

ces in GL2(q) with determinant | 4+ qZ € Zq, the condition (I'p ;) < PSL2(q)
is by Lemma 3.5 equivalent to the condition {p + qZ, | + qZ} C (Z;)Z. But

this is equivalent to (£) = (lﬁ) =1 by Lemma 3.6.
By [45, Lemma 7.4.2] or [46, Proposition 3.3], we have

PSL2>(q) < t({(ay, .. .,apz_l)) and PSL2(q) < t({by, ..., b)),

2
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in particular PSL>(q) < =(I'p,1) < PGL2(q).
This determines the image of t, since [PGL2(q) : PSL2(q)] = 2.

Exactly as above, we can show that

Bl) {PSLz(q), if (

b )=1
v((by, .. by PGLo(q). if (

)=-1.

2

o|l—a|—

Since the element r(a%) = 7(a1)? is represented by a matrix in GL2(q) with de-
terminant (p+qZ)? = p>+qZ e Zq, We have r(af) € PSL2(q) by Lemma 3.5
and consequently r(af) e t((by, ..., b”Tl>)'

O

See Table 3.4 for some information about groups U (H(R))/ZU (H(R)), where R
is a commutative ring with unit, p,| = 1 (mod 4) are distinct prime numbers and g
is an odd prime number.

R U®(R))/ZUH(R))
Z[1/p, 1/1] | contains I'p as index 4 subgroup
Z[1/p] | important in [45], virtually Fps1
2
Z |73
Zq | PGL2(q)
Zy | 1
Q
R
C

SO3(Q)
SO3(R)
PGL,(C)
Qq | PGL2(Qq)

Table 3.4: The group U (H(R))/ZU (H(R)) for some rings R

The following result is also mentioned in [59, Example 5.12] and [30, Proposi-
tion 3.2, Proof of Theorem 4.1]. It is a very special case of Proposition 4.2(3), where
we prove that all (2m, 2n)—groups contain Z2-subgroups.

Proposition 3.13. The group I'p; contains a subgroup isomorphic to Z2.

Proof. By Lemma 3.7(1), we can choose x = Xo+X1i, Y = Yo+ Y1l € H(Z) such that
Xo, Yo are odd, X1, y1 are even and non-zero, |x|? = x5 +x2 = p, |y = y3+yZ = 1.
Obviously, we have xy = yx, hence ¥ (X)y¥ (y) = ¥ (y)y¥(x), where ¥ (x), ¥ (y) are
non-trivial. The subgroup (v (x), ¥ (y)) of I"p is isomorphic to 72 by the following
general lemma. O
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Lemma 3.14. LetT" = (a1,...,am, b1, ..., bn | Rmn) be a (2m, 2n)—group and let
ae€(ag,...,am), b e (bg,..., by betwo non-trivial elements. If a and b commute,
then (a, b) = Z2.

Proof. Since I' is torsion-free, the subgroup (a, b) is a finitely generated abelian
torsion-free quotient of Z2. Using a,b # 1 and the uniqueness of the ab-normal
forms (see Proposition 1.10) of powers of a and b, we conclude that (a, b) is not
cyclic, but itself isomorphic to Z?2. O

Kimberley-Robertson have computed presentations of I"p | for many pairs (p, ).
They conjecture for the abelianization Fgﬁ

Conjecture 3.15. (Kimberley-Robertson [41, Section 6]) Let p,I = 1 (mod 4) be
two distinct prime numbers and let

r .= gcd (p_—l I_—l 6) .

4 4
Then
Zop x 7.3, ifr=1
ab ~ |73 %72, if r=2
reh =

ZoxZ3xZ3, ifr=3
73x Zgx 735, ifr=6.
Note that the smallest pairs (p, 1) such thatr = 1,2, 3, 6 are (5, 13), (17, 41),

(13, 37) and (73, 97), respectively. Conjecture 3.15 is equivalent to the following
conjecture (see Section 3.5 for generalizations of Conjecture 3.16):

Conjecture 3.16. Let p,1 =1 (mod 4) be two distinct prime numbers.
If p,I =1 (mod 8), then

12

b
ray

{ngzgxzz, if p,I =1 (mod 3)
p,

73 x 73, else .

If p=5 (mod 8) orl =5 (mod 8), then

12

ab
r ol

Zox Zzx Z2, if p,l=1 (mod 3)
Zo x 73, else.

Proof of the equivalence of Conjecture 3.15 and Conjecture 3.16. First, observe that
r e {1, 2, 3,6} in Conjecture 3.15 and that all possibilities for (p, 1) are treated in
the four cases of Conjecture 3.16.

Ifr =6,then(p—1)/4 =6sand (I-1)/4 = 6t forsomes,t € N,i.e. p = 24s+1
and | = 24t + 1. It follows p,I =1 (mod 8) and p,l =1 (mod 3).
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Ifr =3,then(p—1)/4 =3sand (I —1)/4 = 3t, where s or t is odd (otherwise r
would be 6). Consequently, we have p = 12s + 1 and | = 12t + 1, in particular
p,l =1 (mod 3). Ifsisodd, then p =5 (mod 8). Ift isodd, then| =5 (mod 8).

Ifr=2then(p—1)/4=2sand (I —1)/4 =2t,ie.p=8s+landl =8t +1,
hence p,l = 1 (mod 8). Moreover, s £ 0 (mod 3) ort £ 0 (mod 3) (otherwise r
would be 6). In the first case, we have p % 1 (mod 3), in the second case | # 1
(mod 3).

Ifr =1then(p—-1)/4=2s—1or(l —1)/4 = 2t — 1 (otherwise r would
be even), hence p =8 —3orl =8t —3,i.e. p=5 (mod 8) or | =5 (mod 8).
Moreover: (p —1)/4 =3s+1lor(p—1)/4=3s+2o0r(1—-1)/4 =3t+1or
(I —1)/4 = 3s + 2 for some s, t € Ng (otherwise r would be a multiple of 3), hence
p=12s+50rp=12s+9orl =12t +5o0r| = 12t + 9, in particular p # 1
(mod 3) orl #1 (mod 3). O

The structure of Fgﬁ also seems to depend only on the number of commuting
quaternions whose v/ -images generate I"p ;. To make this precise, if | = 1 (mod 4) is
a prime number, let Y, C H(Z) be any set of cardinality '%1 such that (v (Y))) = FH—Tl

and each element y € Y, has type 0og and satisfies %(y) > 0, |y|?2 = |. We think of
Yi ={y by, ...yt and Yp = (¥ @), ... ¥ H(@pu)}, where

pl = (al,...,a%l,bl,...,bul | R%l 141) -

2

2
Then, let
Cpl :==H{(X,y): X €Yp, y €Yy, Xy =yx}|.
Note that the definition of ¢ is independent of the explicit choice of elements in Y
and Y,. Obviously,

p+11+1
2 T} ‘

Moreover, cp| > 3, since Y, contains by Lemma 3.7(1) elements of the form xo+Xui,
Xo+ X2], Xo + X3k and Y| contains elements of the form yo + yii, Yo+ Y2], Yo + Y3k,
and for example xg + x1i commutes with yg + yii.

Cp,l < min{

Conjecture 3.17. Let p,| = 1 (mod 4) be two distinct prime numbers, and

r = gcd (p—_l’ I_—l’ 6)
4 4

as in Conjecture 3.15. Then

3(mod12), ifr=1
9 (mod 12), ifr=2
7 (mod 12), ifr=3
1 (mod 12), ifr=6.

Cp’| =
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We have checked Conjecture 3.17 for all possible p,1 < 1000. The following
values for ¢ appear in this range:

{3, 15, 27, 39, 51, 63, 75, 87, 99} , ifr=1
{9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 153}, ifr =2

Cpl €
P {7,19, 31, 43,55,67,79,91, 103, 115, 127, 151}, ifr =3
{37, 49, 61, 73, 85, 97, 109, 121, 133}, ifr=6.
See Table 3.5 for the frequencies of the values of cp |, where p,| = 1 (mod 4) are

prime numbers such that p < | < 1000.

Cp,l 3 15 27 39 51 63 75
# | 1242 449 143 56 34 17 7
87 99
5 2 1955
Cp,l 9 21 33 45 57 69 81

# 178 158 84 57 40 21 8
93 105 117 129 141 1583
9 12 3) 2 1 975
Cp,l 7 19 31 43 55 67 79
# 236 130 /9 42 18 8 12
91 103 115 127 139 151

6 1 4 2 1 539
Cp,l 1 13 25 37 49 61 73
# 26 15 15 16
85 97 109 121 133
7 4 3 2 3 91
| [3160

Table 3.5: cp and its frequency, p < | < 1000

Combining Conjecture 3.17 with Conjecture 3.15, we get another conjecture:

Conjecture 3.18. Let p,| = 1 (mod 4) be two distinct prime numbers, then
Zp x 73, if cp) =3 (mod 12)
P = 73 x 73, if cpy =9 (mod 12)
o=

Zp xZgx 73, ifcpy =7 (mod 12)
73 x 73 x 73, if cpy=1 (mod 12).
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Now, we want to prove that the groups I'p| are commutative transitive. This has
for example applications to centralizers of powers of elements, and a nice application
which allows to detect “anti-tori” in " (see Proposition 3.53 in Section 3.6).

Lemma 3.19. Let p,1 =1 (mod 4) be two distinct prime numbers. Let x, y € H(Z)
be of type 0g such that |x|, |y|? € {p"I° : r,s € Np}. Then xy = yx if and only if
Y)Y (Y) = (Y)Y (X).

Proof. Obviously xy = yx implies v (X)¥(y) = ¥ (y)¥(X). Assume now that

Y)Y (Y) = v (Y)¥w(X). Then ¥(xy) = ¥(yx) and xy = ryx for some A € Q*.
Taking the norm | - |2 of xy = Ayx, we conclude [A|2 = 22 = 1, hence » = 1 or

A= =1 If A =1, then xy = yx and we are done. The case A = —1 is impossible
since xy = —yx together with % (x) # 0 implies by Lemma 3.4(2) the contradiction
y =0. 0J

Proposition 3.20. Let p,| = 1 (mod 4) be two distinct prime numbers. Then I'p|
IS commutative transitive, i.e. the relation of commutativity is transitive on the set of
non-trivial elements of I'p ;.

Equivalently, this means that if x, y, z € H(Z) are of type 0g such that

X # R(X), y # R(Y), 2 #R@),
12, Iy[%, 1212 € {p"1°: 1,5 € N},
YOOV (Y) = y(NYX) and ¥ (x)¥(2) = ¥ @)Y (X),
then also ¢ (y)¥ (2) = ¢ (@) ¥ (y).

Proof. Note that for x of type 0og we have x # 9(x), if and only if ¥/ (x) # 1. By
Lemma 3.19, we have xy = yx and xz = zx. Moreover, again by Lemma 3.19,
Y (Y)Y (2) = v ()¢ (y) ifand only if yz = zy. But yz = zy follows now directly by
Lemma 3.4(3). O

Corollary 3.21. Let p,|1 = 1 (mod 4) be two distinct prime numbers, I' = I"p and
y € I anon-trivial element.

(1) Ifk e N, then Zr (%) = Zr(p).
(2) The centralizer Z(y) is abelian.
(3) The center ZT is trivial.

Proof. (1) Since y and yK commute, the statement follows from Proposition 3.20,
using the fact that I" is torsion-free.

(2) Again, this is a direct consequence of Proposition 3.20.
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(3) Of course, the statement follows from the more general result Corollary 1.11(3)
for (2m, 2n)—groups. Here, it follows directly from Proposition 3.20, since the
existence of a non-trivial element in ZT" would imply that " is abelian.

U

Using the following result of Mozes ([54]) together with Proposition 1.12 about
centralizers, we give some applications to number theory, illustrated for two concrete
examples in Proposition 3.23:

Proposition 3.22. (Mozes [54, Proposition 3.15]) Let p,1 = 1 (mod 4) be two dis-
tinct prime numbers,

2

['=Tp = (aa, ...,a%l,bl, oo, b | R%l.pgﬂ

and let z € H(Z) be of type o such that z # 9(z) and |z|? = IS for some s € N.

Take c1, C2, €3 € Z relatively prime such that ¢ := c1i + ¢2j + c3k € H(Z) commutes

with z. Then there exists a non-trivial element a € (a1,...,ap1) C I commuting
2

with ¢ (z) if and only if there are integers x, y € Z such that
ged(x, y) = ged(x, pl) = ged(y, p) =1
and x2 + 4|c|?y2 e {p"IS:r,s € N}.
Proposition 3.23. (1) There are no pairs of integers x, y € Z such that
gcd(x, y) = gcd(x, 65) = ged(y, 65) =1

and
x24+12y2 € {5'13%:r,5 € N} .

(2) There are no pairs x, y € Z such that
gcd(x, y) = gcd(x, 221) = ged(y, 221) =1

and
x2 4+ 8y% € {13'17°: 1,5 € N} .

Proof. (1) Forb; =v(1+2i+2j+2Kk) € I's.13 =: I we have Zr(by) = (b1), See
Proposition 3.29(7) below. In particular, b1 does not commute with any element
in (a1, ag, as) \ {1}. The statement follows now by Proposition 3.22, taking
c=i+j+k.

(2) Proposition 3.27(4) below shows that Z-(bs) = (bs), where
bs=¢v@+2i+2j)elz7=T.
Taking c =i + j, we can again apply Proposition 3.22.
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The results on centralizers in I'p| used in the proof of the preceding proposition
can also be applied to give statements about non-commuting quaternions. We first
illustrate it again for (p, 1) € {(5, 13), (13, 17)} and generalize it in Proposition 3.25.

Proposition 3.24. (1) Lety = 1+ 2i 4+ 2] + 2k. Then there is no x € H(Z),
X # M(x), of type 0g such that [x|% € {5" : r € N} and xy = yx.

(2) Lety =3+2i+2j. Thenthereisno x € H(Z), x # R (x), of type 0g such that
x| € {13" : r € N} and xy = yx.

Proof. (1) LetI’ =TI's13and by = ¢ (y) € I'. Assume that x € H(Z) is of type 0g
such that |x|? € {5" : r € N} and xy = yx, where x # %(x). This implies
Y(X) € (ag,az,as) \ {1} and ¥ (x) € Zr(by), contradicting Zr(b1) = (b1)
(which holds by Proposition 3.29(7)).

(2) Same proof as in part (1) taking p = 13,1 =17,bs = ¥ (y) € I' = I'13.17 and
using Zr(bs) = (ba) (which holds by Proposition 3.27(4)).

O
Proposition 3.25. Let p,| =1 (mod 4) be two distinct prime numbers and
['=Tp = (a1, ...,aps1, b1, ..., 011 | Rps114a) .
2 2 2 2
Assume that p,(bj)(a) # a for some bj € {by, ..., bHTl} and all elements a € Ej.

Let y € H(Z) be of type og such that |y|?> = | and bj = ¥ (y). Then there is no
X € H(Z), x # N(x), of type o such that [x|% € {p" : r € N} and xy = yx.

Proof. As in the proof of Proposition 3.24 the claim follows directly from the fact
Zr(bj) = (bj) which is a consequence of Proposition 1.12(1b). O

Now, we want to study the two examples I'13 17 and I's 13.

Example: p=13,| =17

Using the explicit identification

a1 =v(1+2i +2j+2k), a;t =yl —2i —2j —2k),
ap =¥ (L +2i +2j—2k), ayt =yl —2i —2j+2k),
a3 =yY(1+2i —2j+2k), azt =y (1 —2i +2j —2k),
=yl —2i +2j+2k), agt = y(l+2i —2j —2Kk),
as = Y (3 +2i), agt =y (3 -2i),
as =¥ (3+2])), ag* =¥ (3 —2j),

a7 = ¥ (3 + 2k), a;t =y (3 - 2k),
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by = ¥ (1+4i), byt =y - 4i),
b = (1 +4)), byt =y (1 —4)),
bz = ¥ (1 + 4k), byt = v (1 — 4k),
bs =¥ (@ +2i +2j), byt =y (3 -2 —2j),
bs = (3 +2i —2J), bl =¥ (3 —2i +2j),
be = ¥ (3 + 2i + 2k), bgt = ¥(3—2i —2k),
b7 = ¥ (3 + 2i — 2k), byt =¥ (3 —2i + 2k),
bg = ¥ (3+2j + 2k), bg! =¥ (3 —2j —2k),
bg = ¥ (3 +2j — 2Kk), bt = (3 —2j + 2k),

we get the example I" = I'1317. The corresponding (14, 18)—complex X is denoted
by #1317 in [17] and essentially used there in the construction of finitely presented
torsion-free (virtually) simple groups, see [17, Theorem 6.4].

Example 3.26. Let R7.9 = Rp+1 141 be the set of 63 relators
2 2

aibjasba, aiboaghy,  ajbzasby,

a7b3a7_1b3 l, a7b7a7bg1, a7bga7bgl
(The complete set of relators can be found in Appendix A.10.)

Proposition 3.27. Let I' = I'1317 be the (14, 18)—group defined in Example 3.26
(actually in Appendix A.10). Then

(1) Pp = PSLy(13) < Sy, P, = PSL,(17) < Sss.
(2) T =7, x 73, [T =73 x 735, T3 =7, x Z3 x 72,
(3) Any non-trivial normal subgroup of I has finite index.

(4) Zr(b) = Nr((b)) = (b),ifb € {bg, ..., bg}.
Zr(a) = Nr((a)) = (a), ifa € {ay, a, az, as}.

(5) LetV be the subgroup of U (H(Q))
Vi=(1+4+2i+2j+2k, 3+2i,1+4j,34+2i+2j).

ThenI' =V/ZV.
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Proof. (1) We compute

pv(b1) = (1,8,13)(2,9,4)(3,6,14)(7, 12, 11),
pv(b2) = (1,10, 11)(2, 7, 14)(3, 4, 8)(5, 13, 12),
pv(b3) = (1,9,12)(2, 3,10)(4, 5, 14)(6, 11, 13),
pv(bg) = (1,4,8,3,13,5,10)(2,11,7,12,14,6,9),
pv(bs) = (1,8,13,4,9,6,3)(2,12,5,10, 11, 14, 7),
pv(be) = (1,2,9,4,12,7,8)(3, 13, 6, 11, 14,5, 10),
pv(b7) = (1,4,5,10,2,12,9)(3, 6, 14, 13, 8, 7, 11),
pv(bg) = (1,3,10,2,11,6,9)(4,12,5,13,14,7, 8),
ov(bg) = (1,10,11,3,8,7,2)(4,13,6,9,12, 14,5),

pn(@1) = (1,5,17, 3,12, 18, 2, 9, 16)(4, 14, 15, 6, 7, 13, 8, 10, 11),
on(a2) = (1,6,3,2,14,18, 16,11, 17)(4, 5, 15, 9, 8, 10, 7, 13, 12),
on(as) = (1,7, 16, 17, 15, 18, 3, 8, 2)(4, 14, 10, 11, 9, 6, 12, 13, 5),
pn(as) = (1,3, 10, 17, 18, 13, 16, 2, 4)(5, 8, 9, 11, 12, 6, 7, 14, 15),
on(as) = (2,8, 3,10, 17, 11, 16, 9)(4, 14, 6, 12, 5,15, 7, 13),
pn(ae) = (1,7, 16,13, 18, 12, 3, 6)(4, 5, 9, 11, 14, 15, 8, 10),
pn(@7) = (1,4, 2,14, 18, 15, 17, 5)(6, 7, 8, 9, 12, 13, 10, 11).

(2) We use GAP ([29]).

(3) We can apply [17, Theorem 4.1] using the results described in [17, Section 2.4]
and [16, Section 1.8]. Note that

PSL2(Q13) S H1 < PGL2(Q13) and PSL2(Q17) S H2 < PGL2(Q17),

in particular

[PGL2(Q13) : Hi] = [H1 : PSL2(Q13)] =2
and

[PGL2(Q17) : Hz] = [H2 : PSL2(Q17)] = 2.

(4) This follows from Proposition 1.12.

(5) Letyr : V — PGL2(Qp) x PGL2(Q) be the map which sends the quaternion
X = Xo + X1 + X2] + X3k € V to

Xo+ X1ip X2+ Xaip Xo + X1l X2 + X3i|
—X2 + X3i p Xo— X1l p ’ —Xo2 + X3l|  Xo — X1i| ’
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It is a group homomorphism such that U (X) = ¥ (x), ifx € H(Z)NV. We have

U(V) = (U @L+2i +2j+2k), v3+2i), yQA+4j), v3B+2i +2j))
= (YA +2i +2j+2k), v@+2i), ¥ A +4)), v(3+2i +2j))
= (al, as, b2, b4) <T.

In fact, GAP ([29]) shows that [I" : (a1, as, b2, ba)] = 1, in other words
(a1, a5, by, ba) =T

Therefore I' = (V) = V /ker(). We claim that ker(vs) = ZV. On the one
hand, we have

ker() ={x eV :x =X} =V NZUMH(Q)) < ZV .

On the other hand, if X = Xg + x1i + X2 + X3k € V < U (H(Q)) commutes
both with 3+ 2i € V ang 1+4jeV,thenx =X # 0, hence x € ker(y) and
in particular ZV < ker(y).

O

Note that the only commuting pairs among the standard generators of I"13 17 are
{as, b1}, {ae, b2} and {az, bs}.

Example: p=5,1 =13

Our second example is I' = I's 13, using the identification

ay = ¥ (1+2i), a;t =y -2,
az = ¥ (1+2j), ayt =yl -2j),
az =¥ (14 2k), azt =y (1 —2k),
by = v (14 2i +2j + 2k), byt =v(@ -2 —2j—2k),
by = ¥(1+2i +2j — 2k), byt =@ —2i —2j+2k),
bz = (1 +2i —2j + 2k), byt =yl —2i +2j — 2k,
ba= (1 —2i +2j + 2k), byt =@ +2i —2j—2k),
bs = ¥ (3 + 2i), bg! = v (3 - 2i),
be = ¥ (3+ 2)), bg* = v (3 —2)),

by = ¥ (3 + 2k), byt =¥ (3 - 2k).
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Example 3.28.
aibiagbgt,  aibpaghy, arbsa, bt
a1b4a1b1‘1, a1b5a1 b 1, a1bgazbs,
a1b7a2 b4 1, a1b7_1a2b1, albglaglbz,
R3.7 := | albglaglbe, albglalb_l, a2b2a3 b 1, -

azbgazbfl, asbgasbs, a2b5a3 b ,

a2b6a2 b 1, a2b5_1a3b1, azbglazb_l,

a3b2a3b1_1, a3b7a§1b7_1, agbglagbgl

Proposition 3.29. Let I' = I'5 13 be the (6, 14)—group defined in Example 3.28 and
let G = U(H(Z[1/5, 1/13]))/ZVU (H(Z[1/5, 1/13])). Then

(1) Phn = PGL2(5) < Sg, P, = PGL2(13) < S14.
(2) T =7, x 73, [T =73 x 735, T3P =7, x Zz x 72,
(3) There are finite quotients

T/ (b3, b2, (a1a2)®, (b1bs)®)r = PGL2(3) = Sy,
such that (b3, b2, (a1a0)®, (b1bs)3)® = 7, x Z3,.

/a8, (a1a2)3, (a1b1)’, (b1bs)’, (a1b1bs)®)r = PGL(7),
such that ((a$, (a132)°, (a1b1)”, (babs)”, (a1b1hs)®) 2 = Z5 x Zas x Zse.

I'/ (b7, (babs)?, (a182)°, (a1babs)°)r = PGLo(11),
I'/ (b3, be, (a132)°, (a1a3)°, (b2be)®, (ash1bs)?)r = PGL2(17),
r/(a3, a3, a3, b2 r = PGL,(19),
T/ b}f b2, b3, (babs)t)r = PGL,(23),
T/{ai*, b3, b, bE, (a1by)3)r = PSL2(29).

(4) We get a finite presentation of G by adding to the presentation

(a1,ap,a3, b1, ..., b7 | Ra7)
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of I two new generators i, j and the relations/relators

i, j2 1 ],
[ar,i], a2 =iay’, asi =iazt, a1j = ja;t, [az, jl, asj = jag ',
bai =ib; Y, bai = ibs, bai = iby, [bs, i1, bei =ibgt, b7i = ibs™,
b1j = jb3", b2j = jba, baj = jby, bsj = jbg™, [be, j1, brj = jb7™,
and T" is then the kernel of the homomorphism
G — Z%
i > (1+2Z,0+27)
j > (0+2Z,1+ 27)
ap, az,az+— (0+ 27,0+ 27)
bi,...,b7—> (0+2Z,0+ 27).

(5) For a group H we use the notation H® := [H, H], H® := [H® H®D],
There is a chain of normal subgroups of G

64 16 (q 12 8 4 4 a4
r@q6@arPar®a6® aroar<c
such that
G/T=T/To=To/GV =73, cV/r®=z3 rV/r{’ =73 x zs,

G = 7S and G/ Ty = Z3. It follows for example that I'® is a normal
subgroup of G of index 6291456 = 3 - 221

(6) T < SO3(Q) (illustrating Theorem 3.12(2)).

(7) Zr(b) = Nr({b)) = (b), if b € {by, b2, b3, ba}.
Proof. (1) We compute

po(b1) = (1,6,3,4,2,5),

pu(b2) = (1,6,2,5,4,3),

pu(b3) = (1,6,5,2,3,4),

pv(ba) = (1,2,5,3,4,6),

pu(bs) = (2,3,5,4),

pu(b) = (1,4,6,3),

pv(b7) = (1,2,6,5),

pn(@1) = (1,4,7,3,13,9,11, 14,8, 2,12, 6),
pn(@2) = (1,3,5,2,11,8,12, 14, 10,4, 13,7),
pn(@s) = (1,2,6,4,12,10,13, 14,9, 3,11, 5).
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(2) We use GAP ([29]).

(3) We have used quotpic ([58]) to compute the abelianizations
(b3, b, (a122)%, (b1bs)*) P = Z x Z3,
and
(@8, (a1a2)3, (arb1)’, (b1bs)’, (a1h1bs)®)® = 72 x Z14 x Zse .

The other statements about the finite quotients of the group I" are computed by

GAP ([29]).

To illustrate Theorem 3.12(3) and (4), the homomorphism 23 : I' — PGL2(7)

with kernel

(@3, (a1a2)°, (a1b)”, (b1bs)”. (a1babs)®)r

is given by
. |_)" 547Z 1477 \]
Y7\ 1472 4472 )
. |_)' 1+7Z 2+47Z \]
27\ 5472 1+72 )]
. [ (0+7Z 4+77Z \]
ST\ 4472 2472 )
b [ (4477 0+7Z
17|\ 347z 5472 )|
b [(6+7Z 6+7Z \]
27\ 2472 3472 )
b [ (4477 3+7Z \]
7\ o047z 5472 )
b [(3+7Z 5+7Z\]
“7 U\ 1472 6472 )]
b [ (0+7Z 1+7Z \]
57\ 1472 6472 )
b [ (34+7Z 2+7Z \]
67\ 5+72 3472 )
b [( 2472 4+7Z ]
"\ 4v72 4472 )
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We observe that this homomorphism 23 : I' — PGL2(7) corresponds to the
permutation representation in Sg found by quotpic ([58]):

ai— (1,5,7,2,4,6, 3, 8),
a‘2 H (17 57 6’ 4’ 8’ 3’ 79 2)7
az— (1,5,3,8,2,7,6,4),

b1 — (2,6,4,3,8,7),
by — (1,5,4,6,8, 3),
bs— (1,5,2,7,4,6),
bs— (1,5,8,3,2,7),
bs — (1,6,7,8,4,5,3,2),
be — (1,3,6,2,8,5,7,4),
b7~ (1,7,3,4,2,5,6,8).

For g = 29, we have t12,0(I") = PSL2(29) < PGL2(29), given by

al —

asz —

asz —

by —~

b3

bs —

be —

b7 —

(
(
(
(
(
(
(
(
(
(

25+ 297
0+29Z

14297
27 + 297

14297
24 + 297

25+ 29Z
22 + 297

25+ 29Z
3+29Z

25+ 29Z
26 + 297

6+ 29Z
22 + 297

27+ 29Z
0+ 29Z

3+29Z
27 + 297

3+29Z
24 + 297

0+429Z \]
6+297 )

2+ 297
14297

24 + 297
14297

26 + 29Z
6+ 29Z

7+ 29Z
6+ 29Z

6+ 29Z

26 + 29Z
25+ 297

0+ 29Z
8+ 29Z

2+ 29Z
3+ 29Z

24 4 297

)
).
)
)
22 + 29Z ):
)
)
)
).

3+ 29Z
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and kernel (@14, b3, bZ, bZ, (a1b1)3)r. The choice ¢ = 17, d = 0 gives another
homomorphism
117.0 : ' = PSL2(29)

with kernel ker(z17,0) = ker(r12,0).

Note that g = 29 is the smallest odd prime number such that ( )
see Table 3.2 (other numbers with this property are for example 61 andq79)

(4) This follows from Theorem 3.12(1). Observe that the generators i and j in the
given presentation correspond to

v = ([( s 0 )} : [( s 0 )D € PGL2(Qs) x PGL2(Q13)
—isg 0 —ii3

and

vii) = ([( B )] , {( B )D € PGL2(Qs) x PGL2(Q13)

respectively. Note that it would be enough to add the relations/relators

i, j2 0 ],
[as,il, a1j = ja; ™ [az, j1, asj = jag™h,
bai =ibt, [bs,i], bei = ibgt, b1j = jb3?

in order to get a presentation of the group G.

(5) We have used GAP ([29]), quotpic ([58]) and the presentation of G given in
part (4).

(6) The injective group homomorphism I' — SO3(Q) of Theorem 3.12(2) is given

by
1 0 0
ai— | 0 —3/5 —4/5
0 4/5 —3/5

~3/5 0 4/5
as > 0 1 0
—4/5 0 —3/5

—3/5 —4/5 0
as—> | 4/5 =3/5 0
0 0o 1
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-3 4 12
12 -3 4
4 12 -3

-3 12

4 -3
~12 -4
3 -12
—4 -3
12 -4
3 —-12 -4
—4 —3 12
~12

b1~ —

13

)

by > — -12
—-12

X
i

1

0 5/13 -—12/13

0 12/13  5/13
5/13 0 12/13
0

~12/13 o 5/13

5/13 —12/13 0

12/13 5/13 0
0

b3

[EEN
w

bg —

Gl -

bs
be —

b7 —

4
4
4
|
|
)

e Y Y

(7) This follows from Proposition 1.12.
O

See Table 3.6 for the index [T : U] and the abelianization U2, where U is of the
formU = (a;, bj), & € {a1, ap, as}, bj € {by, by, b3, bs, bs, be, b7} and I' = I's 13 is
the (6, 14)—group defined in Example 3.28:

| |bubabybsa| bs | b [ b7 |
a1 | 16,[16,32] | 00.10,0] | 96, [16,32] | 96, [16, 32]
a, | 16,[16,32] | 96, [16,32] | oo,[0,0] | 96.[16,32]
as | 16, [16,32] | 96, [16,32] | 96.[16,32] | o, [0, 0]

Table 3.6: Index [T" : U] and group Ua where U = (a;, bj) in Example 3.28

Observe that (a1, bs) = (ay, bg) = (as, b7)

~ 72in I's 13.
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3.3 Generalizationto p,| =3 (mod 4)

The main goal of this section is to generalize the construction of I"p | of Section 3.2
to the case where p = 3 (mod 4) and | = 3 (mod 4) are distinct prime numbers.
Before giving the ultimate definitions, we discuss some possible approaches. If we
just naively define I" as set

(¥ (x) : x € H(Z) has type eq, |x]?> = p'IS; 1, s € Np},
then we have several problems:

(1) The condition “x has type ep” is not preserved under quaternion multiplication
(for example (i + j +k)? = —3 has type 0g), S0 we better define I" just as group
generated by as, ..., aps1, by, ..., buTl, where

2

{ay, ..., apgl}il = {¥(X) : X € H(Z) has type eg, |x|*> = p}

{by, ..., bHTl}ﬂE1 = {Y(y) : y € H(Z) has type eq, |y|*> =1}
or (as will be explained in (3))

(ay, ..., ap;_l}il = {¢(X) : X € H(Z) has type e1, |x|°> = p}

{b1, ..., b} = (y(y) : y € H(Z) has type ey, |y[> =1},

2

i.e. we get

I ={y(X):x € HZ), |x|?= p'I,s e No,
x has type eg, if [x|> =3 (mod 4),
X has type 0g, if [x|> =1 (mod 4)}
= (Y (x) :x € H(Z), |x|?> = p"IS; 1, s € Ny,
X has type ep, ifr 4+ s isodd,
X has type 0, ifr 4+ s iseven},
or

I = {¢(x) :x € H(Z), |x|*>=p"I%r,s € Np,
X has type e1, if [x|? = 3 (mod 4),
x has type 0g, if x| =1 (mod 4))
= (Y (x) :x € H(Z), |x|?> = p"IS; 1, s € Ny,
X has type ey, ifr + s isodd,
X has type og, ifr 4+ s is even}

for a suitable map v, see (2) below.
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(2) What is a good definition for ¥? Since now p,| = 3 (mod 4), there are no
elements iy € Qp, ij € Q anymore such that if, +1=0andi?+1=0.We
have two possibilities to generalize the map  of Section 3.2: Either we define

Y H(Z) \ {0} — PGL2(Kp) x PGL2(K)),

where X = Xg + X1i 4+ X2 + X3k is mapped to

Xo+ X1lp X2+ X3ip Xo + X1l X2 + Xali|
—X2 + X3ip Xo— X1ip ’ —X2 + X3l| X — X1l ’

and Ky, K are quadratic extensions of Q, and @y, respectively, containing
elementsip € Ky, ij € Ky suchthatif +1 =0andi?+ 1 =0, or we define

¥ H(Z) \ {0} — PGL2(Qp) x PGL2(Q1) ,

Xo + X1€p + X3dp —X1dp + X2 + X3Cp
X ,
—X1dp — X2+ X3Cp  Xo — X1Cp — X3dp
Xo + X1€ + X3di  —X1dj + X2 + X3Cj
—X10] — X2 + X3¢ Xo — X1C — X30| ’

where ¢cp, dp € Qp, ¢, di € Q are elements satisfying
ci+di+1=0and cf+d?+1=0.

Such elements exist since the equation x2 4+ y2 + 1 = 0 has solutions in
Zp and Z; (see [23, Proposition 2.5.3]) and then applying Hensel’s Lemma.
Both constructions of i are equivalent in the sense that they will give the
same defining relations, hence isomorphic groups I'. This mainly follows from
Y (xy) = v (xX)y¥(y) for both v». Therefore, we can always choose any of those
two definitions of v in the following constructions. In practice, we will choose
the second one, since we prefer to be inside PGL2(Qp) x PGL2(Q)) as in the
classical case of Section 3.2.

(3) If p =3 (mod 8), then p can be written as a sum of (0 and) three odd squares
(by Lemma 3.7(2),(3)). So if we take for example one generator a1 := v (X)
such that X = 0+ X1i + X2j + X3k and |x|? = x2 + x5 + x3 = p, then

a1 =y (X) =9Y(x)=yX =yx) t=a",

ie. a2 = 1in T, in particular the group T is not torsion-free and therefore
certainly no (p + 1, | + 1)—group.
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We can easily avoid this problem by changing the type from eg to e; whenever
p=3 (mod8)orl =3 (mod 8):

{ag, .. .,a%l}ﬂ = {Y(x) : x € H(Z) has type e1, [x|? = p}
{ba,...,bia}* = {Y(y):y € H(Z) has type eq, |y|> =1} .

2

In the remaining case p, | = 7 (mod 8), we essentially (we could replace e1 by
e2 or e3) have two possibilities: Either we again take

1 = (¢ (x) : x € H(Z) has type e1, [X|? = p}
1 = {y(y) 1y € H(Z) hastypees, |y|*> =1},

{ag,...,a

{b1,..., b

=]
T
=

N|+

or we take
{ag, ..., apa ) = {Y(x) : x € H(Z) has type eo, |x|*> = p}
{by,....ba} = {¥(y) : y € H(Z) has type e, |2 =1}.

=]
N‘

r\:|+

These two constructions give different groups (we have different abelianizations
in our examples, see the list in Section 3.5), but the groups are quite similar (its
intersection has index 2 in both groups).

We always avoid type-mixing constructions, since if x has type e,, |x|2 = p
and y has type e, # e, |y|2 = I, then |xy|2 = pl = 1 (mod 4). Hence, by
Lemma 3.7(2), |xy|? can be written as a sum of three squares (one odd and two
even squares). By the following multiplication table (Table 3.7), xy has type
01, 02 Or 03, in particular N (xy) is even, so it can happen that R(xy) = 0, but
then xy = —XY, hence (xy)? = xy(—Xy) € Z and (y(xy))? is the identity in
which implies that " is not torsion-free.

Op 01 02 O3 | € €1 € €3
Op|Op 01 O2 O3 |€ €1 €2 €3
01|01 Op O3 02| €1 € €3 €2
0202 03 0Op O1|€ €3 € €1
03|03 02 01 Op|€3 € €1 €
€| € €1 €2 €3|0p 01 02 O3
€p1 1€ €p €3 €2 |01 O O3 O2
€2 | €2 €3 €9 €1 |02 03 0Opg O1
€3 | €3 €2 €1 €p |03 02 01 Op

Table 3.7: Multiplication table of quaternion types
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After those preliminary considerations, we give now the final definitions for ¢ and
the group I'"p| for this section: Let p, | = 3 (mod 4) be distinct prime numbers, and

¥ H(Z) \ {0} - PGL2(Qp) x PGL2(Q) ,

mapping the quaternion X = Xg + X1i 4+ X2J + X3k to

X0 + X1Cp + X3dp —X1dp + X2 4 X3Cp
—X1dp — X2 +X3Cp  Xo — X1Cp — X3dp ’

Xo + X1C + X3di  —X10 + X2 + X3
—X10) — X2+ X3C|  Xo — X1C — X3d| ’

where ¢cp, dp € Qp, ¢, di € Q are elements such that
ci+di+1=0and cf+d*+1=0.
Then, we define the group
Tpi = {¥(X) :x € H(Z), [x]? = p'I% 1, s € N,

X has type e1, ifr 4+ s is odd,
X has type 0g, ifr 4+ s is even}

= {Yy(x) :x € H(Z), |x|> = p'I%r,s € Np,
x has type eq, if [x|> = 3 (mod 4),
X has type 0g, if |x|> =1 (mod 4)},
with subsets
En:={as, ..., apu}™ = {¥(X) : x € H(Z) has type e1, |x|* = p}
E, :={b1,...,bia}™ = {y(y): y € HZ) has type ey, |y|*> =1}.
In the subcase p,1 = 7 (mod 8), we additionally define the group
Cple = (¥ (X) :x € H(Z), [x]? = p'I% T, s € N,
X has type e, ifr 4+ s isodd,
X has type og, ifr + s is even}

= (Y (0 :x e H(Z), x> = p'I% 1,5 € N,
X has type eg, if [x|? = 3 (mod 4),
x has type 0g, if [x|> =1 (mod 4)},
with corresponding subsets
En:={a1,..., ap;_l}il = {¥(X) : X € H(Z) has type eq, |X|°> = p}
Eyi={be, ..., ba)*™ = {y(y) : y € H(Z) has type eo, |y =1}.

2
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Our next goal is to prove that I'p; and I'p | ¢, are (p + 1, I 4 1)—groups.

Theorem 3.30. Let I" be either the group I'p, where p,| = 3 (mod 4), or let T" be
the group I'p | .e,, Where p, 1 =7 (mod 8). In the first case, let

{Ol]_,...,Olpzil,Olpzi .,o1} = {X € H(Z) of type eq : |2 = p, R(x) > 0}
(BL..... B, Py, ... B} = {y € H(Z) of typees : [y =1, %i(y) > 0}
Ehzl//({al, J@pn T ... 01)) = (@1, apT}ﬂE1

=¥ ((Br. ... Bus. Bus. ... B1)) = (by, ..., b )™

In the second case, we take the same definitions, but replace e by eo.
A word in {a1,...,apw1, pi1, ..., a1} IS called reduced, if it has no subword
2 2

of the form «jog or ajei. A reduced word in {84, ..., B, ﬁ|—%1 ..., By} is defined
analogously. Then in both cases the following statements hold.

(1) Any quaternion x € H(Z) such that [x|?> = p"IS; r,s € Np, can be uniquely

expressed in the form
X = ep % wr, () ws,(B),

where
¢ € H(Z) isaunit, i.e. ¢ € {1, £i, £], £k}

ri,r2, 81,52 € Ngsuchthat2ri +ro=r and 2s1 + s =S
., o1} of length ro

wr, (o) is a reduced word in {o1, ..., opt1, &
2

AL
3

2

ws,(B) is a reduced word in {B1, ..., B, P .. ., B1} of length s,.
(2) The group I is generated by the set {a1, ..., ap:1, b1, .. b%} i.e. by the set
2

W), ... ¥lapn), (B, ... ¥ (B}

(3) To any pairg € En, b € E,, there are unique elements & € Ej, b € E, such
that ba = ab.

(4) The group I is torsion-free.
(5) ThegroupTisa (p+ 1,1+ 1)-group.

Proof. (1) We follow the strategy of the proof of [45, Lemma 2.1.9], see also the
proof of [23, Theorem 2.6.13].

Existence: By Proposition 3.10, we can write

x =y yOzD 6



3.3. GENERALIZATION TOP, L =3 (MOD 4) 139

(2)

such that y©, z®) e H(Z), [y?|? = pand |22 = |, where: = 1,...,r
and k = 1,...,s. Observe that all quaternions y, z%) have type e by the
assumption p, | = 3 (mod 4). Multiplying y®, z*) with suitable units, we can

achieve that x has the form

x =ey@® . yOzD

such that ¢ € H(Z) is a unit, y©, z&) ¢ H(Z) have type e, and R(y®) > 0,
N(z*)) > 0; or we can achieve that y, z*) have type eq instead of type e1.
We get the desired expression if we replace all subwords

by p = |y®|?, and all subwords

S0 (41 _ 505700

by | = |2))2.

Uniqueness: We adapt the counting argument given in [45, Lemma 2.1.9]. The
number of reduced words wr,(«) is

(p+1)p2t, ifrp>1
1, ifr,=0.

Similarly as in [45], it follows that the number of expressions

ep" % wr, (@) ws, (B)

B(l+p+-+p)(Ll+I+---+19=8)d,
dip‘ls

which is also the number of quaternions x € H(Z), such that |x|% = p'IS by the
Jacobi Theorem (see for example [45, Theorem 2.1.8] for a formulation and a
proof of the Jacobi Theorem).

Let x € H(Z) be a quaternion of norm |x|% = p"IS; r, s € Ng. By part (1), we
can write
X = ep %y, (@) ws,(B) .
Assume that we are in the first case I' = I'p|. If X has type e; and r 4 s is odd,
then
ro+sx=r-+s—2(ry+s1)
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is odd. By Table 3.7, the quaternion wy,(a)ws,(B) has type e1, hence ¢ has
type 0o, i.e. ¢ € {—1, 1} and it follows

Y (X) = ¥ (Ep M wr, (@) ws, (B)) = ¥ (wr, (@) ws, (B)) -

If x has type og and r +s is even, then ry+sp is even, wr, () ws,(B) has type 0o,
again ¢ € {—1, 1} and ¥ (X) = ¥ (wr, (@) ws,(B)).

The proof in the second case I' = I'p | ¢, is completely analogous, we only have
to substitute e1 by eg everywhere.

Write a = ¥ () and b = ¢ (8) for some

0(6{0(1,...,0[%1,0{%1,...,0{_1} and ,36{/31,...,,3|+Tl,,3|+71,...,,31}.

The quaternion B has type 0o and norm |Ba|?> = pl. By part (1), it can be
expressed as Ba = ea B with a uniquely determined unit & and uniquely deter-
mined quaternions

& € fog, ..., @py, @pgl, ..., @) and B € {B1,..., Bisa, Bzt ..., Pi}.

2 2

Since @f has type 0g, the unit & also has type 0, i.e. ¢ € {—1,1} and we
conclude

ba = ¥ (B)¥ () = ¥ (Ba) = ¥(eaf) = ¥ (@B) = ¥ (@ (f) = ab.

We adapt the proof given in [54, Proposition 3.6]. Let ¢ (x) be a non-trivial
element in I'.  Assume that w(x)k = 1 for some k € N. Then there is an
element u € Qp such that

k
X0 + X1Cp + X3dp —X1dp + X2 4+ X3Cp (O € GL(Qy)
—X1dp — X2 +X3Cp  Xo — X1Cp — X3dp N0 u 2tp/)>

hence 1« = AX = 2K, where A1, 1, are the two eigenvalues

A2 = xoi\/—xf—xg—xg
of the matrix

Xo + X1Cp + X3dp  —X1dp + X2 + X3Cp
—X10p — X2 +X3Cp  Xo— X1Cp — X3dp )’

using the identity ¢ + d2 + 1 = 0in Q. We write

vi=xZ+X5+x3eN, o =x0++/—v and Az =X — v/—v.



3.3. GENERALIZATION TOP, L =3 (MOD 4) 141

®)

By construction of I'p | and I'p |, there are only three possible types for the
quaternion Xx.

Case 1: x has type 0g, in particular xg is odd and v is positive even.
Case 2: x has type e1, and again Xxg is odd and v is positive even.

Case 3: x has type eg such that [x|2 = 7 (mod 8), in particular xg is non-zero
even and v is positive odd.

We will use the following facts which hold in all three cases:
v#0, X0#0, 3x3 —v#0, x5 —v#0and x5 —3v#0.
They follow directly looking at the parity. Since A1/A2 belongs to a quadratic
extension of Q, and (kl/kz)" = 1, we can conclude that k € {1, 2, 3, 4, 6}. But
o k=£1, sinceri; —Ar=2/—v #0
o k#2, since A2 — A3 = 4xgy/—v #0
o k#3, since 23 — 13 =2/=v(3x3—v) #0
o k#4, since AT — A3 = 8xo/—v (X5 —v) #0
o k#6, since 28 — 15 = 4xov/—v (x2 — 3v)(3XZ —v) #0 .
It follows that ¥ (x)X = 1 and T is torsion-free.

By part (2), the group I is generated by its subset

{al,...,aﬁl,bl,...,blzl},
2

and by part (3) there are (p + 1)(I + 1) relators of the form dba—1b~—1, where
a,d € Ehand b,b € E,. These (p + LI + 1) relators are represented by
exactly (p + 1)(I + 1)/4 relators aba—1b—1 (geometric squares [dba—1b—1]), if
and only if the four squares

gba1b~1, alb~1ab, a lbab~t, ab~1a b

are always distinct, i.e. if and only if there are no a € En, b € E, such that
abab = 1. We want to exclude such “projective planes”, so let us assume that
abab = 1 for some a € En, b € E,. Since I is torsion-free by part (4), it
follows that ab = 1, hence ¢ (a8) = 1 for some

ae{al,...,a%l,_a%l,...,a_l} and ﬂe{ﬂl,...,ﬁ%,ﬁ%,...,ﬂ}.

This implies (looking at the two eigenvalues 11, A of part (4) which have to
be equal here) that o = R(«B) € Z, contradicting |«B|%> = pl. We conclude
that I" is a quotient of a (p + 1, | + 1)—group

(ag,...,ap+1, b1, ..., D1 | Rpta j41) .
2 2 2 2
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This quotient is not proper (i.e. I is exactly this (p + 1, | + 1)-group), if and
only if any non-trivial relation which holds in I" is a consequence of the square
relations ba = &b of part (3). So we assume that w is any relator in T, i.e. any
word in the generators

{al,...,ap+1,b1,...,b|+_1}i1
2 2

which represents the identity in I". Then, gradually using part (3), i.e. replacing
every ba by the corresponding ab, and cancelling all subwords of the form

aiai‘l, ai‘lai, bjbj_l, bj_lbj,
either w cancels to 1, which means that w is a consequence of the defining
relators in Rp+1 1.1 and we are done, or w is represented by an element in I’

2 2
of the form a® ...a®b® ... b® where (r,s) # (0, 0), such thata® ...a®
and b® ... b® are freely reduced words in (az, ..., apw) and (by, ..., bl+71>,
2

respectively. Therefore,

Ye®. . oW gy =1

for some
o®

,...,am € {Ol]_,...,a%l,a%l,...,a_l}
and
gy, ..., g9 e (Br..... Py, P, ..., B1}
where @ ... o™ and gD ... B are reduced words. This implies
a® . a®D O — @D @OV | O = xge 7.

Taking the norm of the last expression, we get p'I° = xg, hence r, s are even
and
Xo = :I:pr/2|s/2,
which contradicts the uniqueness statement of part (1) for the quaternion
aV . a®pd O = 4p/?5/2

In both constructions of I' = I'pj and I' = I'p | ,, We have
To = {¥(X) : x € H(Z) has type 09, |X|> = pZ1%5;1,s € N}
< PSL2(Qp) x PSL2(Qi)
as in Section 3.2. Note that in the case p,| = 7 (mod 8), the common subgroup I'g
hasindex2inIT'p) NIp) e
We describe now (or in Appendix A) several explicit examples for the three cases

p,I =7 (mod 8), p,1 =3 (mod 8) and p =3 (mod 8), | =7 (mod 8), where the
first case is again divided into the type e; and type eg subcase:
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Case p,| =7 (mod 8), type e;

Let p,I = 7 (mod 8) be distinct prime numbers. Here, we take {aj, ..., ap1} to be
2
the set

{¥(X) : X = Xo + X1i + X2] + x3k € H(Z) has type e1, xo, X1 > 0, |x|?> = p},

and take {b1, ..., b1} to be the set

2
(W(y): Y = Yo+ Vi + Vo] + Y3k € H(Z) has type e1, Yo, y1 > 0, |y|> =1}.

See Appendix A.7 for the explicit definition of the group I' = I'7,23. It has for example
the following properties:

Ph = PSL2(7) < Sg, P, = PGL2(23) < Sp.
I =7, x 72, [T, T]%° = Z3 x 73 x Zes, T = 7y x Zg x 73,

In Appendix A.8 is the explicit definition of I' = I'7 31. We have computed

P, = PGL2(7) < Sg, P, = PSL2(31) < Sap.
1 =7, x Zg x 73, [T, T = 73 x 73 x Zga, TS = 7y x 73 x 73.

Case p,| =7 (mod 8), type e

Again, let p,1 =7 (mod 8) be distinct prime numbers, but now we take
(a1, ... apa )™ = {y(x) : x € H(Z) has type eo, [x|* = p}

and
{b1,...,bua) = (¥ (y) : y € H(Z) hastype e, |y|? =1}.

2

As an example, the group I' = I'7,23 ¢, is explicitly defined in Appendix A.9, and we
have

Ph = PSL2(7) < Sg, P, = PGL2(23) < Spa.
[ =73 x Zy, [T, T1%° = Zg x Zy x 735, T = 7y x Z3 x Z3.

Note that (I'7.23.6,) # (I'7.23)2, in particular the groups I'7,23 ¢, and I'7,23 are not
isomorphic.
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Case p,| =3 (mod 8)

Let p,|1 =3 (mod 8) be distinct prime numbers. We give the example I'3 11, taking

ar=y 1+ j+k), ayt=yl-j—k),
=91+ j—k), a,t=yl—j+k),
by =¥+ j+3k), byt =vw@—j—3k),
by =y (14 j—3k), byt =y —j+3k),
bs = ¢ (1+3j + k), bzt =@ —3j—k),
ba=v(1+43j —k), byt =v@—-3j+k),
bs =¥ (3+ j +k), bel=y@—j—k),
bs =3+ j —k), bgl=v@—j+k.
Example 3.31.

atbiarbgt,  arbpasby?,

a1bzagbe, a1b4a2_1b§1,

a1b5a1‘1b5‘1, albglaz‘lba,,
Rog := ; -

albz‘lazb_l, albIlazb_l,

azblazbgl, a2b2a2b5_1,

asbaashs, azbea, 1oyt
Proposition 3.32. Let I' = I'3 11 be the (4, 12)—group defined in Example 3.31. Then
(1) Phn=PGL2@3) = S4, P, = PSL2(11) < Sqo.
(2) T =7, x 72, [, T]?° =72 x Zea, T =7y x Z2.

Proof. (1) We compute

pv(b1) = py(b2) = (1,3, 2, 4),
pv(b3) = (1,2,3,4),

pv(ba) = (1,4,3,2),

pv(bs) = (2, 3),

pv(be) = (1, 4),
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pn(ar) = (1,11, 9,10, 6)(2,12,7, 3, 4),
ph(az) = (1,11,8,4,3)(2,12, 10,9, 5).

(2) GAP ([29]).
O

See Table 3.8 for the index [ : U], the abelianization U2 and the structure
of the quotient I'/U (if U is normal in I"), where U = (aj, bj), & € {az, ap} and
bj € {b1, ..., be}.

| [ bibs | bpbg | bs | bs |
al 29 [87 8]’ ZZ 89 [87 32]7 - o0, [07 O]v - 27 [8’ 8]v ZZ
a2 89 [87 32]7 - 27 [87 8]7 ZZ 29 [87 8]’ ZZ o0, [O’ O]v -

Table 3.8: [I" : U], U and I'/U in Example 3.31, where U = (a;, bj)

Case p=3 (mod 8),1 =7 (mod 8)

Let p =3 (mod 8), 1 = 7 (mod 8) be prime numbers, We construct the group I's 7
as follows:

a1=vy(L+j+k), art=v(d-j—k),

a2 =YL+ ]j—k), ayt=vyd—j+k),

by =v(@+2i +j+k), byl=vy@ -2 —j—k,

by =¥ (L+2i +j—k), bt =y —2i —j+k),

bs =y (1 +2i —j+k), byt=vy@—2i +j—k),

ba=v(@1+2i —j—k), byl =v@—2i +j+k.
Example 3.33.

alblaz_lbz 1, albzal_lbg,

8.1b3a2_1b4jl, a1b4a1b1_1,
Ro.4 := 3 .
aib;taghy,  aibztaghy,

a2b3a2b2‘1, a2b4a2‘1b1
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Proposition 3.34. Let I' = I'3 7 be the (4, 8)—group defined in Example 3.33. Then
(1) Phn=PSL2(3) = A4, Py, = PGL2(7) < Ss.
(2) T =7, x 72, [[,T]?° =72 x Z1s, T =7 x Z2.

(3) We have a quotient I'/((a®, bf, (a1b1)®, (b1b2)®)r = PGL2(5) = Ss, such that
(a8, bf, (a1b1)®, (b1b2)%)2 = 7, x Z3,, and quotients

I'/{@a2, (ath1)?, (b1bo)®)r = PGL2(11),
I'/{af, (a1b1), (b1b2)3)r = PGL,(13).

(4) The group U (H(Z[1/3,1/7]))/ZU (H(Z[1/3,1/7])) has a presentation with
generators az, az, b1, bo, bs, by, i, j and relators

R4, aziani ™, agjaytj =% baibyti~t, byjbsj =t i2 j2 0, j1.

(5) (U(H(Z[1/3,1/7D))/ZU (H(ZI1/3, 1/7)))® = Z;.
(6) (U(H(ZI[1/3,1/71))/ZU (H(Z[1/3,1/7])))/ To = Zj.
(7) Aut(X) = Da.
(8) (a2a?, b, thabgbyh) = 72,

Proof. (1) We compute

pu(b1) = (1, 4,3),
pu(2) = (1,2,3),
pu(b3) = (2,4,3),
pu(bg) = (1,2,4),
pn(a1) = (1,4,3,7,5,8,6,2),
pn(@2) = (1,5,6,7,8,4,2,3).

(2) GAP ([29]).

(3) Let g be an odd prime number distinct from p and I, and choose ¢,d € Z
such that c? +d2 +1 =0 (mod q), then we can define exactly as described in
Theorem 3.12(3) a homomorphism r = 7c 4 : ') — PGL2(q) by

ted(y) = X0+ X1€ + X3d +qZ —x1d 4+ X2 + X3C + qZ
cdly) = —X1d — X2+ X3C+0Z  Xo— X1€ — X3d + qZ ’

where y = ¥ (Xo + X1i + X2] + X3K).



s [((3+5Z 1+5Z )]
! 4457 4+5Z )|
. 4457 1+5Z ]
27 |\ 4+52 3+52 )
o s [((3+5Z 2452 )]
Y7\ 0+52Z 4+52 ]
o s [((4+52 2452 ]
2 0+5% 3+5Z )
onis [((315Z 0+5Z )]
37\ 2+52 4+52 )]
o, s [(( 452 0+5Z )]
4 2+57Z 3+5Z
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For g = 5we have tp 2 : I'3 7 — PGL2(5) given by

147

We have used quotpic ([58]) to show that
(@2, by, (azb1)°, (bab2)®) 2 = 7 x Z.
In the same way 1.3 : I'3.7 = PGL2(11) is defined by

o [((4+UZ 24112
17 \o+11z 94117
a [/ 94+117Z 04117
27 [\o+11z 4417
. 6+117 7+ 117
17\ s+11z 741127
b [/ 0+117Z 5+ 117Z
271\ 34117 2+11Z
. 6+117 5+ 117
37 I\ 74117 7+11Z
. 0+117 3+ 117
471\ 541127 2+11Z
and o5 : '3 7 — PGL2(13) by

. 6+137 1+ 137Z
1 12+ 137 9+ 137
. 9+137 1+ 137
2 12 + 137 6+ 137
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by 24137 9+ 13Z

( 6 + 13Z 4+132>‘
[( 94137 4+13Z \]
|\ 24132 6+132 )|

[( 6413Z 24137
|\ 44132 9+137

o, o [( 9+132 24132 \]
47\ 44132 64132 /|°

(4) Same idea as in Proposition 3.29(4) using that the group
U (H(ZI1/p, 1/1D)/ZU HZI1/p, 1/1D)
can be described as

(W(x):x € HZ), |x]?>=p"I%T,s € No}.

(5) and (6) follow from part (4) using GAP ([29]).
(7) GAP ([29]). The group Aut(X) is generated by the two automorphisms
(a1, @2, b1, by, b, ba) > (a1, 8, %, b, ", by b3t b ),

(a1, az, ba, by, bg, ba) = (a2, a; ", by, ba, by, bs).

(8) This follows from Lemma 3.14, since the two elements a3a? = v (1 + 8i — 4j)
and b, *habsb; ! = v (41 — 24i + 12j) commute.
O

See Table 3.9 for the index [T : U], the abelianization U2 and the structure of the
quotient I'/U, where U = (aj, bj), aj € {a1, az}, bj € {by, by, bz, ba}.

[ T I T
ai || 4,[8,16],Z4 | 2,18, 8], Z>
ar || 2,18,8],Zy | 4,8, 16], Z4

Table 3.9: [I" : U], U2 and I'/U in Example 3.33, where U = (a;, bj)
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3.4 Mixed examples: p= 3,1 =1 (mod 4)
Letp=3 (mod 4),l =1 (mod 4) be two prime numbers. Similarly as in Section 3.2
or Section 3.3, we define a map

¥ H(Z) \ {0} - PGL2(Qp) x PGL2(Qy),

which sends X = Xg + X1i + X2j + X3k to

X0 + X1Cp + X3dp —X1dp + X2 4 X3Cp
—X1dp — X2 +X3Cp  Xo — X1Cp — X3dp ’

X0 + X1l X2 + X3
—X2 + X3l Xo — X1l ’
where cp, dp € Qp, i € Q are elements such that ¢ +d3 + 1 =0andi? + 1 = 0.
Then we construct groups I"p | generated by

) = {Y(x) : x € H(Z) has type e1, [X|? = p}
1 = (¢ (y) 1 y € H(Z) has type 0o, |y1? =1},

{a,...,a

{b,..., b

=]
N‘

r\:|+

that is
Tpi = {¥(X) :x € H(Z), [x]? = p'I% 1, s € N,
X has type e1, if |x|? =3 (mod 4),
X has type 0g, if [x|?> =1 (mod 4)}
= {y(x) :x € H(Z), |x|> = p'I% s € Np,
X has type ey, if r isodd,
X has type 0g, if r is even},

and, in the subcase p =7 (mod 8),1 =1 (mod 8), also groups I"p | e, generated by
17 = (Y (x) : x € H(Z) has type eo, x> = p)
= {y(y) : y € H(Z) has type oo, IyI° =1},

{ag, ...

{bq,..., Db

QD
=]
T

m|+

I.e. I'p g is defined as

(W (x) :x € H(Z), |x|> = p'I% T, s e No,
x has type eg, if [x|> =7 (mod 8),
x has type 0g, if |x|> =1 (mod 8)}
= {y(x) :x € H(Z), [x|?> = p"IS;1, s € Ny,
X has type e, if r isodd,
X has type 0o, if r iseven}.
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Note that for both constructionsI" =T'pj and I' = I'p | o, We have
To = {Y¥(X) : x € H(Z) has type 09, |X|> = pZ1%5;1,s € Ng}
< PSL2(Qp) x PSL2(Q1)
as in Section 3.2 and 3.3.

Theorem 3.35. Let I" be either the group I'p |, where p = 3 (mod 4),1 =1 (mod 4),

or let I' be the group I'p | ,, Where p = 7 (mod 8), | = 1 (mod 8). Then I is a
(p + 1,1+ 1)-group.
Proof. It is easy to adapt the proof of Theorem 3.30. O

Now, we give some explicit constructions of I" p | for the two cases p = 7 (mod 8)
and p = 3 (mod 8). Moreover, we illustrate the type eg construction in the subcase
p=7 (mod8),l =1 (mod 8), and explain why this restriction makes sense to avoid
torsion in the group.

Case p= 7 (mod 8), type e;
Letp=7 (mod 8),1 =1 (mod 4) be prime numbers,
{a1.....apa} = {¥(x) : x € H(Z) has type ez, %(x) > 0, %K(ix) <0, X% = p}
{b1, ... b} = (¥ (y) : y € H(Z) has type 0o, %i(y) >0, |y[*=1}.

2
We study two examples: the group I'7 s is generated by

a1 =y(L+2i +j+k), art =y (1—-2i—j-k),
a =y +2i+j—k), a,t =yl —2i —j+k),
ag=Y(1+2i — j+k, a;tl=vy@—2i+j—k),
ar=vA+2i—j—k), a;t =yl —2i+j+k),
by = (1 +2i), byt = (1 —2i),
b2 = ¥ (1+2j), bt =y -2j),
bs = ¥ (1 + 2k), byt =y - 2k).
Example 3.36.

atbiasbzt, aibrasbyt,  aibsa; by,  aibstasbs,

-1

Rasz =1 aib,'azb:, aibylasb;?, azbraz'bzl, apbsasby,

azbglasbs, azbz_lagbz, azbl_lasbl_l, asbragby
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Proposition 3.37. Let I' = I'7 5 be the (8, 6)—group defined in Example 3.36. Then
(1) Phn=PGL2(7) < Sg, P, = PGL2(5) < Se.
(2) T3 =7, x 72, [, T = Z3 x 72 x Zng, T =7 x Z3 x Z2,
3) Aut(X) = S4.

Proof. (1) We compute

py(b1) = (1,5,2,6,4,8,3,7),
pu(b2) = (1,5,3,7,6,2,8,4),
pu(b3) = (1,6,2,3,7,4,8,5),
pn(ay) = (1,6,5,3),
rr(@z) = (1,6, 3,2),
pn(@z) = (1,6, 4,5),
pn(ag) = (1,6,2,4).

(2) and (3) are computed with GAP ([29]). The group Aut(X) is generated by the
two automorphisms

(a1, ag, as, as, b, bp, b3) — (ay, as, as, az, bz, by, by),

-1 -1 -1 -1
(alv a2’ aSv a4’ blv b2’ bS) = (a29 a4 ’ al’ aS ’ bl’ bS ’ b2 )'
U

See Table 3.10 for the index [I" : U], the abelianization U2 and the structure of
the quotient I'/U, where U = (aj, bj), aj € {a1, ap, a3, a4}, bj € {by, by, ba}.

| [ b | babs |
| az, a2, 83,84 || 4,18,16], Zs | 2,18, 8], Z7 |

Table 3.10: [[" : U], U2 and I'/U in Example 3.36, where U = (aj, bj)

Our second example is the group I'7 13:

ar=v@A+2i+j+k), ayt=v(@ -2 —j—k),
a=yA+2i+]j—k), =y -2 —j+k),
a3 =y(1+2 —j+k), agt =yl -2i+]j-k),

as=yA1+2i —j—k), agt =y —2i+j+k),
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b1 = w1+ 2i +2j+ 2k), byt =v( -2 —2j—2k),
by = ¥ (14 2i +2j — 2Kk), byt = v (L —2i —2j+2k),
bs = ¥ (14 2i —2j + 2k), byl =@ —2i +2j—2k),
bs =¥ (1 —2i +2j + 2k), byt = v +2i —2j—2k),
bs = ¥ (3 + 2i), bs* = ¥(3 - 2i),
be = ¥ (3 +2j), bg* = ¥(3-2)),
b7 = ¥ (3 + 2k), byt = v (3 - 2k).
Example 3.38.
a1b1a1b5‘1, aiboasbs, albgal‘lbz‘l, a1b4a4b1‘1,
ajbsasbg, albgaz‘lbgl, ajb7asbs, albglaglbgl,

aibga; 1oy, aib;laybgl, aibylaglbs, aibylasba,

R47 := | a2b1a2_1b4, a2b2a2b5_1, a2b3a;1b7, a2b5a4b7_1, .
asbraztbgt,  agbytaytbyl, aghylasbi, asbgtasb,t,
a2b2_1a3b_1, a3b3a3b5_1, a3b4a§1b1, agbea‘?lbz,
agbgla4b5, agbl‘laglbgl, a4b2a;1b§1, a4b5_1a4b;1

Proposition 3.39. Let I' = I'7 13 be the (8, 14)—group defined in Example 3.38. Then
(1) Php =PGL2(7) < Sg, P, = PGL2(13) < S14.
(2) T3 =7, x Zg x 72, [, T2 = 72 x 72 x Z15, T3 =7y x Zg x Z3.
Proof. (1) We compute

pu(b1) = (1,5,6,2,4,8),
pu(b2) = (2,6,8,4,3,7),
pu(b3) = (1,2,6,3,7,5),
pu(bg) = (1,3,7.8,4,5),
pv(bs) = (1,8,2,7,4,5,3,6),
pv(be) = (1,2,3,4,6,5,8,7),
pu(b7) = (1,4,2,5,7,6,8,3),
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on(@1) = (1,4,8,13,12,2,3,6,11, 14, 10,7, 9, 5),
on(@2) = (1,8,3,13,10,6,7,5,2,12, 9, 4, 14, 11),
on(as) = (1,11,7,2,12, 10,9, 8,5, 3, 13, 6, 14, 4),
pn(as) = (1,4, 10,8,6,5,11,14,7, 12,13, 3, 2, 9).

(2) GAP ([29]).

Case p=7 (mod 8), type ey; | =1 (mod 8)
Let p=7 (mod 8),1 =1 (mod 8) be prime numbers,

{ag, ..., a%l}il = {Y¥(x) : X € H(Z) has type eg, R(X) > 0, |x|> = p}
and

{ba, ..., b} = (¥ (y) : y € H(Z) has type 0g, R(y) > 0, |y =1}.

2

Note that we have two major restrictions in this type eg case. Firstly, we exclude the
case p = 3 (mod 8) for the same reasons explained in Section 3.3. Secondly, we
exclude the case p =7 (mod 8),1 =5 (mod 8). To motivate it, observe that if x has
type eg, [X|> = p =7 (mod 8) and y has type 0g, |y|> =1 =1 (mod 8), then xy has
type eg such that [xy|2 = pl = 7 (mod 8), in particular %(xy) # 0 by Lemma 3.7(2).
However, if x has type eg, [X|2 = p = 7 (mod 8) and y has type 0g, |y| =1 =5
(mod 8), then xy has type eg such that |xy|? = pl = 3 (mod 8) and it can happen
that %(xy) = 0. But this means that xy = —Xy, hence (xy)? = xy(—Xy) € Z. As a
consequence, ¥ ((xy)?) is the identity in I" and T is therefore not torsion-free (we say
that x, y generate a projective plane). We will give an example for this phenomenon
later in this section (see Example 3.42).
First, we look at the (8, 18)—group I'7,17,¢, having the following generators:

a1 =vQ+i+]j+k), arl=yQ2—i-j—k),
a=vQ+i+]j—k), L=y —i—j+k),
az= Y2 +i—j+k), azl=y@—i+j—k),
a=vQ2—i+j+k), at=yR4+i—j—k),
by = ¥ (14 4i), bt = —4i),
b2 = ¥ (1+4j), byt = (1 —4j),

bs = ¥ (1 + 4k), byt =y (1 - 4k),
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bs = ¥(3+ 2i +2j),
bs = (3 + 2i — 2j),
bs = V(3 + 2i + 2K),
b7 = w3+ 2i — 2K),
bg = ¥ (3+ 2j + 2k),
bg = ¥ (3 +2j — 2k),

Example 3.40.

Ra.9 := 1

Proposition 3.41. Let I' = I'7,17.¢, be the (8, 18)—group defined in Example 3.40.

Then

agbjaoha,
1

a1b5a4b6 R
1

aiboaghy -,

albglazb‘l,

aghza, b3 ,

azbgla4b2_1,
-1

a2b2 a4b5,

a3b8a4 b y

aiboasbsg,

aibeazbi,

aibg ta; tbyt,

aibgta; thyt
aiby*a; oo,

azbgagby ?,

azbg ta, thy?,

azbl_lagb_l,

a3b9a4 b7 1,
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bt =y (3 —2i —2j),
bgt =¥ (3 —2i +2j),
bg! = (3 —2i —2k),
byt =¥ (3 —2i + 2k),
byt =v(3—2j—2k),
bt = ¥ (3 —2j +2k).

aibsasbe,
a1b7a3 b 1,
aibg tagh; *,
-1
a1b4 8.4b7,
-1
a2b1a4 b7,
-1
a2b9a3 b>,
azbZlaZlbg,
-1
a3b4a4b3 y

a3b§1a4b;1,

(1) Php =PGL2(7) < Sg, P, = PGL2(17) < S1s.

aibaazby,
aibgasbs,
arb; tazbgt,
albglaz‘lb5,
a2b6a3 b4 1,
azb>tazbs,
azbglaglbg,
a3b5a;1b1,

agbz_laglb5

(2) T =73 x Zs, [, TP =75 x Zax 72, TP =7, x Zg x 72,

Proof.

(1) We compute

pv(b1) =(1,4,3,7,5,8, 2,6),

Pv (bZ) =
pp(b3) =
pv(0g) =

(1’ 3’ 27 57 6’ 8’ 47 7)?
(1’ 2’ 47 67 7’ 8’ 37 5)?
(1,6,4,8,2,3,5,7),
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pv(bs) = (1,6,5,7,8,4,3, 2),
pv(be) =(1,5,2,8,3,4,7,6),
pv(7) =(1,3,4,2,8,6,7,5),
pv(bg) =(1,7,3,8,4,2,6,5),
pv(bo) =(1,7,6,5,8,3,2,4),

pn(a1) = (1,10,18,6,5,11,2, 7,17, 4,9, 13, 3, 14, 16, 8, 12, 15),
pn(a2) = (1,8, 18, 4,6,10,16,5,3,7,11, 15, 2, 13, 17, 9, 14, 12),
on(as) = (1,11,18,5,7,9, 3,4, 16, 6, 8, 14, 17, 12, 2, 10, 15, 13),
pn(as) = (1,14,13,11, 3, 15, 16, 12, 10,5, 2, 6, 17, 8, 4, 7, 18, 9).

(2) GAP ([29]).
0

We illustrate now, why the type e construction does not work in the excluded case
p=7 (mod8),l =5 (mod 8). Take the smallest case p = 7, | = 5: if for example
a1 =v(2+i+ j+k)and by =y (1+ 2i), then

RQR+i+j+KA+2)=NRGi +3j—k) =0,
atb1 =vQR+i+j+kyvA+2i)=vGi+3j—k),
(a1b1)? = ¥ ((5i +3j —k)?) = ¢ (—35) = 1r,

i.e. we have a projective plane, " is not torsion-free and therefore no (8, 6)—group.
Nevertheless, we can do some computations: If we take

aa=vQ2+i+j+k), at=yR—i—j—k),
a2 =Y Q2+i+j—k), al=yQ2—i-j+k),
a3=vQ2+i—j+k), azt=yR—i+j—k),
a=vQ2—i+j+k), at=yQ+i-j—k,
by = ¥ (1+2i), bt =y —2i),
b2 = ¥ (1 +2j), byt =y -2)),
bs = ¥ (1 + 2k), byt = vl - 2k),

then we get a group I with generators ai, a», as, as, b1, b2, b3 and the following 18
(not 12 1) relators, where the twelve projective planes are printed bold:



156

CHAPTER 3. QUATERNION LATTICESIN PGL2(Qp) x PGL2(Q))

Example 3.42.
aibiasby, aboaiby, aibzaibs,
atbztasbyt, aib,tasb;t, aib;tashs?,
~1,.-1
azbiazhs, azboazhy, aghza, “by -,
1
azbglazb‘l, azbz‘laglbg, asbjasbq,
asbsasbs, agbglagb_l, a3b1_1a;1b2,
1, -1
a4b2a4b2, a4b3a4b3, a4b1 a4b1

Note that also here, if Ep, := {ai, a, as, a4}t and E, := {bs, by, b3}*L, then
givenany a € Ep, b € E,, there are unique & € En, b € E, such that ab = ba
by an analogon of Theorem 3.30(3). However, in strong contrast to what happens in
(2m, 2n)—groups, we sometimes have 8 = a~tandb = b1, i.e. abab = 1.

Proposition 3.43. Let I" be the group with generators a1, ap, as, a4, by, b2, bz and the
relators of Example 3.42. Let I'g be the kernel of the homomorphism

F—)Z%
ai — (14 27,0+ 27)
bj — (0+22,14+27),

generalizing the definition of the subgroup I'g of a (2m, 2n)—group I". Then
(1) T =73 x Z, [, TP =75 x Za x 725, TP =7y x Zg x 72,
(2) T has the (vertical) amalgam decomposition

[ = Faxp, (Z52 % F).

(3) TI'g has the (vertical) amalgam decomposition
To = Fs *fy, Fs,
in particular I'g is torsion-free and I' is virtually torsion-free.
Proof. (1) This follow from computations with GAP ([29]).

(2) and (3): See Appendix A.11 for the explicit amalgam decompositions and the
isomorphisms to I" and I'g, respectively.
O
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Remark. Taking an obvious generalized definition of pn, oy, Ph, Py, We get
ov(b) =(1,7,2,4,5,6,3,8),
pv(b2) =(1,5,4,3,6,7,2,8),
pU(b?)) == (1v 6v 3’ 27 7, 59 49 8)7
pn(@) = (1,5,2,4,3,6),
pn(@z) = (1,3,4,5,2,6),
pn(@s) =(1,4,3,2,5,6),
pn(as) = (1,6,4,3,5,2),
generating Pp, = PGL2(7) < Sgand P, = PGL2(5) < Sg, respectively.

We can take the six relators of I" in Example 3.42 which are not projective planes
and embed them ina (PGL2(7), PGL2(5))—group as follows:

Example 3.44.

alblaglbl, albzaglbz, albgaz_lbg, a1b§1a4b_1,

R4z := 1 albz_lazbl_l, albl_lagbgl, aobiasbq, asboasbo, -

azbgaglbl_l, azbz_laglbg, asbsasbs, a3b1_1allb2

Proposition 3.45. Let I" be the (8, 6)—group defined in Example 3.44. Then
(1) Pn=PGL2(7) < Sg, P, =PGL2(5) < Se.

(2) T = 72 x 73, [I, T = 73 x 23, T3 = 74 in particular I is not
isomorphic to the group I'7 5 of Example 3.36.

Proof. (1) We compute

pu(b1) = (1,7,3,8,5,6,2,4),
pu(b2) = (1,5,2,8,6,7,4,3),
pu(b3) = (1,6,4,8,7,5,3,2),
pr(@1) = (1,5,2,4,3,6),
pr(@2) = (1,3,4,5,2,6),
pn(@z) = (1,4,3,2,5,6),
pn(as) = (1,6,4,3,5,2).

(2) GAP ([29]).
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Case p =3 (mod 8)
Let p=3 (mod 8),1 =1 (mod 4) be prime numbers. The example I'3 5 is given by

a1 =YL+ ]j+k), ayt=yd-j—k),
ar=vy(1+j—k), ayt =yl - j+k),
b1 =y (1+2i), byt =y - 2i),
by = (1 +2j), byt = (- 2j),
bz = ¥ (1 + 2k), byt =y (1 - 2k).
Example 3.46.
aibiazby, aibazby t,
Ro.3 = albgaz_lbl, albglalb_l,

albl‘laz_lbg, azbgazbz_l
See Appendix B.8 for the GAP-program ([29]) constructing I"3 5.

Proposition 3.47. Let I' = I'3 5 be the (4, 6)—group defined in Example 3.46 and let
G =U(H(Z[1/3,1/5]))/ZU (H(Z[1/3, 1/5])). Then

(1) Pp = PGL2(3) = S4, P, = PGL2(5) < Se.
(2) T =7, x 72, [, T =72 x Z15, T3 =7, x Z2.
(3) There are finite quotients

/a8, (a1b1)’, (b1b2)*)r = PGLA(7),
such that (@3, (aiby)”, (b1b2)3)® = 714 x 72

/a3, a3, b8, (aib)3)r = PSL,(11),
such that (@3, a3, b$, (aih1)®)2 = 7, x Zpp x 72,.

r/(al,a, (arb)*)r = PGL2(13).

(4) The group G has a presentation with generators aj, ap, by, b2, bs, i, j and 13
relators

Ros, aziani ™, arja,tj =% [ba,il, bajbej ™ i2 j2 i, j1.
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(5) As in Proposition 3.29(5), we use for a group H the notation H®® := [H, H]
and H® := [HD H®]. Then there is a chain of normal subgroups of G

64 16 8 4 4
r@96@=r’ar®a6®=roar<6
such that
G/T=T/To=173, GY/TW =7, x Zy, TV/TP =73 x 24
and G = G/ I'g = 73.
Note that G = I'g is the kernel of the homomorphism

G — Zg’
aj, a2~ (14 27,0+ 27,0+ 27,0+ 27)
b1, by, b3~ (04 27,1+ 27,0+ 27,0 + 27)
i > (04 27,0427, 1+ 27,0+ 27)
j— 0+2Z,0+ 27,0+ 27,1+ 27).
(6) Aut(X) = Dy.
(7) T is commutative transitive.
8) Ifa € {a1, az}* and b € {b1, by, b3}*L, then (a, b) is an “anti-torus” in T.
(9) (az, by) # Fo.
(10) T < SO3(Q).

(11) Zr(aj) = Nr((&)) = (@), ifaj € {a1, az}, and
Zr(bj) = Nr((bj)) = (bj), ifbj € {by, by, b3}.

(12) T has amalgam decompositions F3 xf, Fs = I' = F2 *p, Fa.

Proof. (1) We compute

pv(b1) = (1,3,4,2),
pv(D2) = (1,4,2,3),
pu(b3) = (1,4,3,2),
pn@1) =(1,2,4,6,3,5),
pn(@2) = (1,4,5,6, 2, 3).

(2) GAP ([29]).
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(3) Let q be an odd prime number distinct from p and I, and choose ¢,d € Z
such that c2 +d2 +1 =0 (mod q), then we can define exactly as described in
Theorem 3.12(3) a homomorphism t = 7¢ g : I'p) — PGL2(q) by

Te,d(y¥) = |:(

where y = ¥ (Xo + X1i + X2 + X3K) € I'p).

Forq = 7 we have 723 : I'3 5 — PGL2(7) given by
[ ( 4+ 77
[\ 1+7Z
[( 5+ 7Z
|\ 4+ 7Z

(

In the same way 71,3 : '35 — PSL2(11) is defined by

Xo + X1C + x3d +qZ —x1d + X2 + X3€ + qZ
—X1d — X2+ X3¢ +QZ  Xo — X1€ — X3d + qZ

al —

a2 —

S+ 1Z
1+7Z

1+7Z
S+ 1%

0+7Z
4477

b1 —

bo —

b3 —

. 44117 24117
1=\ 04112 9+11Z
. 9+11Z 04117
2™ I\ 94112 4+11Z
b [/ 3+117Z 5+ 117
171\ 5+112 104117
b [/ 1+117Z 2+ 117
271\ 941172 1+11Z
0 7+11Z 24117
7\ 241z 6+11Z
and 7o 5 : '35 — PGL2(13) by
. 6+ 137 1+ 137
1 12+ 137 9+ 137
. 9+137 1+ 137Z
2 12 + 137 6+ 137
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4

®)

(6)

(7

8

9)

b [( 1+13Z 3+13Z \]
17\ 34132 14132 )|

b [( 1+13Z 2+13Z ]
271\ 114132 14132 )|

[ (11 +13Z 0+ 13Z |
0+13Z 4+13Z )|~

b3 —

We have used quotpic ([58]) to show that
(@3, (azb1)’, (b1h2)) P = Z14 x Zg

and
(a3, a3, b, (a1h1)3)® = Z, x Zpy x 73,.

Same idea as in Proposition 3.29(4) using the isomorphism between

U H(Z[1/p, 1/1D))/ZU H(Z[1/p, 1/1D)

and
(W (x) : x € H(Z), |x|>=p'I%T,s € Np}.

We have used GAP ([29]), quotpic ([58]) and the presentation of G given in
part (4).

GAP ([29]). The group Aut(X) is generated by the two automorphisms

(a1, @z, b1, bp, b3) > (az, ay*, byt b, by),

(a1, az, by, by, b3) > (az, a; %, by, b3 t, by).

We can adapt Lemma 3.19 and Proposition 3.20, using Lemma 3.4(2). This can
be done, since ¥ (x) € I" implies that x has type e or 0g, in particular R (x) = 0.

See Section 3.6 for the definition of an anti-torus in I". The statement is an
application of Proposition 3.53 in Section 3.6 using part (7) of this proposition
and an adaption of Lemma 3.19.

We have bjadb?a;b *ar3br%ar = 1in I and yx3y2xy—Ix 3y =21 = 1,
where x = 1+ j +k, y = 14 2i. There seems to be no smaller non-trivial
freely reduced relation in (x, y) than the one of length 14 given above. The
statement can also be deduced from Table 3.12.
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(10) A generalization of Theorem 3.12(2) gives an injective group homomorphism
' — SO3(Q), defined by

1 -1 -2 2 1 -1 2 2
aj — 3 2 1 2], a— 3 -2 1 -2
-2 21 -2 -2 1

~3/5 0 4/5
b 0 1 0
—4/5 0 —3/5
—3/5 —4/5 0
bs | 4/5 -3/5 0 | .
0 0o 1

(11) This follows from Proposition 1.12.

(12) Use Proposition 1.3. The explicit amalgam decompositions of I" are described
in Appendix A.12.
U

See Table 3.11 for the orders of some I'/ (wX))r, and see Table 3.12 for the index
[T : U], the abelianization U2 and the structure of the quotient I'/U (if U is normal
inT), where U = (a, b), a € {a1, a2, ap, a3}, b € {b1, b2, by, b3, bs, b3}.

[[T/wSr[[k=1] 2] 3] 4] 5] 6|
w = aj, as 8 64| 8 512 10560 64
b1, b, ba 16 | 128 | 16 | 1024 | 109440 | 168960

Table 3.11: Some orders of I/ (w*)r in Example 3.46

.l b | babs [ b} | bjbs |
aj,a | 4,[8,161,Zs | 2,[8,8],Z, | 16,[8,64],— | 88,[8,32], —
az, a5 | 16,[16,32], — | 8,[16, 16], — | 896, [32, 64], — | 352, [32, 32], —

Table 3.12: [T" : U], U2 and I'/U in Example 3.46, where U = (a, b)
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3.5 Some conjectures

Based on computations in the 130 examples described in the following list, we give
some conjectures afterwards. In this list, “G” and “S” in the column Py stand for
PGL2(p) and PSL2(p), respectively. Similarly, “G” and “S” in the column P, stand
for PGL2(l) and PSL(1), respectively. Finally, “+ and “—" stand for 1 and —1.

p || types | Ex. | Pn(5),Pu(f)| T® [[,r]2 g
Case p,I =1 (mod 4)

5 13| (0g, 00) | 3.28 G, —, G, — 2,43 3,165 2,3,82
5 17 | (0g, 0p) G, —, G, — 2,43 3,165 2,3,8?
5 29| (0o, 0p) S, +,S, + 2,43 3,16° 2,3,82
5 37| (0g, 0p) G, —, G, — 2,43 3,165 2,3,82
5 41| (0o, 0p) S, +,S, + 2,43 3,163 2,3,82
5 53| (0g, 0p) G, —, G, — 2,43 3,16 2 3,82
5 61| (0, 00) S, +,S, + 2,43 3,16° 2,3,82
5 73| (0g, 0p) G, —, G, — 2,43 3,165 2,3,82
5 89 | (0g, 00) S, +,S, + 2,43 3,163 2,3,8°2
5 97 | (0g, 0p) G, —, G, — 2,43 3,16 2 3,82
13 17| (0o, 0p) | 3.26 S, +,S, + 2,43 3,163 2,3,82
13 29 | (0o, 0p) S, +,S, + 2,43 3,163 2,3,82
13 37 | (0o, 0p) G, —, G, — 2,3,43 2216% 2,3,8°
13 41 | (0o, 0p) G, —,G,— 2,43 3,16° 2,3,82
13 53 | (0o, 0p) S, +,S, + 2,43 3,163 2,3,82
13 61 | (0o, 0p) S, +,S, + 2,3,4% 2216 2,3,8°
13 73| (0o, 0p) G, —, G, — 2,3,43 2216% 2,3,8°
13 89 | (0g, 0p) G, —, G, — 2,43 3,16° 2,3,82
13 97 | (0g, 0p) G, —, G, — 2,3,4%5 2216 2,3,8°
17 29 | (0o, 0p) G, —, G, — 2,43 3,16° 2,3,82
17 37 | (0o, 0p) G, —,G,— 2,43 3,16° 2,3,82
17 41| (0g, 0p) G, —, G, — 25,82 3,16°, 64 2,3,8°
17 53 | (0o, 0p) S, +,S, + 2,43 3,163 2,3,82
17 61 | (0g, 0p) G, —, G, — 2,43 3,16° 2,3,82
29 37| (0, 0p) G, —, G, — 2,43 3,16° 2,3,82
29 41 | (0, 0p) G, —, G, — 2,43 3,165 2,3,82
29 53 | (0g, 0p) S, +,S, + 2,43 3,163 2,3,8°
29 61 | (0g, 0p) G, —, G, — 2,43 3,16° 2,3,82
29 73| (0o, 0p) G, —, G, — 2,43 3,165 2,3,82
29 89 | (0, 0p) G, —, G, — 2,43 3,165 2,3,82
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29 97 | (0, 0p) G, —, G, — 2,43 3,165 2,3,82
37 41 (0o, 0p) S, +,S, + 2,43 3,163 2,3,82
37 53| (0g, 0p) S, +,S, + 2,43 3,16 2 3,82
37 61| (0g, 0p) G, —, G, — 2,3,43 2216% 23,82
37 73| (0, 0p) S, +,S, + 2,3,4%5 2216 2,3,8°
37 89 | (0o, 0p) G, — G, — 2,43 3,16° 2,3,82
41 53| (0g, 0g) G, —, G, — 2,43 3,16° 2,3,82
41 61| (0o, 0g) S, +,S, + 2,43 3,163 2,3,82
73 97 | (0o, 0p) S, +,S, + 25 3,872 ? 2,3, 82
Case p,l =7 (mod 8)

7 23| (e1,e1) | A31 S, +, G, — 2,8 3,8%,64 2,3,8°
7 31| (e1,e1) | A32 G, S, + 2,3,8° 22,8264 2,3,8°
7 47 (e1,e1) G, - S, + 2,82 3,82,64 2,3,8°
23 31| (e1,e1) S, +, G, — 2,82 3,82,64 2,3,8°
23 47| (e1,e1) S, +, G, — 2,8 3,82,64 2,3,8°
31 47| (e1,e1) S, +, G, — 2,82 3,82,64 23,8
Case p,l =7 (mod 8)

7 23] (ep,e0) | A.33 S, +, G, — 2°.4  3,4,162 2,3,8°
7 31| (ep, €g) G, S, + 2°.3,4 22,4,16° 2,3,8°
7 47| (ep, eo) G, - S, + 23,4 3,4,162 2,3,8°
23 31| (ep, €p) S, +, G, — 23,4 3,4,162 2,3,8°
23 47 | (ep, €g) S, +,G, — 234  3,4,162 2,3,8°
31 47| (ep, eg) S, +,G, — 234  3,4,162 2,3,8°

Case p,| =3 (mod 8)

3 11| (eg,ep) | 331 ,—, S, + 2,82 82,64 2,82
3 19| (e1,€e1) 4+, G, — 2,82 82, 64 2, 82
3 43 (e1,e1) ,+, G, — 2,87 82,64 2,82
3 59| (e1,e1) , =, S, 2,82 82,64 2,82

2,82 3,82,64 2,3,8°
2,82 3,82,64 2,3,8°
2,82 3,82,64 2,3,8°
2,3,8° 22,8264 23,8°
2,82 3,82,64 2,3,8°

11 19 | (es, e1)
11 43 | (e1,€1)
11 59 (e1,e1)
19 43 (e1,e1)
19 59| (eq,ep)

Case p=3 (mod 8),1 =7 (mod 8)

3 7| (e1,e1) | 333 S, +,G, — 2,42 82,16 2,82
3 23| (e1,e1) G,—, S, + 2,42 82,16 2,82
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3 31 (e1,ep) S, +,G, — 2,42 82,16 2, 82
3 47| (eq,e1) G, —,S, + 2,42 82,16 2,82
11 7] (eq,e1) G, —S + 2,42  3,82,16 2,3,8°
11 23| (eq,e1) S, +,G, — 2,42  3,82,16 2,3,8°
11 31 (eq,e1) S, +,G, — 2,42 3,8216 2,3,8°
11 47| (e1,e1) S, +, G, — 2,42 3,8216 2,3,8°
19 7] (er,e1) S, +,G, — 2,3,42 22,8216 2,3,8°
19 231 (eq,e1) S, +,G, — 2,4> 3,82,16 2,3,8°
19 31 (eq,e1) G, -, S + 2,3,4° 22,8216 2,3,8°
19 47| (eq,e1) S, +,G, — 2,42  3,82,16 2,3,8°
43 7] (e1,ep) G, —S + 2,3,42 22,8216 2,3,8°
43 23| (e1,e1) S, +,G, — 2,42 38216 2,3,8°
43 31| (e1,ep) S, +,G, — 2,3,4° 22,8216 2,3,8°
43 47 (e1,ep) S, +,G, — 2,42  3,82,16 2,3,8°
Case p=7 (mod 8),1 =1 (mod 4)
7 5] (e,00 ] 3836] G, -G, 2,4  3,8°16 2,38
7 13](e1,00) | 338 G,—,G, 2,3,4° 2°,8%16 2,3,8°
7 17| (e1, 00) G -G, - 2,82 3,864 238
7 29 (e1,00 S,+.S, + 2,42  3,8°16 2,38
7 37 (e1,00 S, +S + 2,3,4° 2°,8°16 2,3,8°
7 41 (eq, 0p) G, -G, — 2,82  3,82,64 23,8
7 73] (e1, 0p) G, — G, — 2,3,82 22,8264 2,3,8°
23 5] (eq,00) G, —, G, — 2,42  3,82,16 2,3,8°
23 13| (e1, 0g) S, +,S, + 2,42 38216 2,3,8°
23 17 | (eq, 09) G, -G, — 2,82  3,82,64 23,8
23 29 | (eq, 0g) S, +,S, + 2,42  3,8%,16 2,3,8°
23 37| (eq,00) G, -G, — 2,42  3,82,16 2,3,8°
23 41| (eq, 0g) S, +,S, + 2,82 3,8264 23,8°
23 73 (eq, 0g) S, +,S, + 2,82 3,8%,64 23,8
31 5] (eq,00) S, +,S, + 2,42  3,82,16 2,3,8°
31 13 (eq,00) G, —, G, — 2,3,42 22,8216 2,3,8°
31 17 | (eq,00) G, —, G, — 2,82  3,82,64 23,8
31 29| (eq, 00 G, — G, — 2,42  3,82,16 2,3,8°
31 37 (eq,00) G, — G, — 2,3,42 22,8216 2,3,8°
31 41| (eq, 0g) S, +,S, + 2,82 3,8264 23,8°
Case p=7 (mod 8),l =1 (mod 8)
7 17| (e0,00) | 340 G, —,G,— | 234 3,416° 2,3,8
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23 17 | (eg, 0g) G, —, G, — 2%.4  3,4,162 2,3,8°
31 17 | (eg, 0g) G, —, G, — 2%.4  3,4,162 2,3,8°
7 41| (e, 0p) G, —, G, — 2°.4  3,4,162 2,3,8°
23 41| (e, 0p) S, +,S, + 254  3,4,162 2,3,8°
31 41| (eg, 0g) S, +,S, + 25,4  3,4,162 2,3,8°
7 73 (eg, 0p) G, — G, — 23,3,4 22,4,16° 2,3,8°
Case p=3 (mod 8),1 =1 (mod 4)

3 5] (e1,00) | 3.46 G, -G, — 2,42 82, 16 2, 82
3 13| (e1, 0p) S, +,S, + 2,42 82,16 2,82
3 17| (e1, 0p) G, —, G, — 2,82 82,64 2, 82
3 29| (e1, 0p) G —, G, — 2,4 82, 16 2, 82
3 37| (e1, 0p) S, +,S, + 2,42 82,16 2,82
3 41 (eq, 0p) G, -G, — 2,82 82, 64 2, 82
3 73| (e1, 0p) S, +,S, + 2,8° 82,64 2, 82
11 5] (e1,00) S, +,S, + 2,4> 3,8216 2,3,8°
11 13| (e1, 09 G, -G, — 2,42  3,8216 2,3,68°
11 17 | (e1, 00) G, —, G, — 2,82 3,82,64 2,3,8°
11 29| (e1, 00) G, —, G, — 2,42 3,82,16 2,3,8°
11 37 (e1, 00) S, +,S, + 2,42 38216 2,3,8°
11 41 (eq,09) G, -G, — 2,82  3,82,64 23,8
11 73] (e1, 00) G, —, G, — 2,82 3,82,64 2,3,8°
19 5] (eq,00) S, +,S, + 2,42 3,8216 2,3,8°
19 13| (e1, 09 G, -G, — 2,3,42 22,8216 2,3,8°
19 17 | (e1, 0g) S, +,S, + 2,82  3,82,64 23,68°
19 29 | (e1,00) G, —, G, — 2,42 3,82,16 2,3,8°
19 37| (e1,00) G, -G, — 2,3,42 22,8216 2,3,8°
19 41| (eq,00) G, -G, — 2,82  3,82,64 23,8
19 73] (e1,00) S, +,S, + 2,3,8° 22,8264 2,3,8°
43 5| (eq, 0p) G, —, G, — 2,42 3,82,16 2,3,8°
43 13| (e1, 0g) S, +, S, + 2,3,4° 22,8216 2,3,8°
43 17 | (eq, 0p) S, +,S, + 2,82 3,8264 23,8°
43 29 | (eq, 0p) G —, G, — 2,42 3,82,16 2,63,8°
43 37| (e1, 0g) G, -G, — 2,3,42 22,8216 2,3,8°
43 41| (eq, 0p) S, +,S, + 2,82 3,8264 23,8°

Table 3.13: List of properties of some I' |
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Conjecture 3.48. Let p, | be two odd distinct prime numbers and I' = TI'p; as in
Section 3.2, 3.3 or 3.4.

(1) (cf. Conjecture 3.16) Assume that p,1 = 1 (mod 4) (as in Section 3.2).
If p,I =1 (mod 8), then

(Z3 x Zz x 73, 75 x 725 x Zea) if p,I =1 (mod 3)

réb [r,rpp) =
( 1 {(Zg x 73, 73 x 125 x Lea) else .

Ifp=5 (mod 8) orl =5 (mod 8), then

(e [, rEby = (Zo x Zg x L3, 75 x Z35) if p,I =1 (mod 3)
o (Zo x 73, Tz x L) else.

(2) Assume that p, |1 =3 (mod 4) (as in Section 3.3).
If p (mod 8) = | (mod 8), then

(Z x 73 x 73, 75 x 73 x Zes) if p,I =1 (mod 3)
(0%, [, 1) = { (Zp x 73, 73 x Zes) if p=3orl=3
(Zo x 73, Z3 x L3 x Zea) else .

If p (mod 8) # | (mod 8), then

(Zo x 73 x 73, 75 x 73 x Z1g) if p,I =1 (mod 3)
([, [, 1) = { (Zp x 72, 73 x Zse) if p=3orl=3
(Zo x 73, Zg x L3 x Z1g) else.

(3) Assumethat p =3 (mod 4) andl =1 (mod 4) (as in Section 3.4).
Ifl =1 (mod 8), then

(Zo x 73 x 73, 75 x 73 x Zes) if p,I =1 (mod 3)
(%, [T, T1%) = { (Zp x 23, 73 x Zes) if p=3
(Z x 73, Zg x 73 x Zea) else .

Ifl =5 (mod 8), then

(Zo x 73 x 75, 75 x 73 x Z16) if p,I =1 (mod 3)
(I, [, T1%) = { (Zp x 72, 72 x Z1¢) if p=3
(Zo x 73, 73 x 73 x Z16) else.
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Conjecture 3.49. LetI" =TI"p ¢ be as in Section 3.3 or 3.4, then

(Z3 x Tz x Za, 75 x Za x 735 if p,1 =1 (mod 3)

réb [r,rpp) =
( ) {(Zg x Za, L3 x La x 735 else.

Conjecture 3.50. Let I" be any group I'p; or I'p| ¢, Of Chapter 3, then

Fab ~

{szzz, if p=3orl=3
ab ~

Zo x 73 x 72, else.
Remark. Note that in all cases of Chapter 3
I'o = {¥(X) : X € H(Z) has type 0g, [X|? = pZ'1%;r,s € Ng}.
Conjecture 3.51. LetT" beany I'p| or I'p | ¢, Of Chapter 3, and let k e N. Then
(1)

g
b = {PSLz(p), !f (l—p) =1
PGLy(p), if (—p) =1
and
~ |PSLah, if (§) =1
T lPeLay, it (P) = -1.
(2)
[P = [Py| - p3*D
and

PR| = [Py| - 136D

(3) As a consequence of part (1) and (2):

RO = p¥*-2(p2—1)/2, if (5)=1
h | — p3k—2(p2 —1), if (%) - _1
and
P = 13202 -1)/2, if (P)=1
v |3k—2(|2_1)’ if (Tp):—l.

Conjecture 3.52. Let I" be any group I'p; or I'p| ¢, Of Chapter 3, then
[Knl = p* and |K,| =17,

Remark. We have checked that the Conjectures 3.48(2),(3), 3.49, 3.50, 3.51(1), and
Conjecture 3.51(2) for k = 2 are true for all 130 examples in Table 3.13. The only
uncertainty in Conjecture 3.48(1) among those examples is the case (p, ) = (73, 97),
where we are not able to compute [T, e,
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3.6 Construction of anti-tori

LetI’ = (a1, ...,am,b1,...,bn | Rmn) be a (2m, 2n)—group. Leta € (ay, ..., am),
b € (by,...,bn) be two elements. The subgroup (a, b) < T is called an anti-torus
in ', if a and b have no commuting non-trivial powers, i.e. if a"bS #£ bSa" for all
r,s € Z\ {0}. If (a, b) = F,, then (a, b) is called a free anti-torus in I". Obviously, a
free anti-torus is an anti-torus.

A definition in a much more general context is given by Bridson-Wise. We quote
from [10, Definition 9.1]: “Let X be a compact non-positively curved space with
universal cover p : X — X. Suppose that there is an isometrically embedded plane in
X which contains an axis for each of §, 8’ € 71(X, Xg) and that g € p~1xo lies in the
intersection of these axes. If § and §’ do not have powers that commute, then gp{s, 8}
is called an anti-torus. If gp{s, &’} is free then it is called a free anti-torus.”

The first example of a (non-free) anti-torus was given by Wise [68] (it is (a2, b3)
in Example 2.36). It was used to construct interesting non-residually finite groups. An
existence theorem for free anti-tori (in a class not including (2m, 2n)—groups) appears
in [10, Proposition 9.2], but no explicit example of a free anti-torus is given there or
elsewhere, as far as we know.

The construction of Iy in Chapter 3, based on the non-commutativity of quater-
nion multiplication, can be used to generate many anti-tori. Before giving examples,
we will first state some general criteria for the existence of anti-tori in commutative
transitive (2m, 2n)—groups.

Proposition 3.53. LetT" = (a1, ...,am, b1,...,bn | Rmn) be a commutative tran-
sitive (2m, 2n)—group and leta € (ai,...,am), b € (b1, ..., by) be two elements.
Then (a, b) is an anti-torus in I" if and only if a and b do not commute in T".

Proof. Assume firstthat (a, b) isnoanti-torusin T, i.e.a"b® = b%a" forsomer, s # 0.
Obviously, a commutes with a", and b commutes with bS. Using the assumption that I"
is commutative transitive, we conclude that a and b commute in I". The other direction

follows immediately from the definition of an anti-torus. O
Corollary 3.54. LetTI" = (a1,...,8m,b1,...,bn | Rmn) be a commutative transi-
tive (2m, 2n)—group and leta € (a1, ...,am), b € (b1, ..., bn) be two non-trivial

elements. Then either (a, b) = Z2 or (a, b) is an anti-torus in T.

Proof. If a and b do not commute, then (a, b) is an anti-torus in I" by Proposition 3.53.
Ifa # 1and b # 1 commute, then we apply Lemma 3.14 to show that (a, b) = Z2.
O

Corollary 3.55. LetI" = (as, ..., am, b1, ..., bn | Rm.n) be a commutative transitive
(2m, 2n)—group. Then I" has an anti-torus if and only if (m, n) # (1, 1).



170 CHAPTER 3. QUATERNION LATTICESIN PGL2(Qp) x PGL2(Q))

Proof. Any (2, 2)-group is virtually abelian, hence has no anti-torus. For the other
direction, assume that (m, n) # (1, 1). There are elementsa € E and b € E, which
do not commute; otherwise the (2m, 2n)—group I" would be

(@1, ..., am) x (b1, ...,bn) = Fm x Fn,

which is not commutative transitive if (m, n) # (1, 1). By Proposition 3.53, (a, b) is
an anti-torus in I". O

Wise ([68]) showed that reducible (2m, 2n)—groups never have anti-tori:

Proposition 3.56. (Wise [68, Section I1.4]) LetI" = (a1, ...,am, b1,...,bn | Rmn)
be a (2m, 2n)—group. If I" has an anti-torus, then it is irreducible.

Proof. Let (a, b) be an anti-torus in I', where a € (az,...,am), b € (by, ..., bn).
Suppose that I" is reducible. Then by [17, Proposition 1.2], the subgroup A1 x A2
has finite index in T", in particular [{(az,...,am) : A1] and [{b1,...,bn) : A2] are
finite. It follows that a" € A1, bS € A, for somer,s € N. But then a"bS = b%a'", a
contradiction. O

Corollary 3.57. A commutative transitive (2m, 2n)—group is irreducible if and only if
(m,n)# @1, D.

Proof. Any (2, 2)—group is reducible. If (m, n) # (1, 1), then we apply a combination

of Corollary 3.55 and Proposition 3.56. O
Corollary 3.58. LetI" = (a1, ...,am, b1, ..., bn | Rm.n) be a commutative transitive
(2m, 2n)—group and let b € (b1, ..., by) be an element such that Z-(b) = (b). Then
(a, b) isan anti-torus in I for each a € (a1, ..., am) \ {1}.

Proof. The assumption Z(b) = (b) implies that b # 1 and that b does not commute
with any element a € (a1, ..., am) \ {1}. Now apply Proposition 3.53. 0J

The groups I'p | of Section 3.2 are commutative transitive by Proposition 3.20.
Therefore, we can restate the preceding results for I'p ;.

Corollary 3.59. LetI' = I'p| = (al,...,aw,bl,...,bl%l | Rpt1141) be as in
2 2 2
Section3.2and leta € (a1, ..., aps1), b e (by, ..., bI+71> be two elements. Then
2

(1) (a,b)isananti-torusin I" if and only if a and b do not commute in T".
(2) Ifa, b = 1, then either (a, b) = Z2 or (a, b) is an anti-torus in T.
(3) The group I" has an anti-torus and is irreducible.

(4) If Zr(b) = (b) and a # 1, then (a, b) is an anti-torusin I".
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We can also restate Proposition 3.53 for I' | in terms of quaternions:

Proposition 3.60. Let ¢ and I' = I'p | be as in Section 3.2. Assume that x, y € H(Z)
have type 0o, |x|% = p', |y|% = ISforsomer, s € Nand xy # yx. Then (¥ (x), ¥ (y))
is an anti-torusin I'.

Proof. By Lemma 3.19, v/(x) and y(y) do not commute, hence (¥ (X), ¥ (y)) is an
anti-torus in I" by Proposition 3.53. O

Proposition 3.60 can be applied for example to I's 17 and I'1317 or to any other
group I'p; of Section 3.2, illustrating Corollary 3.59(3):

Corollary 3.61. Let ¢ be as in Section 3.2. Then
(1) The group (¥ (1 + 2i), (1 4 4k)) is an anti-torus in I's 17.
(2) The group (¥ (3 + 2i), ¥ (1 + 4k)) is an anti-torus in I"13 17.

(3) Fix two distinct prime numbers p,I = 1 (mod 4). Choose by Lemma 3.7(1)
two quaternions X = Xg + X1i, Y = Yo + Y3k € H(Z) such that xq, yo are odd,
X1, Y3 are non-zero even numbers and [x|2 = x3 +xZ = p, |y|2 = y5+y5 = .
Then (y(x), ¥ (y)) is an anti-torus in I'p ..

Proof. (1) We apply Proposition 3.60, taking x = 1+ 2i,y = 1+ 4k, p = 5,
=17, r=1s=1

(2) We apply Proposition 3.60, taking x = 3+ 2i,y =1+ 4k, p = 13,1 = 17,
r=1s=1.

(3) We apply Proposition 3.60, takingr = 1, s = 1 and using the fact that xg + X1l
and yo + y3k do not commute.

O
Proposition 3.62. There are distinct prime numbers p,| =1 (mod 4), a group
I'=Tp1=(asg...,apw1, b1, ..., b1 | Rpsa141)
2 2 2 2
as in Section 3.2, and an elementb € (bq, ..., b|+71>, such that (a, b) is an anti-torus

inT" foreacha € (ay, ..., a%l) \ {1}.
We give two different proofs of Proposition 3.62:
First proof of Proposition 3.62. We choose p = 5,1 = 13 and
b=b1=v¢v1+2i+2j+2k) € I's13.

By Proposition 3.29(7), we have Z(b) = (b) and apply now Corollary 3.58. O
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Second proof of Proposition 3.62. We take p =5, | = 29,
b=v(@B+2j+4k) e 's2 and ¢ = j + 2k € H(Z).

Assume that there is a non-trivial element a € (az, ap, az) < I's 29 commuting with
some power bt, t € N. Note that

bt = ¥ (B +2j +4K)Y = ¥ (X0 + Aj + 2Ak)

for some xo, A # 0, depending on t. Then, applying Proposition 3.22 to the power
z = (3+2j +4k)!, there are x, y € Z such that

ged(x, y) = ged(x, pl) = ged(y, pl) =1

and x2 4 4 - 5y? = 5" 295 for some r, s € N. But this implies x? = 5(5" 7129 — 4y?),
contradicting ged(x, 5 - 29) = 1. (What we use here is that such a decomposition

X2 +4 - [c|?y? = p"IS implies ged(|c|?, pl) = 1, as already noted in [54].) O
Proposition 3.63. There are distinct prime numbers p,|1 =1 (mod 4), a group
I'=Tpi=(a,...,ap+1, by, ..., D11 | Rpsa jua)
2 2 2 2
as in Section 3.2, and elementsa € (a1, ...,apw1) \ {1}, b € (b1, ..., biua) \ {1} such

T2
that (a, bj) isan anti-torus in I" for all bj {blz, ceey bl-t,-Tl}, but (a, b) is no anti-torus
in ", in particular Zr(a) # (a).

Proof. We take p =29,1 =41,a = ¥ (3+4i + 2j) and
b=vy(-314+24i +12)) =y (1 +6j —2k)y (1 +6] +2k),

which impliesab = ba. Itis easy to check that a does not commute with any generator
bj € {by, ..., b2}, inparticular (a, bj) is an anti-torus in I" by Proposition 3.53. [

Also note the following easy corollary of Proposition 3.13, see Corollary 4.3 for a
generalization to all (2m, 2n)—groups:

Corollary 3.64. Let p,1 =1 (mod 4) be distinct prime numbers and

2

=T :(al,...,a%l,bl,...,bm | Rp_;l |J£1)

as in Section 3.2. Then there are always non-trivial elements a € (a1, ..., apw1) and
2
b € (by, ..., bi1) suchthat (a, b) is no anti-torus in I'.

2
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Free anti-tori

The following proposition gives sufficient conditions to generate free anti-tori in the
groups I'p,| of Section 3.2:

Proposition 3.65. Let p,I = 1 (mod 4) be two distinct prime numbers and let v
and I'p be as in Section 3.2. Moreover, let x,y € H(Z) be of type 0o, such that
1X|2 = p", |y|? = IS for somer, s € N. Suppose that x, y generate a free subgroup F»
in the multiplicative group U (H(Q)) = H(Q) \ {0} (or equivalently in the subgroup
UM(Z[1/p, 1/1])) < UH(Q))). Then (¥ (x), ¥ (y)) is a free anti-torus in I'p ..

Proof. Extending vy from the integer to the rational quaternions, let

¥ : U(H(Q)) — PGL2(Qp) x PGL2(Q))

be the map which sends the quaternion X = Xg + X11 + X2] + X3k to

Xo+ X1lp X2+ X3ip Xo + X1l X2 + X3l
—X2—|—X3ip Xo — Xlip ’ —X2 + X3l| X — X1i| ’

where Xo, X1, X2, X3 € Q, x # 0. Recall that U (H(Q)) = H(Q) \ {0} equipped with
quaternion multiplication is a non-abelian group, v is a group homomorphism such
that

ker(¥) = ZU (H(Q)) = {x € H(Q) \ {0} : x = X},

and ¥ (x) = ¥ (x), if x € H(Z) \ {0}. Now, fix two integer~quaternions x and y
satisfying the assumptions made in the proposition. We restrict y to the free subgroup
F2 = (x,y) < UEH(Q):

Uiy : (X, Y) = Fo = (G (), ¥(y)) = (W (X), ¥(y)) < Tpy .
We have
ker(Vlix.y) = (X, y) N ZUHE(Q)) < Z({x,¥)) = ZF, = {1},

in particular 1/7|<X,y> is an isomorphism, i.e. (¥ (x), ¥ (y)) = Fo.
By construction, ¥ (x) is an element in

(@1.....ap1) = (¥(X) : x € H(Z) has type 0o, [x|* = p'; r € No} < I'py .
and vy (y) an element in

(b1, ...,bi1) = {¥(y) : y € H(Z) has type 0o, |y|> =1% s € No} < T'p,

2

2

This shows that (v (x), ¥ (y)) is a free anti-torus in I'p .. O

where the (p+1, I +1)—group I'p isgenerated by ay, ..., aps1, by, ..., b1 asusual.
2
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For example, if (3 + 2i, 1+ 4k) = F, < U (H(Q)), then Proposition 3.65 would
give an explicit free anti-torus (¥ (3 + 2i), ¥ (1 4 4k)) in I'13 17. (However, we guess
that this group is not free.)

Question 3.66. Is (3+ 2i, 1+ 4k) = F,?
More generally:

Problem 3.67. Let p, | be distinct odd prime numbers. Construct a pair x, y € H(Z)
such that (x, y) = F» < U (H(Q)), where |x|%2 = p", |y|? = IS for somer, s € N.

The anti-tori constructed in Corollary 3.61(1) and Proposition 3.47(8) are not free:

Proposition 3.68. (1) Lety beasinSection3.2,x = 1+2i,y = 1+4k,a = ¥ (X)
and b = v (y). Then the anti-torus (a, b) in I's 17 is not free.

(2) Letyr beasinSection3.4,x =14+ j+k,y=1+2i,a=v(X),b=1y(y).
Then the anti-torus (a, b) in I'3 5 is not free.

Proof. (1) InI's 17, we have found the relation
a’b?ab~ta’b~ta’hta*b~2atha?b~ta®pltab?
ab~la—?ba~b~2a"?b~2a3ba~?bh%a’b%ab ta’bath~?
a~tba®ha’b~tab?a*ha%ba2ba~b2a b la=1.

To get this relation of length 106, we have used the GAP-command ([29])

PresentationSubgroupMtc(G, U);

where G and U describe I" and its subgroup (a, b), respectively. This command
gives 514 relations of lengths between 106 and 5270 and of total length 536176.

The relation in U (H(Q)) corresponding to the relation in I's 17 given above is
XSyZXy—lxzy—1X2y—1X—4y—2X—1yX—2y—1X—8y—1Xy2

—2,,2\,2,,2

Xy—lx—ZyX—ly—ZX—Zy—ZXSyX y2x2y Xy—1X2yX—ly—2

x~LyxByx2y~Ixy2x4yx~2yx2yx Lty 2 Sy ~lx = 1,
in particular (x, y) # F>. Note that GAP ([29]) can also be used to show that

[[s17: (a,b)] =32 and (a, b)® = Z1g x Zey.
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Moreover, (a, b) = (X, y)/Z(X,y), where Z(x,y) # 1, since e.g.

Xy—lxyZXSyX—3y—1xyx4y2xy—1x2y—1x2y—1x—4y—2x—1y
X—2y—1X—8y—1Xy2Xy—1X—ZyX—ly—ZX—Zy—ZXZy—lXZyZ

Xy—1X2yX—1y—2X—lyXSyXZy—1Xy2X4yX—ZyX—ZyX—ly
X—4y—1x—1y—1X3y2Xy—1X2y—1X2y—1X—4y—2x—1yx—2y—

X—8y—1xy2xy—1x—ZyX—ly—ZX—2y—2x5y2xy—1x2y—1

X4y2Xy—1X2y—1X2y—lX—4y—2X—1yX—2y—lX—8y—1Xy2

-2

1

1
Xy "X TEyx Ty AT TRy T = e e ZOx )\ (L

(2) See Proposition 3.47(9). Recall that the subgroups (at, b'), t € N, are never
abelian, and that [['35 : (a,b)] = 4. Also note that [I'35 : (a2, b?)] = 896
is finite, using GAP ([29]). In particular (a2, b?) is not free by the following
general remark.

O

Remark. If (a, b) isafree subgroup ina (2m, 2n)—group I', then the index [T" : (a, b)]
is infinite. Otherwise, I" would be virtually free, but this is impossible since being
virtually free is a quasi-isometry invariant (see e.g. [32, IV.50]), and using the facts
that (2m, 2n)—groups are all quasi-isometric (to Fo x Fp), if m,n > 2 (see Propo-
sition 4.25(4)), and that there are (2m, 2n)—groups which obviously are not virtually
free, e.g. the virtually simple groups constructed in Chapter 2. Anyway, it is known
that finitely generated, torsion-free, virtually free groups are free ([65]).

The following interesting general question of Wise appears in Bestvina’s problem
list “Questions in Geometric Group Theory” ([6]):

Question 3.69. (Wise [6, Question 2.7]) “Let G act properly discontinuously and
cocompactly on a CAT(0) space (or let G be automatic). Consider two elements a, b
of G. Does there exist n > 0 such that either the subgroup (a", b") is free or (a", b")
is abelian?”

Question 3.70. Let I' = I'3 5 be the group of Example 3.46 and a; = v (1 + j + k),
by = v (1 +2i).

(1) Isthe index [T : (a3, b3)] infinite?

(2) Is (a3, b3) free?
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Free subgroups of U (H(Q)) also induce free subgroups in SO3(Q) < SO3(R)
via the group homomorphism ¢ : U (H(Q)) — SO3(Q), which maps the quaternion
X = Xo + X11 + X2] + X3k € U (H(Q)) to the (3 x 3)—matrix

1 X3+ X2 — X5 — X3 2(X1X2 — X0X3) 2(X1X3 + XoX2)
2(X1X2 + XX3) X3 — X2 + X3 — X3 ,

7 2 2(XoX3 — XoX1)
2(X1X3 — XoX2) 2(X2X3 + X0X1) Xg —xZ—xZ+ X%

see Section 3.2. The proof is similar to a part of the proof of Proposition 3.65: First
remember that

ker() = ZU(H(Q)) = {x € H(Q) \ {0} : x =X} .
Assume now that F> = (x, y) < U(H(Q)). Then
Hixy) = (X, y) = (F(X), F(y)) < SO3(Q)

IS bijective, since it is surjective and
ker (9](x.y)) = (X, ) N ZUH(Q)) < Z({x,y)) = ZF = {1},
in particular (9 (x), 9(y)) = Fo.
Note that if

Cpi=(ag,...,aps, b1, ..., bia | Rpsa141)
2 2 7 2

is the group of Section 3.2, then both free subgroups (as, ..., ap1) and (b, ..., bHTm
2

of I'p | induce free subgroups of SO3(Q) via the homomorphism ¥ (we can combine
Corollary 1.11(1) and Theorem 3.12(2), cf. [45, Corollary 2.1.11]). For example,
taking p = 5 and any distinct prime number | = 1 (mod 4), the subgroup

(a1, a2, a3) = (P (1 +2i), #(1 + 2j), #(1 + 2k))

1 0 0 —3/5 0 4/5 —3/5 —4/5 0
:< 0 —3/5 —4/5 |, o 1 o |, 4/5 —3/5 0 >
0 4/5 —3/5 —4/5 0 —3/5 0 0o 1

of SO3(Q) is isomorphic to Fs.
However, by Proposition 3.68, the following two subgroups of SO3(Q) are not
free:

1 0 0 —15/17 — 8/17 0
(19(1+2i),19(1+4k)):< 0 —3/5 —4/5 |, 8/17 —15/17 0 >
0 4/5 —3/5 0 0o 1

(-3 -2 2 1 0 0
(19(1+j+k),19(1+2i)):<§ 2 12|, 0 —35 —4/5 >
2 21 0 4/5 —3/5
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We can use the explicit amalgam decompositions of I', | to construct two integer
quaternions x and y generating a non-abelian free group in U (H(Q)) such that |x |2 and
ly|? are not both powers of the same prime number (cf. Problem 3.67). We illustrate
this with an example:

Proposition 3.71. Let ¢ be as in Section 3.4, x = 14 2i +2j 44k of norm |x|? = 52,
y=3—2i +j—kofnorm|y|2 =3-5. Then (x, y) = F, < U (H(Q)).

Proof. We have
Yv(X) =y (1 +20)y(1+2))=DbibreI'35

and
YY) =¥ QA+ j+KypE —2k) =abst € Igs.

By the vertical amalgam decomposition of I'3 5 given in Appendix A.12

Fo = (s1, S4) = {b1bp, a1b3 ) = (Y (), ¥ (¥)) < 'ss,

hence (X, y) = F2 < U(H(Q)). O

3.7 A construction for (p,l) = (2,5)
Let X = Xo + X1l 4+ X2] + X3k € H(Z). Motivated by the three identities ([24])

A+ )Xo+ X2l + X2 4+ X3K) = (Xo + X121 — X3] + X2K)(L +1)
(14 j)(Xo + X1i + X2j + X3K) = (Xo + X3i + X2j — X1K)(1 + j)
(1 + K)(Xo + X11 4+ X2] + X3K) = (Xo — X2l + X1] + X3K)(1 + k)

we identify
a;=1+i, ajt=1-1i,
a=1+j, a,t =1,
a3 =14k, az T =1k,
by = 1+ 2i, byt=1-2i,
by =1+ 2], byt=1-2j,
bs =1+ 2k, byt=1- 2k,

and get the following (6, 6)—group:
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Example 3.72. Let I" be the group (ai, a2, as, by, b, b3 | R3.3), where

aibia; bt aibpa; thyt, aibsa; 'bo,

. -1 —1,-1 —1,-1
R33 := a2b1a2 b3, a2b2a2 b2 , a2b3a2 b1 ,

agblaglbz‘l, agbzaglbl, agb3a§1b§1

Note that there is no map ¥ involved in this construction, in particular I behaves
completely differently than the groups I'p constructed before, e.g. I" is reducible,
(1+i)* = —4, but ai‘ # 1r; 1 4+iand 1 + 2j do not commute, but (az, bo) is no
anti-torus.

Proposition 3.73. Let I" be the (6, 6)—group defined in Example 3.72. Then
1) Ph=1,P, =S4 < Sg.
(2) T is reducible.
(B) A1 x Ay = Faggx F3 and [I": A1 x Ap] = 24.
Proof. (1) We compute
pv(01) = py(02) = py(b3) = 0,
pn(a1) = (2,4,5,3),

pn(@2) = (1,3,6,4),
pn(@3) = (1,5,6,2).

(2) This follows from the subsequent Lemma 3.74(1).

(3) Apply Lemma 3.74(3).
O

Lemma 3.74. LetI" = (a1,...,8m,b1,...,bn | Rmn) be a (2m, 2n)—group such
that P, = 1. Then

(1) T is reducible and Pék) = 1forallk e N.

(2) A1 = ker pnand Ap = ker pi = (by, ..., by) forallk € N.
B) A1 x A2 = Fm-1p,1+1 X Fn has index |P,| inT.
Proof. (1) To prove that I" is reducible, it is enough by Proposition 1.2(2a) to show
that P® = 1. Letb ¢ E,,a=4-4 ¢ E”, where 4,4 € Ep, 4 # & L. Then
0y (D)(&) = & and p, (pr(8) (D)) (@) = &, i.e. p? (b)(a) = a. See Figure 3.1 for

an illustration of this fact. The proof of Proposition 1.2(2a) shows that Prfk) =1
forall k € N.



3.7. A CONSTRUCTION FOR (P, L) = (2, 5) 179

+
pn(a)(b)

Figure 3.1: Illustrating Prfz) =1inLemma3.74

(2) Since ker p\< ™ < ker p for all k € N, and

A E m ker,ok(‘k),
keN

we always have A1 < ker pp.
Conversely, ker pn < A1 follows from Lemma 1.1(1a) using P, = 1.

To show the second part, observe that kerpl(,k) = (bq1,...,bp) forallk € N,
since Pkfk) = 1 for all k € N. This implies

Az = [ kerp = kerp® = (b1, ... bp) forallk e N.
keN

(3) This follows from [(ay, ..., am) : A1] = |P,[, which is a direct consequence of
part (2) and P, = (a1, ..., am)/ker pn.
O
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Chapter 4

Miscellanea

This chapter consists of six independent sections which we briefly describe now.
Given any (2m, 2n)—group I, we construct in Section 4.1 doubly periodic tilings of
the Euclidean plane, where the tiles are the 4mn squares corresponding to I". It follows
that I" always has free abelian subgroups Z2. We apply a criterion of Burger-Mozes
in Section 4.2 to prove that certain (2m, 2n)—groups are not linear. In Section 4.3, we
investigate possible relations between reducibility, transitivity properties of the local
groups, and finiteness of the abelianization of a (2m, 2n)—group. Following Mozes,
we associate in Section 4.4 to any (2m, 2n)—group two infinite families of finite regu-
lar graphs. In Section 4.5, we show that any (2m, 2n)—group is quasi-isometric to the
group F2 x Fo, if m, n > 2, and compute its growth series. We prove in Section 4.6
that (2m, 2n)—groups are efficient and compute their deficiency.

4.1 Periodic tilings and Z?-subgroups

For the moment, let X be a locally compact complete CAT(0)-space and I" a properly
discontinuous and cocompact group of isometries. Then, in this general context, it
IS an open question if certain free abelian subgroups of I" exist. We quote from an
article of Ballmann [1, Question 2.3]: “Is hyperbolicity equivalent to the non-existence
of a subgroup of I isomorphic to Z2? More generally, does I" contain a subgroup
isomorphic to ZX if X contains a k-flat? By the work of Bangert and Schroeder [2] the
answer is positive in the case of compact, real analytic Riemannian manifolds. Except
for this, the answers to these questions are completely open, even in the case where X
is a geodesically complete and piecewise Euclidean complex of dimension two!”

We will give in Proposition 4.2(3) an elementary proof that (2m, 2n)—groups al-
ways contain a Z2-subgroup. The idea of this proof (and the fact that this result holds)
was explained to me by Guyan Robertson.

LetI’ = (a1,...,am,b1,...,bn | Rmn) be a (2m, 2n)—group and let T (I") be
the “tile set” consisting of the 4mn squares which represent a geometric square in the

181
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corresponding (2m, 2n)—complex X.
T() := U {aba’t’, a’b’ab, a~b'~ta’"1b~ 1, a~tb~ta~lb Y.
aba’b’e Rm.n

It is easy to check that the definition of T (I') only depends on the group I", but not
on the choice of the relators in Ry.n. Recall that the four squares aba’b’, a’b’ab,
a~tb~la’~tb~1 and a’~tb~ta~tb’~! represent the same geometric square [aba’b’].
We always visualize them in the Euclidean plane as in Figure 4.1.

a’ a a’ a
a a’ a a’

Figure 4.1: Tiles in T (I') induced by the geometric square [aba’b’]

Moreover, we assume that each edge of such an element in T (I") has length 1. Unit
squares like this are usually called Wang tiles (named after Hao Wang [66]). We define
“south-", “east-", “north-" and “west-functions”

SSE,N,W:TT) - ERUE,y

as follows:

S(aba’b’) :=a, E(aba’d’) :=b, N(aba'b) := a ! wabab):=b1t.

A tiling (of the Euclidean plane) isamap f : Z2 — T(I'). We are only interested in
valid tilings, i.e. tilings where all edges match. To be precise, this means that for each
point (x, y) € Z?
S(f(X,y) =N(f(x,y—1)) and W(f(x,y)) =E(f(x —1,y)).
A valid tiling f : Z2 — T(I') is said to satisfy the adjacency condition (AC) if for
each (X, y) € Z?
S(f(x, N(f(x—1,y—1)71

(T(x,y)) # N(f( y ))_l (AC)

W(f(x,y) # E(f(x -1,y —1))

i.e. the two situations illustrated in Figure 4.2 are nowhere allowed in the plane.
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AD

oY

Figure 4.2: Violating (AC)

Note that (AC) is equivalent to the conditions

S(Fx—1,y) P #£S(Fx.y) #S(Fx+1,y)™t
NC(Fx—1,y) P # NP, y) # N(F(x+1,y)7!
E(Cfx,y—1) P £ E(f(x,y) #E(fx,y+1)™*
WXy =) P £ WX, y) £ W, y+1)™

for each (x, y) € Z? and it requires that any word consisting of consecutive horizontal
or consecutive vertical edges in the tiling f is freely reduced, where the words of
edges are seen as elements in the free groups (a1, ...,am) < "' or (by,...,bn) < T,
respectively.

We say that a valid tiling f : Z2 — T(I') satisfies the condition (AC;) for some
fixed j € Z, if foreachi € Z

S(fi,i+j)ANfGi—1,i—1+j)?t
W(F@i,i+j)#Efi—21i-1+j)?t

Note that if (ACj) holds in a valid tiling f : Z2 — T(T") for each j € Z, then also
(AC) holds for f.

Avalid tiling f : Z2 — T(I") is called periodic with period (&, b) € Z2\ {(0, 0)},
if f(x,y)=f(x+4ay+ 5) for each (x,y) € Z2. Observe that if (&, 6) Is a period
of f thensois (—a, —b).

The following lemma guarantees the unique extension of any T (I")-valued map f
on the main diagonal in Z? to a valid tiling of the whole plane satisfying (AC), pro-
vided f satisfies the inequalities of condition (ACy).

(ACj)

Lemma4.1. LetT" be a (2m, 2n)—group and f : {(i,i) : i € Z} — T(I") amap such
that for eachi € Z

S(f(i,i) #N(f(i—1,i—1)tand W(f@,i)#£E(fdi—1,i —1)*.

Then f uniquely extends to a valid tiling Z2 — T(I"). Moreover, this valid tiling
satisfies (AC).
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Proof. The existence and uniqueness of a valid tiling Z2 — T (I') extending the given
map f follows directly from the link condition in the (2m, 2n)—group I". We call this
extension again f. By assumption, this f satisfies (ACp). If n € Np, we prove now
that condition (AC,,) implies condition (ACp.1). In the same way, one can prove that
(AC_,) implies (AC_n_1). By induction, we conclude that f : Z2 — T(I') satisfies
condition (AC).

Fix any i € Z and assume that (ACp) holds. To show (ACy+1), we have to prove
that

S(f(i,i+n+1)#N(fi—-1,i4+n)?t
W(fG,i+n+1)£E(fd—1,i+n)*t.
Assume first that
N(fi—21,i+n) t=S(fd,i+n+1) (=N(fd,i+n)).

Since W(f(,i+n)) = E(f( — 1,1 + n)), it follows from the link condition in I
that

S(f(i,i+n)=S(fi—1,i+n)t=N(fi-1,i+n-1)71,
contradicting (ACp). Similarly, assume that
WG, i+n+1))=E(f(i—-1i+n)t (=WGi+n)™.
Then S(f(i,i +n+1)) = N(f(,i+n)) implies
E(f(i,i+n)=E(fG,i+n+1)t=W(fGi+1i+n+1)7t,
again contradicting (ACy). O

Proposition 4.2. Fix a (2m, 2n)—group I' = (a1, ..., am, b1, ..., bn | Rmn) and the
corresponding tile set T (I') defined as above. Then

(1) There is a periodic valid tiling f : Z2 — T (I') satisfying (AC).

(2) There is a valid tiling f : Z? — T(I') satisfying (AC), and a number & € N
suchthat f(x,y) = f(x+4a,y) = f(x,y+4a) foreach (x,y) € Z, i.e. f has
the two periods (&, 0) and (0, &) and therefore is doubly periodic.

(3) There are commuting elements a € (a1, ...,am) < I',b e (by,...,by) < T
such that
0 < |al = |b| < 64m?n?,

in particular (a, b) is a subgroup of I" isomorphic to Z2.
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Proof. (1) GivenT, our goal is to construct a valid tiling f : Z2 — T (I"), such that

(2)

f(x,y) = f(x + 2,y + 2) for each (x, y) € Z2. Fix any square
t:=aba’b’ e TN

and define f periodic along the diagonal {(i,i) : i € Z} as follows. If a # a’
and b # b’, then we define f(i,i) =t foreachi € Z. Ifa = a’, then we define

f2i,2))=t, fRi+L2i+D=atatbtleT) icZ.
Note that [a—1b’~1a—1b—1] = [t]. If b = b/, then we define
f2i,20)=t, fRi+L2i+D=a"tbtatbtleT) icZ.

Also here, [a’~*bh~ta=tb—1] = [t]. See Figure 4.3 for an illustration of these
three cases.

a a a
Yb' AD Yo AD Yb AD
a a a a a a
Yb' ADb ADb Yb ADb Yb
a a a a a a
Yb AD Yh' AD Yb AD
a a a
aa,b#£b a=a b="b

Figure 4.3: Definition of f (i, i) in Proposition 4.2

Now we can apply Lemma 4.1 tothe map f : {(i,i) : i € Z} — T(). The
obtained unique extension f : Z2 — T(I') satisfies (AC) and is obviously
periodic with period (2, 2) (in the first case where a £ a’ and b # b’, there is in
fact a smaller period (1, 1)).

We use an idea probably going back to Robinson ([60]). It was explained to
me by Guyan Robertson. Let f : Z2 — T(I") be the periodic valid tiling with
period (2, 2) satisfying (AC) obtained in part (1). Since |T (I'")| = 4mn is finite,
we have

H(FG, =), fa+1,—i+1):ieZ) < |TT) xTT)| = @mn)? < oo,
in particular there are i # j, such that |j —i| < (4mn)? and

fi,-i)=fg,—pand fi+1,-i+D=FfG+1,-j+1).
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It follows that
fx,y)=fx+j—iy+i—j
for each (x, y) € Z2. Now, we compute

fo,y)y=fx+j-iy+i—j="Ffx+2j-2.y+2 —-2j)
= f(X,y+4i —4j)=f(x,y+4j —4i)

and

fo,y)=f(x+j—i,y+i—j)=Ffx+2j—2,y+2i —2j)
= f(x+4) -4, y)=f(x+4i —4],y).

Note that 0 < |4] — 4i| < 4(4mn)? = 64m?nZ.

We use the doubly periodic valid tiling f : Z? — T(I') satisfying (AC) of
part (2), i.e.
fx,y)y=fx+ay =fxy+a

for each (x, y) € Z, where & > 0. Since any closed edge-path (i.e. any circuit)
in this tiling describes a relator in the group I', we obviously have two commut-
ing elements a € (a1, ...,am), b € (b, ..., bn) corresponding to the periods
(@,0) and (0, &). Because of condition (AC), a and b are freely reduced and
we therefore have |a| = |b| = & € N. The upper bound 64m?2n? for the length
of |a| and |b| can be obtained by the explicit construction in (2). The statement
(a, b) = 72 follows from Lemma 3.14.

0]

Remark. The set T (I") is a reflection-closed 4-way deterministic tile set (using the
terminology of [38]), but T (I") is never aperiodic by Proposition 4.2(1).

We want to illustrate the constructions made in the proof of Proposition 4.2 with a
concrete example and take the group I' = I'3 5 of Example 3.46 with five generators
aj, a2, b1, by, b3 and the six relators in Ry.3

This

arbiaghy, aihpazby?, arbsa, thy, aibstab,®, aib;ta, ths, agbsazh,t.
defines the tile set
11,11 11, -1p-1
T (I'35) ={aibiazby, azhzaihs, a;"b,"a, "by =, a5 by a; ~b, 7}
U {aiboash L, asbrtash,, artbiastbst, asthstarth
{1221,21 1M2, 44 UVia, 2,2211}
U {albgaz‘lbl, az_lblalbg, al‘lbl‘lazb_l, azbglal_lbl‘l}
1, -1 T L T | 1 -1
U {aibs "asb; ~, aib; "aihs ™, aj “boa; “bs, a; “hza; “ba}
U{aiby'a; s, a,'bsaib;t, a; tbytashy, asbia; thyt)

-1 -1 -1 -1-1 -1p-1.-1
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In Figure 4.4, we recognize a finite part of a periodic valid tiling f : Z? — T (I'35)
satisfying (AC) induced by t = ajbjasb, € T (I'3 5), with periods

(19 1)v (_27 2)a (4’ 0)’ (07 4) < Z(:I-’ 1) + Z(_Z’ 2)
and commuting elements a;azasa, *, by *b; *bz *by, generating the free abelian group
72 = (alazalaz_l, bz_lbflbglbl) <TI'35.

Note that the two generators ajazasa, * and b, b *bz by of Z2 correspond to the
two commuting quaternions 5 + 4i +6j — 2k and —11 — 12i — 18 + 6k of norm 34
and 5%, respectively.

A by
Y by
Y by

.
.
o
.
by
X
.
.

Figure 4.4: Illustration of Proposition 4.2 taking Example 3.46 and t = a1biash»

However, recall that (aj, by) is an anti-torus in I'3 5 (see Proposition 3.47(8)), in
particular there are also valid non-periodic tilings of the Euclidean plane using the tile
set T(I'35).
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See Figure 4.5 for an illustration of a finite part of the non-periodic valid tiling
determined by (az, b1). Note that all 24 squares of T (I'3 5) appear in this picture. To
illustrate this, we have equipped the tiles with numbers from 1 to 24.

¥ by

¥ by

¥ by

ai
A b3

¥ by

A b3

Figure 4.5: A non-periodic tiling in Example 3.46

Corollary 4.3. LetT" = (a1, ...,8m, b1,...,bn | Rmn) be a (2m, 2n)—group. Then
there are always non-trivial elementsa € (a1, ..., am)andb € (by, ..., bp) such that
(a, b) is no anti-torus.

Proof. This follows directly from Proposition 4.2(3). O
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4.2 A criterion for non-linearity

Applying a criterion of Burger-Mozes ([17]), we give here examples of very small
irreducible non-linear (2m, 2n)—groups I", where both Py, and P, are primitive but not
alternating groups.

Proposition 4.4. (Burger-Mozes, [17, Proposition 1.3, Theorem 1.4]) Let I" be a
(2m, 2n)—group such that P, and P, are primitive permutation groups. If either Ky
or K, is not a p-group, then I' is irreducible and not linear over any field.

Remark. There is no (2, 2)-, (2, 4)— and (4, 4)—group satisfying the assumptions of
Proposition 4.4.

Remark. If m > 3 and I" is an irreducible (Aom, Py)—group, i.e. if

2m
2 | Aom|
\Pé)|=|A2m|( me)

by Proposition 1.2(1a), then Ky, is not a p-group, since |[Kn| = |A2m_1|2m_1.

We apply now Proposition 4.4 to a (4, 6)—group which is moreover a candidate for
having a simple subgroup of index 4.

Example 4.5.

aibia; by, agbpa, tbyt,
Ros:={ aibsa, by,  aibgtasbs,
arb;tay bzt agbia, thy
Proposition 4.6. Let I be the (4, 6)—group defined in Example 4.5. Then

(1) Phn=PGL23) = S4, P, = Sg.
(2) |K,| = 12441600000 = 214 .35 .55,
(3) T'isirreducible and not linear over any field.
(4) [T, '] =T'gandI'gis perfect.
(5) Zr(bg) = Nr((bs)) = (b3).

(6) Aut(X) = Z,.
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Proof. (1) We compute

pv(b1) = (1,2),

puv(b2) = (3, 4),

pv(bz) = (1,2,4,3),
pn(a1) = (1, 2)(@3,5, 6),
on(@2) = (1,4,2,6,5).

(2) GAP ([29)).

(3) Apply Proposition 4.4, using part (1) and (2).

(4) Itisan easy computation.

(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), we see that Aut(X) is generated by

(a1, ap, by, by, b3) > (ayt, ayt, by, by, b3).

Conjecture 4.7. The (4, 6)—group I of Example 4.5 is non-residually finite and
m N=TIp.

Example 4.8.

alblal_lbz 1, albzal_lbgl,
Rog:={ aibsa, by, aibzlasb;?,

asbiash,t,  asbraghs
Proposition 4.9. Let I" be the (4, 6)—group defined in Example 4.8. Then
(1) Php =PGL2(3) = S4, P, = PGL2(5) < Se.
(2) |K,| =50000 = 2%.5°.
(3) T isirreducible and not linear over any field.
(4) [T, T] =Ty, ng = 7o, I'/[Tg, I'g] = Dgand [I"g, I'g] is perfect.
(5) Zr(a) = Nr({ai)) = (@), ifai € {a1, az}.
(6) Aut(X) = Zo.
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Proof. (1) We compute

pu(b1) = (1,3, 2),
pv(b2) = (2,3),
pu(b3) = (2,4, 3),

pn@1) = (1,4,5,6,3,2),
pn(@2) = (1,4,2)(3,6,5).
(2) GAP ([29)).
(3) Apply Proposition 4.4.
(4) This is an easy computation.
(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), we have checked that the group Aut(X) is generated by the
permutation

(a1, ap, b1, bp, b3) — (ax, az‘l, bl_l, bz_l, bgl)

of order 2.
[l

Conjecture 4.10. Let I be the (4, 6)—group defined in Example 4.8. Then I" is non-
residually finite such that

[ N =ITo, Tal.
Nr

Question 4.11. Let I be the (4, 6)—-group defined in Example 4.8. Is the index 8
subgroup [I"g, I'g] simple?

We also apply Proposition 4.4 to a (6, 6)—group:
Example 4.12.

alblal_lbz‘l, albzaz‘lbgl, albgaz‘lbl,

o -1,-1 -1,-1,-1 -1,-1
Ra3 := a1b3 ag bs, a1b2 a, bl , a2b1a2 b2 ,

azbgaglbgl, asbiasbo, a3b2_1a3b1_1
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Proposition 4.13. Let I" be the (6, 6)—group defined in Example 4.12. Then
(1) Phn=PSL2(5) < S, P, = PSL2(5) < Se.
(2) |Ky| = 100000 = 2°-5°,
(3) T isirreducible and not linear over any field.
(4) [T, '] =T'gandI'g is perfect.
(5) Zr(bg) = Nr((bs)) = (b3).
(6) Aut(X) = Z3.
Proof. (1) We compute

pv(b1) = (1,2)(3, 4),
pv(02) = (3,4)(5, 6),
pv(b3) = (1’ 2’ 3)(47 6a 5)9
pn(ar) = (1,5,6,3,2),
pn(@2) = (1,4,5,6, 2),
pn(@z) = (1,5)(2, 6).
(2) GAP ([29]).
(3) Apply Proposition 4.4.
(4) This is an easy computation.
(5) This follows from Proposition 1.12.
(6) Using GAP ([29]), Aut(X) is generated by the two automorphisms
(a1, a, as, b1, by, b3) = (a2, a1, as, by, byt by h),
(a1, a2, az, by, bo, b3) — (az‘l, al_l, agl, b, by, bgl).
0]

Conjecture 4.14. Let I be the (6, 6)—group defined in Example 4.12. Then T is non-
residually finite such that

m N=TIp.

fi

Nl

Question 4.15. Let I" be the (6, 6)—group defined in Example 4.12. Is the subgroup I'g
simple?
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4.3 Local groups, irreducibility, abelianization

Two naive attempts to characterize irreducibility for (2m, 2n)—groups I" could be as
follows: T is irreducible if and only if its abelianization is finite; I" is irreducible if
and only if the local groups P, and P, are transitive. Both turn out to be false by small
counter-examples given in Proposition 4.16. By [17, Proposition 1.2], any reducible
(2m, 2n)—group satisfies A1 # 1 and A> # 1. We give in Proposition 4.16(6) also
an irreducible example with this property. Finally, we show that it is not enough to
compute for example Péz) and Py, in order to decide by Proposition 1.2(2) that " is
reducible, even if it is reducible.

Proposition 4.16. There exist examples of (2m, 2n)—groups which are
(1) reducible such that their local groups P, and P, are transitive.
(2) irreducible such that P, and P, are not transitive.

(3) reducible and have finite abelianization.

(4) irreducible and have infinite abelianization.

(5) irreducible such that P, is transitive and A # 1.
(6) irreducible such that A1, Ao # 1.

(7) reducible but |Pn| < [P®|and |P,| < |P?).
8) reducible but |P®| < |PY).

Proof. (1) Take
alblaz_lbl, albzaz_lbz,
Ro.o :=
albz‘lalbl_l, asbiasby

Then, we have

pl)(bl) = (1’ 4’ 3’ 2)9
pU(bZ) = (1’ 4’ 37 2)5

ph(al) == (17 3’ 2’ 4)7
pn(@2) = (1,4,2,3)

for the corresponding (4, 4)—group.

It is reducible, since |Pr$2)| = |Pnh| = 4.
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Embed any irreducible (2m, 2n)—-complex into a (2m + 2, 2n 4 2)—complex Y
by adding the m + n + 1 geometric squares (geometric tori)

-1,-1 -1,-1
[a1bnt1ay b 4], - - - [@Bmbnaay, b1yl

-1 -1 -1 -1
[am+1b1an, 407 7] - o [@miabnag 41007,

-1 -1
[am+1bn+1am+1bn+1]

and apply Proposition 1.9(3) to show that Y is irreducible. See the example
described in part (6) for an explicit realization of this idea.

Taking
alblal‘lbl, albzalbz‘l,
Ro.o := ,
azblazbl_l, azbzaz_lbz

we have |Pn| = |Pr$2)| = 4, which shows that the corresponding (4, 4)—group I"
is reducible. A simple computation gives 2 = Z‘z‘ of order 16.

Take the subsequent Example 4.18.

Note that if we add to the non-residually finite (4, 12)—complex of Example 2.26
the two geometric tori [a;bza; *b; '] and [azb7a, b5 1], then we even get a non-
residually finite (4, 14)-group I having an infinite abelianization I'®° = 7, x 72,

We take the (6, 4)—-group I' given by

atbia;'byt, aibpaght, aib,taz by,
Rz :=
asbiasb1, azbzazbl_l, a2b2_1a3b2_1

Then

pv(b1) = (1,4,2,5,3),

pv(b2) = (2,4,6,3,5),

pn(@1) = (1,2)3, 4,

pn(@2) = pn(@z) = (1,2,3,4),

in particular P, = D4 < S4 is transitive. Moreover, we compute P, = Ag
and |Pr§2)| — 360 - 605. By Proposition 1.2(1a), ' is irreducible. Using
Lemma 1.1(1b), B := {(b1b2)3, (bob1)3, (b1b2)~3, (bob1)~3} is a subset of A,
since for each b € B and a € E, we have p,(b)(a) = a and pn(a)(b) € B.
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(6) Embedding the irreducible (6, 4)—complex just described in the proof of part (5),
we construct an irreducible (8, 6)—group such that A1 # 1 # Ao.

atbia; byt arbpashrt,  ajbsa; bz, aibstagthby,

Rs3 := { asbjasby, azbzazbfl, azbgaz_lbgl, azbz_lagb_l,

1

agbgaglbgl, a4b1a;1b1‘1, a4b2a;1b2‘1, a4b3a;1b§

It is irreducible by Proposition 1.9(3) and we have a4 € A1, b3 € A2, applying
Lemma 1.1. Note that P, and P, are not transitive, since
pv(bl) = (1v 6v 2, 77 3)a
pv(bZ) = (27 67 87 3’ 7)’
pv(bS) = ()a
pn(@1) = (1, 2)(5, 6),
ph(@2) = pn(@z) = (1,2,5, 6),
ph(@a) = ().
(7) For the (4, 6)—group given by
alblal_lbl_l, albzal_lbgl,

Ro.3 = albgal_lbz, azblaz‘lbz_l, ,

azbzaz_lbl, azbgazbgl

we compute |Pn| = 2, [P\?| = 4, |P,| = 24, |P{?| = 48. It is reducible by
Proposition 1.2(2b), since |Plf3)| = 48. Note that |Pr53)| = |Pr$4)| = 8.

(8) Take the (4, 6)—group defined by

aibia; tbrt,  aibra; thy,
Ry = bsaibst biazbt
23 =4 aibzaibz ", azbagzb, -,

azbzazbgl, azbgazbl_l

We compute |Pn| = 4, |Pr§2)| = 8, |Pé3)| = 16, |Pr§4)| = 32. Note that
|Pr§5)| =32and |P,| = |Pv(2)| = 24, in particular the (4, 6)—group is reducible
by Proposition 1.2(2).

O



196 CHAPTER 4. MISCELLANEA

Question 4.17. (1) Isthere a reducible (P, P,)—group I' such that Py, is transitive
and P, is 2-transitive?

(2) Does there exist a reducible (P, P,)—group I' such that Py, is transitive and P,
is primitive?

(3) Isthere a reducible (P, P,)—group I" such that Py, is transitive and P, is quasi-
primitive?

(4) Is there a (2m, 2n)—group T such that P, and P, are transitive and I'# is
infinite?

The (6, 6)—group in the following example not only illustrates Proposition 4.16(4),
but has other interesting properties.

Example 4.18.

alblal_lbl_l, albzal_lbgl, albgaz_lbz_l,

R33 := albglazbz, azblaglbl 1, a2b3a2b2_1,

-1.-1 —1,,-1 —1,.-1
agh; "az by, asgbzaz"b,~, aghzaz~h;

Proposition 4.19. Let I" be the (6, 6)—group defined in Example 4.18. Then
(1) Ph= As, P, =7Zy < Sgand I" is irreducible.
(2) Ha(xy,) is a pro-2 group, where X, is any vertex of 7on.
(3) Az # 1, in particular QZ(Hz) # 1.
(4) We have
(a1, a2, as) = pry((ay, az, as))

= pry((a1, az, az))(Xy)
= pra(M)(Xy) < Aut(T2n)(Xy) -

This group stabilizes pointwise a bi-infinite geodesic in 72, = 7 through the
vertex X,.

(5) T3 = 72 x 7, in particular it is an infinite group.
Proof. (1) We compute

pv(bl) = (2’ 3)(47 5)7
pv(bZ) - (1’ 2’ 5)7
:Ov(bS) = (23 6’ 5)7
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pn(@1) = (2,3)(4,5),
ph(@2) = (2,3)(4,5),
ph@3) = 0.

To see that I" is irreducible, compute |Prf2)| = 360 - 60°.
(2) This follows directly from the subsequent Proposition 4.20.

(3) Using Lemma 1.1(1b), the set {b2, b3, b3} is a subset of A,. Note that Ay is
a normal subgroup of (b1, ..., bn) of infinite index, since I is irreducible. In
particular, A2 is a non-finitely generated free normal subgroup of T".

(4) The map pr, : I' — Aut(T2n) Is injective because we know that QZ(H;) = 1
by [16, Proposition 3.1.2, 1)]. This gives the first claimed isomorphism. The
two other isomorphisms are based on the identification

(a1, a2,a3) = {y € [ : pra(y) (%) = X}

proved in [17, Chapter 1]. Since pn(a)(by) = by for each a € Ep, the bi-infinite
geodesic (b¥)kez through x, is fixed.

(5) This is an easy computation.
0]

Proposition 4.20. Let I" be a (Py, P,)—group such that |P,| = 2. Then Ha(x,) is a
pro-2 group (an infinite group if and only if T is irreducible).

Proof. Consider the following commutative diagram, where py, k € N, is the obvious

restriction map.
(k+1)

0
(a]_, ceey am> LI Pv(k+1) < Sym(El()k+l))
N ipk
P < sym(EX)
We want to show that P is a 2-group for each k € N. Since [P,|] = 2 and

Pv(k) = Pl,(k“)/ker( Pk), it is enough to show that ker(pk) is a 2-group (or trivial). This
follows, if any element o € ker(pk) has order 1 or 2 in Pv(kH). Given o € ker(pk),
write o = ,or(]k“) (a) for an appropriate element a in (a1, ..., am). Let b be any el-
ement in Ef,k“). Decompose b = b" - b”, such that b’ e Ef,k), b” € E, and define
4 := p{® (0')(a) (see Figure 4.6). Then

o2(b) = p* V@) -b") = b’ pr@E) (D) =b' - b” =,

where the second equation uses the commutativity of the diagram above and the third
equation follows from the assumption |P,| = 2. O
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b’k | | oAb
a a

b'A A b A D
a a

Figure 4.6: Illustration in the proof of Proposition 4.20

The following conjecture is true at least for k < 6, because we have computed
P2 =4, =16, |P?| =32,|P%| =128, |P,”| = 256.

Conjecture 4.21. For I" defined in Example 4.18 and | € N

[P = 23-2  jfk=2—1.

A very natural question is to ask if there is a criterion in terms of properties of
the local groups Py and P, to decide whether a given (2m, 2n)—group is reducible or
not. The answer to this question is “no” as shown in the first part of the following
proposition.

Proposition 4.22. (1) In general, it is not possible to determine whether a given
(2m, 2n)—group is reducible or irreducible only by knowing its local groups Py,
and P,.

(2) There exist (2m, 2n)—groups I'1 and I'z having isomorphic local groups, but
different local transitivity properties. More precisely, there are examples such
that P,(I"y) and Ph(I"2) are transitive, P,(I"'1) and P,(I"2) are not transitive,
although P, (I'1) = Pr(I'2) and P, (I'y) = Py(I'2).

Proof. (1) The idea is to find two (2m, 2n)—groups I'1 and I'> with permutation
isomorphic local groups such that I'q is irreducible but I'2 is reducible. We
take the (6, 6)—group of Example 4.18 as I'1, and I'2 as (6, 6)—group defined as
follows:

aibia;'byt,  aibpa; byt azbsa, byt

-1 11 1
Ras:={ aibg-agbz, agbiaz~h;~, azbzazh;-,

~

azbl‘laglbl, agbzaglbgl, agb3a§1b2_1
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Note that it has seven (of nine) defining relators in common with those of Exam-
ple 4.18. The two different relators are underlined. They can be obtained from
the corresponding two relators aghpaz *b,* and agbsaz *b;* in Example 4.18
by a single “surgery” operation indicated in Figure 4.7. For a more general
description of surgery techniques in square complexes, see [17, Section 6.2.2].

% ; 4

bo 4 A by b3 4 A by
S S
2 a3

bs A A bs by A 1 bs
R 3 a3

Figure 4.7: “Surgery” on Example 4.18 (on the left)

We compute for I'2:

pu(b1) = (2,3)(4,5),

pu(b2) = (1,2,5),

pv(b3) = (2,6, 5),

ph(@1) = ph(@2) = pn(@sz) = (2,3)(4,5),

in particular it follows that P, = Ag and P, = Z, < Sg. Moreover, we have
|Pr§2)| = 360 = |Pyl, hence I'2 is reducible by Proposition 1.2(2a). Observe

that [P = 2 forall k e N.

(2) The reason for this phenomenon is that the local groups are isomorphic, but not
permutation isomorphic. Let the (4, 6)—group I'1 be defined by

aibia;'h,t,  aiboa; that,
. _1-1 S1-1
Ros:={ aibsa; "b; ", aibs a; b,

albz‘laz‘lbg, azblaz_lbz
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Then

pv(b1) = (1,2),

pv(D2) = (3, 4),

pu(b3) = (1,2)(3, 4),
pn(@1) = (1,3,2)(4,5,6),
pn(@2) = (1,3,2,6,4,5),

hence P, = Zg < S4 is not transitive, P, = Z, x A4 < Sg is transitive.
Define the (4, 6)—-group I'> by

alblaz_lbz_l, albzaz_lbz,

Ro.3:= { aibzasbs, albglazb_l,

aib,ta;tort, aibytay by

We compute

pv(b1) = (1,2)(3,4),
pu(b2) = (1,2)(3, 4),
pu(b3) = (1,3)(2, 4),
pn(@1) = (1,5,2)(3, 4),
pn(@2) = (2,5,6)(3, 4)

and see that P, = Zg < S, is transitive, but P, = Zy x As < Sg is not
transitive.
O

4.4 Graphs associated to a (2m, 2n)—group

Following an idea of Mozes ([52]), we associate to any (2m, 2n)—group I" two infinite
families of finite regular graphs (X (I'))ken and (Yk(I"))ken. The vertex set of Xy (I")
is identified with the set E and the vertex set of Y, (T") is identified with E. Two
vertices a, a € Er(]k) are connected in Xy (I") by an edge if and only if p,(b)(@a) = &
holds for some b € E,. In this case, b and b~ are edges in Xy (I") such that o(b) = a,
t(b) = dand b = b1, Similarly, two vertices b, b € Eﬁk) are connected in Y (I") by
an edge if and only if p,(a)(b) = b for some a € Ep,.

See Figure 4.8 and 4.9 for a visualization of Y1(I'3 5) and X2(I'35), respectively,
where I'3 5 is the (4, 6)—group of Example 3.46.
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by ! bs

Figure 4.8: The graph Y1(I'35)

We list now some obvious general properties of the graph Xk (I") (the properties
of Yx(T") are analogous):

e Xy (") has exactly 2m(2m — 1)%~1 vertices.

Xk(I") is 2n-regular.

Xk(I") is connected if and only if Prfk) Is transitive on Er(]k).

Xk (I") is connected for each k € N if and only if pr,(I") is locally co-transitive.

If Xy (T") is not connected, then X, (I") is not connected for each | > k.

e If Xy (T") has no loops, then X (I") has no loops for each | > k.
Less obvious is the following result of Mozes:

Proposition 4.23. (Mozes, [52, Theorem, p.323]) If I" = I"p | is as in Section 3.2, then
(Xk(T))ken and (Yi(I'))ken are Ramanujan graphs, i.e. for every k € N and every
eigenvalue 2 of the adjacency matrix of Xy (I"), either A = £(1 + 1) or |A| < 2+/1,
and for every eigenvalue A of the adjacency matrix of Yy (I"), either A = +=(p + 1) or

Al < 2/P.

Problem 4.24. Construct other (2m, 2n)—groups I" such that the graphs (Xx(I'))ken
and (Yk(I"))ken are Ramanujan graphs.
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aiap

Figure 4.9: Geometric realization of X2(I'35)

4.5 Growth of (2m, 2n)—groups
Let I" be a finitely generated group and S a finite subset generating I. Following [32],
we define the word length ¢s(y) of an element y € I' \ {1} with respect to S:
¢s(y):=min{i :y =S1...Si; S1, ..., sseSuUS™, (andesl) :=0),
for k € Ng the growth function
kK= BT, S; k) :=={y e I' : £s(y) =k},

the corresponding growth series

B(I'. S:2) := Y B(I', $; )z,

k=0
the spherical growth function
k> o, S;k) :=[{y € I : £s(y) =k},
and the corresponding spherical growth series
o0
(I, S:2) =Y oI, S: k)" = (1 -2)B(T.S:2).

k=0
Observe that o (T, S; k) = (T, S; k) — B(I", S; k — 1), ifk e N.
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Proposition 4.25. LetI" = (a1, ...,am, b1, ..., bn | Rmn) be a (2m, 2n)—group and
S:=1{a1,...,am, by, ..., bp} the set of standard generators of I.

(1) The Cayley graph of (I", S) can be identified with the 1-skeleton of the product
of regular trees Tom x T2n, in particular the growth functions of (", S) only
depend on m and n.

(2) The spherical growth series is

(32)°
(T, S;2) = —Z
) (m—m—DFEZ)(h— (n— L)
14z 14z

T1-2m—-1z 1-@2n-1)z
=1+ (2m + 2n)z + (4m? + 4n? + 4mn — 2m — 2n)z% + O(Z%).

(3) If (m,n) # (1, 1), then T is of exponential growth. If m = n = 1, then I'" is of
polynomial growth.

(4) If m,n > 2, then I" is quasi-isometric to F> x F».

Proof. (1) See [9, Section 1.8A.2] for an explicit identification. Observe that the
product Tom x T2n is the universal covering space of the “Cayley complex” of
([9, Section 1.8A.2]), which is exactly our (2m, 2n)—complex X.

(2) By part (1) we have (I, S; z) = ¥ (Fmn x Fn, S; z). Note that
14z
1z
The claim follows now from the behaviour of the spherical growth series with

respect to taking free and direct products (see [32, Proposition VI.A.4]). As an
intermediate step, we have for example

X(Z, {1} 2)

1+z

E(Frn? {alv ceey am}; Z) == m .

(3) If (m, n) # (1, 1), then the statement follows from the obvious fact that F., x Fy
contains a non-abelian free subgroup (namely Fy, x {1} if m > 2, or {1} x Fy
ifn > 2). If m =n = 1, then T is virtually abelian, hence is of polynomial
growth.

(4) The group Fm x Fy is isomorphic to a finite index subgroup of F2 x F2 (the
index is (m —1)(n — 1)), hence the groups are quasi-isometric by part (1). (Note
that for ¢, ¢ > 3, the tree 77 is quasi-isometric to 7y, see [9, Exercise 1.8.20(2)].
This is a more general result than (4), since ¢, ¢’ are allowed to be odd.)

O
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Example. Let I" be a (6, 6)—group. Then

ST, S;z) = 1 + 127 + 9622 + 660z + 4200z* + 25500z° + O(z%)
B(I, S; z) = 1 + 13z + 10922 + 76922 + 4969z% + 30469z° + O(z°%).

4.6 Deficiency of (2m, 2n)—groups

Let G be a finitely presented group. The deficiency of a finite presentation P of G is
the number of generators minus the number of relations in P. The deficiency def(G)
of the group G is the maximum of the deficiency of P taken over all possible finite
presentations of G. It is well-known (see [27, Lemma 1.2]) that

def(G) < rank(H1(G; Z)) — d(H2(G; 7)) , (4.1)

where d(H2(G; Z)) denotes the minimal number of generators of the second homo-
logy group of G with integer coefficients. The group G is called efficient if equality
holds in (4.1).

Proposition 4.26. Let I be a (2m, 2n)—group. Then I is efficient and
defC) =m+n—mn.
Proof. Since I" has the finite presentation (a1, ..., am, b1, ..., bn | Rmn), we have
def) >m+n—mn.
On the other hand
def(I") < rank(H1(T"; Z)) — d(Ha(T"; Z))
= rank(H.(T"; Z)) — rank(Hx(T"; Z))
=1-x@)
=m-+n-—mn.

The inequality is (4.1), and the equalities above are described in [41, Section 6], where
x (I') is the Euler characteristic of the (2m, 2n)—complex X (or the alternating sums
of the ranks of the homology groups of I", which is the same here). O

Remark. The deficiency def(I") for a (2m, 2n)—group I' is attained by its standard
presentation

(al»---,am,bl»---»bnlRm-n)

as well as by the natural presentations of their amalgams (provided they exist, see
Proposition 1.3)

Fn *F1_2m42mn Fi-mtmn and Fm *F1_2n+2mn Fi—n+mn .
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Similarly as in Proposition 4.26, one can prove that the deficiency of I'g is
def(I'g) = 4n 4+ 4m — 4mn — 3.

Remark. There are non-efficient torsion-free groups, see [47].
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Appendix A

More examples

A.1 Irreducible (Ag, P,)—groups

In Appendix C.1, we will give a list of all primitive permutation groups in So,, Where
n < 7. There are 33 different such groups (up to isomorphism). Our goal now is to
construct for each such primitive group P, an irreducible (Ag, P,)—group. We already
have constructed an (Ag, Ag)—group in Example 2.2, an (Ag, M12)—group in Exam-
ple 2.18, an (Ag, ASL3(2))—group in Example 2.21 and an (Ag, S5 < Sig)—group in
Example 2.58. There are no (Ag, Sp)—groups and no (Ag, Ag)—groups, and we have
not found an (Ag, As < Sig)—group or an (Ag, M11 < Si12)—group. In this section,
we construct the 25 remaining (Ag, P,)—groups and give the generators of the local
groups P, = Ag and P,. All these examples are irreducible by Proposition 1.2(1a),
since we always have |Pr§2)| = 360 - 60°.

Example A.1. (Ag, S4)—group:

aibia; by, aibray by, aibytasht
Rz :=
abiaz by,  axhpazthp, asbiash,

pv(bl) = (1’ 5’ 47 37 2)7
pv(bZ) = (2’ 6’ 5’ 4’ 3)9

pn(@1) = (1,3,4,2),

ph(@2) = (1,3,2,4),
pn(@3) = (1,4,2,3).

207
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Example A.2. (Ag, PSL2(5))—group:
atbia; byt arbras byt ajbgaih,?,
Rasz:={ aibzlaz'by, asbiagb,t,  apbrashy,
agbsash;?,  asbzlashyt, asbylash
pv(b1) = (2,4)(3, ),

:Ov(bZ) = (1’ 6’ 5’ 3)(2’ 4)7
pv(b3) = (1,2,4,6)(3,5),

pn(@1) = (2,3)(4,5),
pn(@2) = (1,3,4,5,2),
pn(@3) = (2,3,4,6,5).

Example A.3. (Ag, PGL2(5))—group:
alblal‘lbl‘l, albzal‘lbgl, albgaz_lbz,
R33 := albglazbz_l, azblaglbl_l, azbzaglbl,
a>bszasbs, azbflaglbz, agbzagbgl
pU(bl) == (2v 3)(47 5)a

pv(bZ) = (17 57 47 3’ 2)’
pU(b?)) == (2v 6v 5’ 37 4)’

pn(a1) = (2,4,5,3),
ph(a) =(2,4,3,5,6),
pn(@z) = (1,5,4,3,2).
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Example A.4. (As, Se)—group:

alblal_lbl 1, albzal_lbz 1, albgaz_lbgl,

. -1.-1 —1,,-1 —1,.-1
Ras:={ aibz-az~bs, azbia,"b,~, azbraz;-bs~,

azbgaglbl, azbz_lagbl_l, asbiaszby

:Ov(bl) = (23 4’ 3)7
pv(bZ) = (3’ 5’ 4)7
pv(bS) = (1’ 2’ 3)(47 6a 5)9

ph(a1) = (),
ph(az) = (1,5,6, 3, 2),

ph(@3) = (1,4,5)(2,6).

Example A.5. (Ag, AGL1(8))—group:

alblaz_lbl_l, albzaz_lbgl, albgaz_lbgl,
aibsay tbs,  aibyta; by, ajbzlagh,?t,
R34 := 3 .
aib;ta, by, aib;ta;ths, asbzaz'bo,

a3b1a§1b;1, asboasbs, a3b4a§1b1_1

pv(b1) = (1,2)(5, 6),
pu(b2) = (1,4,3,2)(5, 6),
pv(b3) = (1,2)3,6,5,4),
pv(ba) = (1,2)(5, 6),

ph(a1) = (2,6,8,7,5,4,3),
pn(az) = (1,2,4,5,6,7,3),
pn(@3) = (1,4)(2,6)3, 1)(5, 8).
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Example A.6. (Ag, AT'L1(8))—group:
aibia; by t, ajbraghs, arbsa, byt

aitbsay 'ba, aibyta; by,  aibytashb,t,
R34 := ; -
aib;tay by, aibytas byt anh,taz bzt

agblaglbl_l, agbgaglbgl, a3b4a§1b2

pv(b1) = (1,2)(5, 6),

pu(b2) = (1,4,5,6,2),

pu(b3) = (1,2,3,6,5),

pv(ba) = (1,2)(5, 6),

pn(@1) = (1,8,7,5,4,3)(2,6),
pn(@2) = (1,2,4,5,6,8)(3,7),
ph(@3) = (2,5,6)3,7,4).

Example A.7. (Ag, PSL2(7))—group:

aibia; tbrt,  aiboay by,  asbsa, byt

aibsa, by, aib;'a;thy, aibztagh,t,
R34 := { -

~1,-1p-1 ~1.-1 -1
aih;"a; b, ", aib;-a; bz, azbzaz by,

-1 -1
a3b1a3 b4, a3b2a3b3, a3b4a3 b1

pv(b1) = (1,2)(5, 6),

pv(b2) = (1,4,3,2)(5,6),
pv(b3) = (1,2)(3,6,5,4),
pv(bg) = (1,2)(5, 6),

ph(@1) = (2,6,8)(4,7,5),
pn(@2) = (1,7,3)(2,4,5),
ph(@3) = (1,5)(2,6)(3,7)(4,8).
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Example A.8. (Ag, PGL2(7))—group:

ajhia; b3 , aihay b1, aihza; b ,
aitbsa, 'ba, abyta; by, aibytasb,t,

R34 1= ; -
aib;ta, ths, aib;taztbrt, asbiaz b,

azbgaglbz, asboasbs, a3b4a§1b;1

pu(01) = (1,3,2)(4,6,5),
pu(02) = (1,4,3,2)(5,6),
pv(03) = (1,2)(3,6,5,4),
pu(0sa) = (1,2)(5,6),

pn(a1) = (1,8,2,6,7,5,4,3),
pn(@2) = (1,7,3,2,4,5,6,8),
pn(@3) = (1,8)(2,6)@3, 7).

Example A.9. (Ag, Ag)—group:

ajhia; b , aiha; b , aibza; b ,
1 -1.-1

ajhsa; b4 , aib,"a;,"hs, aghiag b2 ,

R34 := § .
-1 |
aghoaz "z,  agbszagb, azb; "azh; 7,

azb_la_lbg, asbsa; b 1, a3b4a‘1b1
2 “3 3 M4 3

pu(b1) = (2,5, 4),

pu(b2) = (2,3)(4,5),

pv(b3) = (2,5, 3),

pv(ba) = (1,2)(5, 6),

ph(@1) = (),

ph(@2) = (1,6,7,2)(3, 8),
on(@z) =(1,5,6)(2,7,8,4,3).
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Example A.10. (As, Sg)—group:

alblal‘lbl‘l, albzal_lbz, albgal‘lbgl,

a1b4a2_1b;1, albglaz_lba,, azblaglbz_l,

R34 := 1 -
-1 1, -1

a2b2a3 b2, a2b3a3b1, a2b3 azb y

-1.-1 —1,,-1 -1
agh, "ag bz, asgbzaz;"b,~, ashsaz by

pv(b1) = (2,5, 4),

pv(b2) = (2,3)(4,5),

pv(b3) = (2,5, 3),

pv(ba) = (1, 2)(5, 6),

pn(@1) = (2,7),

pn(@z) = (1,6,7,2)@3,8),

ph(as) = (1,5,6)(2,7,8,4,3).
Example A.11. (Ag, PSL2(9))—group:

alblal_lbl_l, albzaglbgl, albgal_lbz_l,

a1b4a1_1b5_1, a1b5a2_1b;1, a1b5_1a2b4,

R35 := ; albz_laglbg, azblazbz_l, asbrasbs,

~

a2b5a2b1_1, agbglazb_l, agblagbl_l,

agbgaglbz‘l, a3b4a§1b5 1, a3b5a§1b4

pv(b1) = (2,5)3, 4),

pv(b2) = (2,5)(4,6),

pv(b3) = (1,3)(2,5),

pv(ba) = (1,2,5),

pv(bs) = (2,6,5),

ph(@1) = (2,3)(4,5)(6,7)(8,9),
pn(az) =(1,5,4,8,2)@3,7,6,10,9),
pn(@3) = (2, 3)(4,5)(6,7)(8, 9).
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Example A.12. (Ag, Se < S10)—group:

a1b4a1_1b1,
. -1
Rss:= | azbia; bs,

agbsazh;t,

agbgaglbz‘l,

—1,.-1 -1
alblal b2 y albzal b5,

a1b5a2_1b;1,

-1

azbzaz_lbz ,

azbZlazb_l,

-1
a3b4a3 bl,

a1b3a1_1b3,
-1
a1b5 a2b4,
azbsazby,
-1

a3b2a§1b4 ,

-1
a3b5a3 b5

pv(b1) = (2,5, 4), py(b2) = 0,
pv(03) = (2,5, 3),
pv(bs) = (1,2,5),
pv(bs) = (2,6, 5),
on(@1) =(1,7,6,2)(3,8)(4,5,9, 10),
pn(@2) = (1,5,4,8)(3,7,6, 10),

on(@z) =(1,7,9,8)(2, 3,10, 4)(5, 6).

Example A.13. (Ag, PGL2(9))—group:
alblal_lbz_l,

a1b4a1‘1b5‘1,
N -1
Ra5 1= { a2b1a3 b3,

a2b5a2b1_1,

agbgaglbz_l,

:Ov(bl) = (2’ 5’ 4)’ pv(bZ) = ()’

arbya; b
a1b5a2‘1b
azbzaz_lb
azbZlazb

a3b4a§ h

pv(b3) = (2,5, 3),
pv(ba) = (1,2,5),
pv(bs) = (2,6, 5),
pn(@1) = (1,2)(3, 8)(4,5)(6, 7)(9, 10),
en(@2) = (1,5,4,8)(3,7,6, 10),
en(@) =(1,7,6,2,3,10,4,5,9, 8).

-1
1 »

4 >

-1
2 >

-1

1,

a1b3a1_1b3,
-1
a1b5 a2b4,
azbsasby,
-1
a3b2a3 b5,

a3b5a3_1b;1
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Example A.14. (As, M10)—group:

APPENDIX A. MORE EXAMPLES

aibia; tort, ajboa; bz, ajbsar; byt
b 1 -1
al 4611 b y a1b5a2 b R a1b5 a2b4,
R35 := ; a2b1a3 b2 1, asbrasbs, a2b5a2b1‘1,

azbilazb_l, azbz_lasbl, asboag b5 !

agbgagbgl, a3b4a§1b1‘1, a3b5a§1b;1

pv(b1) = (2,5,4), py(b2) =(2,3,5),

pv(b3) = (2,5)(3,4),

pu(bg) = (1,2,5), py(bs) = (2,6,5),
ph(@1) = (2,3)(4,5)(6,7)(8,9),
pn(@2) = (1,5,4,8,2)(3,7,6,10,9),
pn(@s) = (1,4,5,2)(6, 9,10, 7).

Example A.15. (Ag, PI"L2(9))—group:

a1b4a1 b 1, a1b5a2 b 1, a1b§1a2b4,

R35 := ; a2b1a3 b , ashrasbs, a2b5a2b1_1,

pv(b1) = (2,5, 4),
pv(b2) = (2,3, 5),
pv(b3) = (2,5)(3, 4),
pv(ba) = (1,2,5),
pv(bs) = (2,6, 5),

agbglazb_l, azbz_lagbl, a3b2a§1b4,

-1 -1 —1.-1
agbzash; ™, agbsaz;"bs, aghsasz b

pn(@1) = (1,10)(2, 3)(4,5)(6, 7)(8,9),
ph(az) = (1,5,4,8,2)(3,7,6,10,9),
pn(az) = (1,5,7,2)(4,9, 10, 6).

b

9

alblal‘lbl, albzal‘ b3 1, albgal b 1,

~

v~
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Example A.16. (As, A10)—group:

R35 := |

Example A.17. (As, S10)—group:

R35 := 1

b

aibia;tbrt,  arboa; by, ajbsay byt
atbsa; byt aibsa; bzt aibsta, 'bs,
ashiag byt aghpazthy,  ashaaztbgl,
a2b5a2b;1, a2b5_1a3b4, azbz_laglbl,
abrtazhyt, asbsazlb,t, ashbsaz byt

pu(b1) = py(b2) = (2,3)(4,5),

pv(bS) = (1’ 2)(57 6)7

pl)(b4) = (23 5’ 4)7

pv(b5) = (2’ 3’ 5)’

ph(@) = (2, 4)(7,9),

ph(@2) = (2,10,9)(4,5)(6, 7),

ph(@3) = (1,2,9)(@3,5,4)(6,7,8).
atbia;'b;t,  aiboa;tha,  azbza, byl
a1b4a1 b 1, a1b5a1 b 1, albglaz_lbg,
asbiay pt azbza_lbz asbgas hot

3 M1 > 3 ’ 3 ¥5 >

a2b5a2b;1, a2b5_1a3b4, azbz_laglbl,

asbytaz oy t, agbsaz'byt, asbsaz bzt

pu(b1) =
pv(b3) =
pv(ba) =
py(bs) =
ph(a1) =
ph(a2)
ph(a3) =

pu(b2) = (2,3)(4,5),
(1,2)(5,6),

(2,5,4),

(2,3,5),

(2,4,9,7),

=(2,10,9)(4,5)(6, 7),

1,2,9)(3,5,4)(6,7,8).
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Example A.18. (Ag, PSL2(11))—group:
aibiaghyt, aibpa;thrt, aibsa; byt

a1b4a1‘1b3 1, a1b5a1‘1bg1, albsal_lbgl,
-1 -1 -1

albl azbz, a2b1a2b3 y a2b3a2b5 y

R36 := ; .

a2b4a2‘1b;1, asbsasbg, azbglazb‘l,

azbl_lagbz, a3b1a3b§1, a3b3a3bg1,

a3b4a§1b;1, asbsasbg, agbglagbz_l

pv(01) = (2,6,4,3,5), py(b2) = (1,3,4,2,5),
pv(b3) = py(bs) = py(be) = (2,5)(3, 4),

pu(ba) = (),

pn(@a1) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12),
on(@2) = pn(az) = (1,2,7,5, 3)(6, 11, 12, 10, 8).

Example A.19. (Ag, PGL2(11))—group:

alblal‘lbz‘l, albzal‘lbgl, albgaz‘lbl,
a1b4a1_1bg1, a1b5a1_1b§1, albsal_lbgl,

-1 -1 -1
a1b3 agbl y azblazbz, a2b3a2b5 y

Rag := 1 -

a2b4a2_1b;1, asbsasbg, azbglazb_l,

-1 -1 -1
azbl a3b3 , a3b1a3b2, a3b3a3b5 ,
a3b4a§1b;1, asbsasbg, agbglagbz‘l

pv(b1) = (1,4,3,5, 2),

pv(b2) = py(bs) = py(be) = (2,5)(3, 4),

pv(b3) = (2,4, 3,6,5), py(ba) = (),

on(ay) = (1,10, 8,7,9,11,12, 3,5, 6, 4, 2),
pn(a2) = pn(az) = (1, 10, 8,6,11)(2,7,5, 3, 12).
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Example A.20. (As, A12)—group:

R3.6 := 1

pv(bl) - (1’ 3)(27 67 4, 5), pv(bZ) =
pv(b3) - pv(bS) - pv(bG) =

a1b1a3 lb 1
a1b4a1 b 1,
aib, taz byt
azbgazbs_l,

azbglazb_l,

asbsaz by,

aibyaz by,
a1b5a1 b 1,
a;b7tasb

104 "azb2,
agzbsa, b ,
azbl_laglbz,

asbsagbg *,

albgal b l,
a1b6a1 b l,
-1
azhiazhs ™,
azbsazbe,
-1
a3b3a3b3 ,

agbeagbgl

1,3,2,5)(4,6),
(2v 5)(3’ 4)’ pv(b4) = ()’

pn(@) = (2,11,12)(3, H(5, 6)(7, 8)(9, 10),

ph(az) =
ph(ag) =

(1,11, 2).

Example A.21. (As, S12)—group:

R3g := 1

pv(bl) = (1’ 4’ 3’ 5’ 2)’ pv(bZ) =
pv(b3) = pv(bS) = pv(bG) =

alblal_lbz,
a1b4a1 b3 y
albz_laz_lbl,
a2b4a2 b41,
asb;tasb

2b; “aghy,

a3b4a3 b 1,

albzagbfl,
a1b5a1 b6 R
1
aghiazhs =,
azbsazbg,
1
agbiazhs~,

azbsazbe,

(1’ 2’ 77 57 3)(6’ 117 12’ 10’ 8)7

ahza; b ,
abea; b ,
-1
a2b3a2b5 y
azbglazbz‘l,
-1
a3b3a3b5 y

agbglagbz‘l

(2,5,6,3,4),
(2v 5)(3’ 4)’ pv(b4) = ()’

pn(ar) = (1,2,12,11)(3, 4)(5,6)(7, 8)(9, 10),

ph(@2) = pn(az) =

1,2,7,5,3)(6, 11, 12, 10, 8).
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Example A.22. (Ag, PSL2(13))—group:

R3.7 := |

pv(bl) = (1’ 4’ 3’ 5’ 2)’ pv(bZ) =
py(03) = py(B5) = py(b6) = py(b7) =

alblal_lbz_l,
a1b7a1 b s
-1
azhsazbg -,
-1
a2b7a2b3 R
-1
a3b1a3b7 R

asbsazbe,

aiboagby t,
a1b5a1 b R
albz‘laz_lbl,

1
agzbsay b4 ,
azbglazb_l,

-1

a3b3a3b5 y

a3b7a3b§1,

ahza; b ,

abea; b ,
-1

aghiagh;

azbsasbe,

-1
azbl agbz,
a3b4a3 b 1,

agbglagbz_l

(2,5,6,3,4),
(2v 5)(3’ 4)’ pv(b4) = ()’

pn(ag) = (1, 2)(3,4)(5,6)(9, 10)(11, 12)(13, 14),

Ph(a2) = ph(az) =

Example A.23. (Ag, PGL2(13))—group:

R3.7 := 1

pv(bl) = (1’ 4’ 3’ 5’ 2)’ pv(bZ) =
pv(03) = py(bs) = py(be) = py(b7) =

alblal_lbz_l,
a1b4a1 b6 1,
bra; b
aibza, "bs,
-1
aghzazhg -,
-1
a2b7a2b3 R
-1
aghiagb; -,

agbsazbe,

aiboagby t,
bsa; b
a10s5a, “Ds,
albz_laz‘lbl,
a2b4a2 b 1,
azbglazb_l,

-1
a3b3a3b5 ,

a3b7a3b§1,

1,2,9,5,3,7)(6, 13, 14, 8, 12, 10).

a1b3a1_1b7,

arbsa; b, 1,
1

aghiazh; -,

azbsashe,

1
azbl agbz,
aghsag b ,

agbglagbz_l

(2,5,6,3,4),
(2.5)3.4), py(bg) = 0,

pn(a1) = (1,2)(3, 8)(4,6)(5,10)(7,12)(9, 11)(13, 14),

Ph(a2) = ph(az) =

(1,2,9,5,3,7)(6, 13, 14, 8, 12, 10).

~

v~
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Example A.24. (Ag, A14)—group:

alblal‘lbz‘l, albzagbfl, albgal‘lbgl,
a1b4a1‘1b§1, a1b5a1‘1bg1, albsal_lbgl,
aibza; to7t, ajbyta; by, apbjashs?t
R3.7 := ; a2b3a2b5_1, a2b4a2_1b;1, asbsasbg, -
a2b7a2b§1, azbglazb_l, azbl_lae,bz,

agblagbgl, a3b3a3b5_1, a3b4a§1b4 1,

asbsasbg, a3b7a3b7_1, agbglagbz‘l

pv(d1) = (1,4,3,5,2),
pv(b2) = (2,5,6,3,4),
pu(D3) = (2,5)(3, 4),
pv(ba) = 0,

pv(bs) = (2,5)(3, 4),
pv(De) = (2,5)(3, 4),
pu(07) = (2,9)(3, 4),

pn@y) = (1, 2)(3,4)(5,6)(9,10)(11, 12)(13, 14),
pn(@2) = (1,2,9,5,3,7)(6, 13, 14, 8, 12, 10),
pn@3) = (1,2,9,5,3)(6, 13, 14,12, 10).
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Example A.25. (Ag, S14)—group:

alblal‘lbz‘l, albzagbfl, albgal‘lbgl,

a1b4a1‘1b§1, a1b5a1‘1bg1, albsal_lbgl,
a1b7a1_1b7, albz‘laz_lbl, azblazb;l,

R3.7 := ; a2b3a2b5_1, a2b4a2_1b;1, asbsasbg,

v~

a2b7a2b§1, azbglazb_l, azbl_lagbz,

agblagbgl, a3b3a3b5_1, a3b4a§1b4 1,

asbsasbe, a3b7a3b7_1, agbglagbz‘l

pu(01) = (1,4,3,5,2),
pv(b2) = (2,5,6,3,4),
pv(D3) = (2,5)(3, 4),
pv(ba) = 0,

pv(bs) = (2,5)(3, 4),
pv(De) = (2,5)(3, 4),
pu(07) = (2,9)(3, 4),

pn@y) = (1, 2)(3,4)(5,6)(7, 8)(9, 10)(11, 12)(13, 14),
pn(@2) = (1,2,9,5,3,7)(6, 13, 14, 8, 12, 10),
pn@3) = (1,2,9,5,3)(6, 13, 14,12, 10).
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A.2 Amalgam decompositions of Example 2.2

Vertical decomposition

We first give the vertical decomposition of the (6, 6)—group I" of Example 2.2:

~ ,b) (v,9)
F = F(U X —(v,b) ~ =0, F ,
3 Fis”'=Fy®

where the factors are defined as follows:

F(Ub) (b1, by, b3), F(US) (S1, S2, S3, S4, S5, Se, S7) -

(v,b) (v,b)
Fi377 = R

The injective homomorphism is given by the description of Fl(g’b) as

a subgroup of Fgf“’b) of index 6:

F2® = (by, bz, bobg by, by bz b3, by *bib3, by by b3, baby2byL, bobsby by 2,
bZb; 5L, b, 3b; tbst, babib3bZ, by 2bzthibsb3, by %bg thobsh3)

the inclusion Fl(é”s) N |:7(v,S) by

(v S)
Fi3™ = (s1, Sz, S6, Sy 83, 85 Iss, s7 1ss, 8733 , 8583 ,

S483 , 83 8683 , 83, 83 8183, 83 8283) .
The identification
P < R
b]_ «~—> 51
b3 <> S2
bzbglbz <> Sg
by th31h3 «— s 's3
by th1b3 < s5's3
by b th3 <« s7lsg
bab byt < s7857
babsbytbst < sss5t
bib;tost < sgs3t
by3b b, «— s3lsesy
babib3b3 <— s3
by ?b3 'b1bsh3 «— s5ts1s3
b %3 thobsh3 «— s3tsos3
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in the amalgam leads to a finite presentation of I" with 10 generators

{b1, b2, b3, 81, S2, S3, S4, S5, S6, 57}
and 13 relations

-1 —1h—-1,2 -1 -1 2 -1
b1 = 51, b3 = So, b2b3 bz = Sp, b2 b3 b2 = S4 S3, b2 b1b2 = S5 S3,
—1p-12 _ -1 —2K—1 _ -1 —1-1 _ -1
2n—1-1 _ -1 h-3ph—-1p—1 _ 1. -1 2n2 __ o2

by %b3 th1bsh3 = s3siss, by 2bz thobgbs = s5tsos3.

Horizontal decomposition

In a similar way, we can describe the horizontal decomposition of
~ (ha) (h,u)
r=s FS *Fl(lgw,a)EFl(g,u) F7
by a finite presentation with generators
{a1, a2, as, U1, Uz, U, Uy, Us, Ug, U7},
and relations

a1 = Ug, a3 = UsU7, aa5° = uzugt, adajas® = usuiugt, asaaz? = uoug T,
211 2. -1 2. 1 3 _
a3a2a3 = U3 u5 y a3a1a3 = UsUg, a3a2a3 = UsUe, azazaiaz = UsUz,

3 — ueu=! a3a3 — 02 a~lasa—la=3 — -1 a—laa—1a—3 — y.u-L
ajazaszay = Uslg, 8385 = Ug, @, azd, az~ = Uglg ", @, a1d, ag - = U3l .

Isomorphisms

We recall the set of relators R3.3 of Example 2.2:

atbia; byt aibpa; thyt, aibsasb,*t,
) 1.1 11 1-1
Rss = aibg ag bz, azbiaz~b,~, aghoaz bs-,

azbgaglbl, azbglagbz, azbl_laglbl_l
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Explicit isomorphisms between the three given finite presentations of I are:

r®» <> (a.....b3|Raz) <« I'®
saby byt a Toasw
b3b234_1b2 <« ap <~—> ap
bas; 'b3 < 2 o
s1=b; «— by — U
by «— b — azuglag
So=b3z «— b3 — a%uglas
S3 <«—> a1b3b§
Sqg <«—> a1b§b2
S5 <—> alb3bIlb2
Sg <«—> bzbgle
S7 <«—> aibzbiby
agalasbl_l > U2
az_ialaz—ibl_i «~— U3
a, asa, by > W
adb; ! <~ Us
(b1azazaz) ™t «— U
azbfl <~—> U7,
where
NI e F0
and

F(h) — I:?Eh,a) I:7(h,u) .

* —(h,a) ~ = (h,u)
Fis7 =Fi3

Observe that with this identification, the abelianization map I' — ¥ = 72 is now
given by

ap, az,azt— (1 + 27,04 27)
b1, bo, bz — (0+ 27,1+ 27)
S1,52,S¢ > (0+ 27,1 + 27)
S3, 54, 55,57 — (1 4+ 27,1 + 27)
ur— (1+ 27,0+ 27)
Up, U3, Ug, Ug, Ug, U7 > (1 + 27,1 + 27) .
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Local action on trees

The vertical amalgam decomposition of I" described above gives a natural action of I"
on the first barycentric subdivision 75 of Tom = 7. See [64, Chapter 4] for the general
theory about amalgams and their action on the corresponding tree. Let P be the vertex
of 7¢ stabilized by F(” b _ by, by, bs). The local action of I' = pry(I) < Aut(72m)
on S(Xp, 1) in Tg, i.e. the homomorphism p, : (b1, by, b3) — P, < Som determined
in the proof of Theorem 2.3(1), can be reconstructed by the action of F(” ® on the

set of edges of 7 originating at P. These edges are labelled by right cosets F(” b)g. :
i=1,...,6,0 € Fé” b such that

6
R = |Fis®a
i=1
The group F(” b) = (b1, ba, b3) acts by right multiplication on the set of right cosets
(Fis”gili—1..6. If we choose g1 = 1, g2 = bobaby, g3 = (b2b1)?, ga = boby,
gs = ba, gs = bobibs and make the identification F(” b)g. <ifori=1,...,6,then
we exactly get back our homomorphism p,:

pu(b1) = (2,3)(4,5),
po(b2) = (1,5,4,2,3),
Pv(bS) = (2’ 3’ 57 47 6),

generating P, = Ag. In the same way, we compute the action of F( 2 = (az, ap, as)
by right multiplication on right cosets

FM® = F8® 1 F D@ a2a; u F8 a5 u FiPagu FPaza; u FiPa,
and recover pn : (a1, az, az) - P, < Son = S

ph(ay) = (2,3)(4,5),
ph(a2) = (1,6, 3,2)(4,5),
ph(@z) = (1,4,5,6)(2, 3),

generating P, = Ag.

Vertical decompositions of I'g

The cell complex X of Example 2.2 corresponding to the subgroup I'p < T' is given
by the 4 - 9 = 36 geometric squares illustrated on the next two pages.
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5§ sy ais a,y

bl,a% A bl’ B b3’a% A bz’ B bz’a% A b3, B
o al o ,B al o ajl o
ags az;s az;s

bz,{ \ 4 b3,y b2,a% A b1, B b3,a% A bzy B
a1 o a2,a a2,a
ags agy ags

bl,,{ A b3’/3 bg’({ \ 4 b3’y b]_’a% A\ bl,y
azva az,a aZ,a
aly a,y s

bl,a} Abig bz’(X% Ab3g b3,a¥ Abyg
aip ai g ag
ag,}, a3’y a3’y

b&,{ \ 4 bz’y bl’aE A bz’ﬁ bg’a% A b3,/3
ai g B B
azy ags aB,y

bgya \ 4 bl,y b&g} \ 4 bgy bl,g} A bl,ﬁ
a.p ap g

Figure A.1: Complex X of Example 2.2, part |



b2,a

b1s

b3

ais

]

al,a

ais

a-3,oc

as

ay

} A 4
a1 g
ar y

s%& £

N
g

]
1

A

!
]
]

&
=

<

o
=
<

(@
w
2
<
i <4 £

=

A b3,f3

(o
w
NA

(2
N
<
|
£ » £

o
=
<

]

(2
N
=

(e
=
2
<
£ <4 £

b1s

APPENDIX A. MORE EXAMPLES

aiLs

al, o

as

bo.s

a3, o

as

ag g

ai, y

bo.s

ap, B

ay

ag g

ap, y

b3, o

A

a3, o

O
N
<

o
=
<

(@
w
=

o
w
<

O
N
<

b2 s

P35

P35

bl,a

aq,s

} A\ 4
ap, B
as

} A\ 4
a3, o
a s

, } A
az o
ai, y

} A\ 4
aZ, o
ap, y

} A\ 4
ag, B
ap, y

ag, B

Figure A.2: Complex Xq of Example 2.2, part 11
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The amalgam decompositions of I'g are:
v,r ,0) ~ ~ h,t) w
Fs )*Fz(;“ze(;*‘” Foi% == R FEhO 2 p o) F( !
where

F(Ur) (ri,r2,r3, ra, rs), F( D = = (01, 92, 93, 94, Qs) .

The inclusion Fo" < F{"" is defined by

F(“ " — (rp, T, I3, rarsry ot rararg et rarart rotrsre, rotrar,

-1 -1 -1 ,.-1,-1 -1 -1.-1 -1
rl rqrq, I’l rzrl y I’4 I’l rg, r4 Isi1ra, r4 rl Iory, r4r1r4 y

rarory L, rarsryt, vargtra, vararory, rararary eyt rararsry g

-1.-1 .2 2 -1.-1 2
r4r3r1r3 I’4 y r4r1r4, I’1I’3I’l, r1r3r2r3 I’4 s r4r3r1r4)

and the other inclusion F oY < F{"9 by

F(U Ne); -1,-1 ,-1,-1

05 a3 "ds02. 05 "a105 ", a3 7d5 g, a3 a5 Y0z, a3 'q10s,
Ust20; "d3 . 0sds td; 'agt, ds0103 " dsd; *0s, U3010401030:2.
030104030, 07 "03 ", 0a01040s0; 07 03", 0a0104020; ‘a5 a3
030103, 450302, Q2Q1q4_1q1_1q3_1» 03010403) -

227

= (d1, 95, 4, OI20I4qz OI2Q30I2 ,Q2q5 q2 q2 dz 42, 4, Q3 OI4QZ,

We obtain a finite presentation for the vertical decomposition of I'g with generators

{r1,r2,r3,r4,rs,d1, 42, 03, 04, Qs}

and 25 relations

1

-1.-1 -1 -1.-1 -1
2 =01, I's =0Qs, I3 =04, rNrsr; ry © = 0204q, ~, rirar; r, = = 02030, -,

rirary ' = Gads 0, ", 1y sy = 0y 05 a2, 1y trars = d; 705 ' dag2,
rytrars = 0,703 "ast, 1y trary T = a5 tag, g trtra = g3 tas s
rytrsrira = 03205 tas, rytrytrora = d3'q10s, rararg ! = ga020; a3t
raror; = s0s tay gt rarsryt = gsq1a3 , rargtra = gz, tas,

rarararis = 0301049109302, rarararg 1r4‘ = 0301040930, 1q1_ 1‘13_ L

1,1 ~1.,-1.-1 1,1 ~1.,-1.-1
Fararsrs °r, = = 030104050, "0, "Q3 ~, rarsrirg °r, =~ = 030104920, "4, "q3

2 2 2 2 -1,-1 -1.-1,-1
rarira = QsQaQs, rirsry = gx0aqz, rirsraf; °r, = = 02019, "4 43

2 2
r4rarirsa = 039149493
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Horizontal decompositions of I'

The horizontal decomposition of I'g is given by the generators {w1, ..., ws, t1, .. ., t5}
and 25 relations

wiws = toty, wlwi = t2t52, w3 = t3, wlwgwl_l = tztgtz_l, w4w1_1 = t5t_l,

wiwy = toty, wy Twiwa = t5 Mots, wy twy twa = tg Mats, w; twswa =t Hats,

-1 -1 -1 -2 —1; +-1 -1 -1 -1
W, "Wy wa = g Tluts, wiw, T = oty oty 7, wow, Twow, T = titstat, T,

wiwy, wy twyt = ot %, wowswow ! = titstatyt, wowswow T = titatat;

wiwg Twawg T = oty sty b, wsw) twswit = tatotaty Y, wiwit = 2651
w5w2w5w1_1 = t4t1t4t2_1, w1w5_1w1_1w5_1 = t2t4_lt3t4_l,
witws tw? = G2, witwow? = 573, wiwaw = t3tsty,

2 2 3 2
wiwswy = tHHtzty, wi =tttz

Isomorphisms

Explicit isomorphisms between the two amalgams of I'g described above, and I'g as a
subgroup of I" are given as follows

r
Vv
ry <= o < 1®
r <— boby 1 <« wity 1
rh=0q <— b3bl_1 <« w4t5_1
rR=0q <— b1bs > 1 1w5
g <— b1bs <~ tl_lwzw4
[5=0s <«— b% «— 1w4
Q2 <«—> aid, 1b12b1 LD w2_11w11t2_1
9? <« alaz__?% <« 1,7t Twows
r1r4q3 <> azal <~—> w1
rig, LENPIN asa, 1 <« w2
Oy 10y ‘rirsry <— az «— w3=13
q3_1I’4 <> ajas <> w4
qz_ll’ll’g <~ ajas <> W5
rlqz_lqgl <~ agazbz_lbl_l «~—— 1
rirag;tgst <  aarth? <
_1q2_ 1’% <« alagbgl_bzl‘l <~ 14
Q3 “Targ <~ alazbl «~— 15,
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using the notation

W _ g.n (v, Q) (h _ () (h,w)

w0 (vq) Fo *_(ht)~(hw F
RO S FhOxphw) F5

A.3 Anexample illustrating Proposition 2.4

In the notation of the proof of [17, Proposition 6.1] we have n = 0, ©X is the
(Ag, Ag)—complex X of Example 2.2 and k = ¢ = 4. Let Cy ¢ be the (4, 4)-complex
given by

{a4b4a5‘1b5‘1, a4b;1a5_1b5, a4b5a5_1b;1, a4b5‘1a5‘1b4}

and Cg 4 (a disjoint copy of Cy ) be given by

{a6b6a7_1b7_1, aebgla;1b7, a6b7a7_1bg1, aﬁb;la;lbe} .
We choose Va := a1, ©b := by, @ := a4, @ = as, by := by, by := bs, &1 = ag,
a = ay, bl = bg and b2 = b7. The surgery operations which are described in the
proof of [17, Proposition 6.1] lead to the irreducible (A14, A14)—complex given by the

following set R7.7 (the relators of the embedded Example 2.2 are underlined)

ajbia; b1 , ahpa; b3 , albgagb2 , aibsa; b , aibsa; b ,

a1b6a5 b6 1, albyal b l, albglaglbs, albglaglba,, albglaglbz,

azblas b 1, a2b2a3 b 1, azbgaglbl, a2b4a2 b 1, a2b5a2 b 1,

—1b—1

azbea, byt agbray byt asbylashy,  asb;ta; asbsaz'h;

a3b5a3 b 1, a3b6a3 b l, a3b7a3 b7 l, a4b1a4 b7 l, a4b2a4 b 1,

bsa, tbyt, asbaas'bgl, asbsaz'byl, asbeay byt bra, byt
asbsa, » a4bgag » a4bsag . a4bead, ., a4b7a, ;
asbgtaztbs, asbytazlbs, asbiagtb;t, asbeazlb,t,  asbsag byl
asbrag 'bst, agbiagtbs ', ashoag'byt, agbsagbzl,  asbaag by’

agbsag byt asbear byt ashza;'byl, agbsl'ar'be,  asbg'as by,

a7b1a7 bl 1, a7b2a7 b l, a7b3a7 b3l, a7b5a7_1b5_1
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and local groups determined by

pv(b1) = pn(a1) = (2, 3)(12, 13),

ov(b2) = (1,13,12, 2, 3),

pv(03) = (2, 3,13, 12, 14),

pv(ba) = pn(aa) = (1,7)(4,5)(8, 14)(10, 11),
pv(bs) = pn(as) = (4,5)(10, 11),

pv(be) = pn(as) = (1,5)(6, 7)(8, 9)(10, 14),
pv(b7) = pn(az) = (6,7)(8,9),

pn(@2) = (1, 14, 3, 2)(12, 13),

pn(@3) = (1,12, 13, 14)(2, 3).

A.4 A virtually simple (Ag, Ais)—group
Example A.26.

ajh;a; b , aibpay b , aibza; b ,  aibsa; b ,

a1b5a1 b6 , albeal b 1, a1b7a2 b 1, a1b7_1a3b7,

albz_lazbg, a2b1a2 b 1, azbzazbgl, a2b4a2‘1b4,
Ra7:= 1 asbsa;lb;t, asheaslb bra; toot biasbzt, (-

azbsa, "b, 7, axbed, "D,  azb7a, , asbiasbs -,

ashpash; !,  ashzasby,  asbsaz'bs,  asbsaaba,

asbeaz 'bgt, asb;lasbs, ashbztay'byt, asbylasbs,

a3b2_13-4b_1, a3b1_1&4b1, aszbea, b6 1, a4b5_13_4b21

pv(b1) = (3,5)(4,6),

pv(b2) = (2,8,7)(3,5)(4,6),
pv(b3) = (1,2,7)(3,5)(4,6),
pv(ba) = (3,4,5),

pv(bs) = (4,5, 6),

pv(bs) = 0,

pu(b7) =(1,2,4,6)3,8,7,5),
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pn(a1) = (2, 6,5, 4,3)(9, 10, 11, 12, 13),
ph(@2) = (1,5)(2, 3)(4, 11)(6, 9)(10, 14)(12, 13),
ph(as) = (1,2, 13, 3)(4, 10)(5, 11)(8, 12),

ph(as) = (2,13, 14, 12)(3, 7)(4, 10)(5, 11).

A5 Supplement to Example 2.58

Let I" be the (6, 10)—group defined in Example 2.58. We first give a finite presentation
of the horizontal decomposition I'g = Fs xf,, Fs in Example 2.58 with generators

{S1, S2, S3, S4, S5, U1, U2, U3, Ug, Us}
and 41 relations

-1 -1 -1
Sq 7835, "S3 = U, “U1Ugu3

S3's4S5 1845 T = U3 MUU3U1U3UL

—1.2.3.-2o. _ -1 -1 -1,-1 -1
83 S4535, 83—U3 Uilau, “usuiugl, U3 U, "us

53518355 253 = Uz “up tupur tuz turtus

—1.2.-2 -1 -1 -1
83 8483 8183=U3 Uzlauiu, “U, “U2u3z
5382838, 283 = Uz tup tug turtuztur tus
-1 262« _ 1,1 -1 -1 -1
S3 782835, "S3 = Uz U, “UpUgU, “U5z U, "U3
-1 202« _ .,—1,-1 -1,,-1, -1
83 8482848384 S3—U3 LI5 Uilgl, U3 u; "us

-1 -1 -1
Sl 828384 83=U4 uougqUs3

122, —1c—1c—1. _ ,~1 ~1,-2,,-1,-1
S5 S4S3 S, "S5 S, 'S3 = U3 UiU3UilUy Uy U, U; U3

2

o1y 2e—2e - 1, -1, -1

S3 5355 18453 1S T = Uz TuqusUqUsUy
S5 1535, %53 = Ug tuguquauy tuztustus
s3 15355 15,15 = uztusugusug tuguug
S5 1535, 253 = UpUguuau; tugtustus
S3 55 1835, %53 = Uz tUp tUg tuquT tug tuT tug

1o 10 202« _ -1 -1,-1 -1
S3 8485 S4535, 83—U3 Uauauguy U3 U, "us

2

—-1.2.—2.-1.-1.-1. _ -1 -1,-2,-1, -1

s3s; 78y T = uzurtug!t
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—1—-1a 1o ,—1,.-1
Sq 75,7535, 7 S3 = Uy, U3 ugqus

2,—-1

s3 535525, s, = uztugusugugtug
S3 1545185 = Uz uztusugus
S37s, 1835, %83 = Uz tup tuz tusutuz tur tus
S3 15355 15154835, %s3 = Uz tusususuz tusugurtuztustus
S3 18353 %S5 183 = U uquauquy tup tuztug
s38g 1838 %3 = Uz tutuzurtuz tur tus
S3 15355 %8283 = U3 Tugugusuy tur tug tus
S3'S7S5 18455 '8 T = Uz tUjU3uiUgUg
S3 715352 = U3 TUgU3Us TUg
sy S5 tsas, Ts3 = uy tug tuaus
s3 = uztutuauqus
S3 18255 18451535, 253 = U Ujuzuqu3usuauy tuz turtus
S3 15355 25, 1815, ts3 = Uz tugugusuy turur tus
S3 15351535, "853 = Uz U1U3UUs3
S3 151835, %53 = Uz up tuguy tuz turtus
s3 15355 15283 = uztugusuusugus

$253

s, %83 = UgUsuquauy tuztustus
s3 15355 1ss 15 = uztususususugugug
s3s355 184087 T = ugtusuzULUsUL
S3s7s5 T = U3 TUqU3UaUy

S3 15355 %5, 1808, 153 = Uz Tugugusuy tuT Ausur tus.
In the following table, we have computed \pf,")(w)\, if lw| = 2andk < 5. Observe
that if b, b € {b1, ..., bs}*L, then
10X (0b)| = [ (Bb)| = [ (bb) ™ = | (Bb) 1.

If |08 (w)| = [p¥*™ (w)| for some k and w in the table, then we have printed
bold the number \pl(,k“)(w)\.
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el [k=1] 2] 3] 4] 5]
w = b? 5| 5] 50| 300 | 1500
bib, 3|/15| 75| 150 | 2250
bibs 5|10 150 | 900 | 9000
bibg 3[15] 30| 450 ] 4500
babs 5[30 300 900 | 5400
bib;? 5| 15 | 450 | 4500 | 4500
bib, ! 5] 15[ 150 | 900 | 1800
bibs? 5[25| 50| 500 | 3000
bib,?! 3] 9| 54| 54]1620
b2 5| 5] 50| 300 | 1500
babs 5[25] 50| 500 | 3000
bobs 5[15| 150 | 900 | 1800
babs 5[30 300 900 | 5400
babgt 5| 15 | 450 | 4500 | 4500
bab, 3/15| 30| 450 4500
bobs? 5|10 150 | 900 | 9000
b3 1] 5] 25| 50| 500
bsba 2] 6| 90| 180 2700
bsbs 1]30| 30| 450 4500
babg ! 1[30| 30| 450 | 4500
bsb, ! 2[20] 60| 600 1800
b3 2| 4] 20| 100| 500
babs 210 | 20| 600 | 6000
babg ! 2[/10] 20| 600 | 6000
bZ 1] 2| 10] 20| 600

Table A.1: Orders of some ,ol()k)(w) in Example 2.58

A.6  Some 4-vertex examples
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We give now several examples in a certain class of 4-vertex square complexes. In all

examples, the complex will be denoted by Y.

The 1-skeleton of Y is illustrated in Figure A.3, and a typical geometric square
of Y isillustrated in Figure A.4, i.e. we always have four vertices «, 8, v, 8, horizontal
edges az, ap, az (oriented from « to B), c1, C2, 3 (oriented from § to ), and vertical

edges by, ..., bg (oriented from g to ), d1, ..

., e (oriented from « to §).
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) Sk y
d| 4 3 b]
o aj B

Figure A.4: A typical geometric square of Y

Each of the 18 geometric squares is of the form ajb; = d,ck (see Figure A.4), and
the universal covering space Y is 73 x 7. By construction of the 1-skeleton and the
geometric squares of Y, we have for each k € N:

PR = PXe), PP®B =PrPu), PO =P®p), PW(y) = PRes).

Example A.27. ((1, Ag), reducible)
Let Y be given by its geometric squares

Then

aiby =dic1, aibp =dyc1, aihz =dscy,
aibg = dsCy, aibs =dscy, aibe = deCy,
agby = diCp, aghy =dacp, aphz = dacy,
asbg = dsCp, aghs = dgCz, azhg = daco,
asgby =dxC3, aghy =dsc3, aghz = dscs,
a3b4 = d103, a3b5 = d6C3, a3b6 = d503.

PP @ =1, PP(B) =1, PP (@) = As, PP () = Ag,
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Example A.28. ((Z2, As), irreducible)
Let Y be given by its geometric squares

Then

aiby =dic1, aibp =dycy, aihz = dscy,
ajbg = dscy, aibs =dscy, aibe = dsCs,
aghy =dicp, aghp =dxcy, ashz = dscy,
agbg = dsCp, aghs = dgCz, azhg = dacs,
agby = dxc3, asbp =dsc3, azhz = dscs,
a3b4 = d603, a3b5 = dlC3, a3b6 = dsCo.

Pn(a) = Zp, Pr(B) = Z3, Py(a) = Ae, Py(y) = Ae,
PP (@) =4, IPP(B) =4, PP ()| =360-60% |PP(y)| = 360-60°.

Example A.29. (Pn(a) # Ph(B), IP® (@)| = [Pn(a)|, irreducible)
Let Y be given by its geometric squares

Then

aiby =dic1, aibp =dycy, aihsz = dscy,
ajbg = dsC1, ajhbs = dscp, ajhe = decs,
aghy =dicp, aghp =dscy, azhz = daco,
aghg = deC2, aghs = dac3, azhe = dscy,
asgby = dsc3, aghp =dic3, aghz = dscs,
a3b4 = d403, a3b5 = d6C1, a3b6 = doCo.

[Ph(c)| =6, |Ph(B)| =3, Py(a) = Ag, Py(y) = Aes,
IP@ (@) =6, PP (B)| =24, PP ()| =360-60° |PP(y)| = 360-60°.

Example A.30. (Pn(a) # Pn(B), Py(a) # Py(y))
Let Y be given by its geometric squares

aiby =dic1, aibp =dycy, aihsz = dscy,
ajbg = dscp, aibs =dscy, aibe = dscCs,
aghy =dicp, aghp =dscy, ashz = dacs,
agbg = dsC3, aghs = dgC1, azhe = daco,
asby =dxc3, agby =dsc3, aghz = dsCo,
a3b4 = d4C1, a3b5 = d1C3, a3b6 = d5Cl.

Then [Ph(a)| = 3, [Ph(B)] = 6, |Py(a)| = 360, [Py(y)| = 120.
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A.7 Example I'7 23

Example A.31.
—1p—1 -1
aihiaz b, =, aiboa; "bs,  ajbzazbs, aibzasbz,
—1p—1 —1p—1 —1p—1 -1
aibsaz b=,  aibea, "bg ", aibza;"byy,  aibga; “hio,
aiboa; b bioaz bgl, aibirasb bioasb
1093, D4, a1010a5 "0g =, Qa1b11a302, a1012a303,
—1,-1p-1 -1,-1 -1, p—1 -1,-1
a1b12 a4 b2 y albll a2 bg, alblo a4b11, albg a3 blO»

Ra12 == 3

alb;1a4bgl,

a1b§1a4b1‘1,
bsa; b

azbzag "011,

1
azbioa, “b7,

-1,-1
a1b6 a, b11,
albz_laz_lbl,
azbaagbio,

—1,—-1
a-2bl.2a4 bll >

albglaz_lbg,

a1b1_1a4b§1,
-1

a2b6a3 b1,

-1,-1
a2b12 a3 bg,

aiby ta; tbgt,

azbiagbo,
azbgaglbgl,

-1,-1
azbll a, b1o,

—1. h-1 -1.-1 —1,-1p-1 ~1, h—1
aghg~asby,, azbgTa, b, azb; aj; by, azhgTasbg,
—1. h-1 -1.-1 “1. h-1 —1.-1p-1
agh, "ash,~, azbg a, by, agzb,azb,”, azb;Taz; by,
—1p-1 —1,.-1
a3b4a4 b3 y a3b5a4b1, a3b6a4b2, a3b8a4 b7 R
—1,,-1 -1 -1.-1 -1
aszbioa, by, asbuaz"be, asb; a, "bg, asbsa, “bg
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Generators of I'7 23:

ag =Y (L+2i +j+k), aft=vyd—-2i —j—k),

a=v1+2i+j—k), ayt =y -2 —j+k),

az=vy(1+2i —j+k), azt =y —-2i+j—k),

aa=vy@A+2i—j—k), agt=v(L—2i+j+k),

by = ¥(1+2i +3j + 3k), byt =@ -2 —3j—3k),
by = ¥ (14 2i +3j — 3k), byt =¥l —2i —3j+3k),
b3 = (1 +2i —3j — 3K), b3l = (1 —2i+3j+3Kk),
bs =y (1+2i —3j+3k), byt =y (1 —2i +3j —3k),
bs = ¥ (3+2i + j + 3K), bgl =y (@ —2i —j—3k),
b = ¥ (3+2i + j — 3Kk), bgt=v(3—2i — j+3k),
b7 =¥ (B +2i — j+3k), bot =y (3 —2i +j -3k,
bs = ¥(3+2i — j — 3k), bgt = v (3 —2i + j+ 3k,
be = ¥ (3 + 2i +3j + k), byl =y (@3 —2i —3j —k),
bio =¥ (B +2i —3j +k), byt = ¥(3—2i +3j — k),
b1 =¥ (3+2i +3j —k), bt = ¥(3—2i —3j +k),

b1z = ¥(3+2i —3j — k), by = (3 —2i +3j + k).
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A.8 ExampleI'73;

Example A.32.

R4.16 = 3

alblaglbgl,

a1bsaabs,
albgal_lbgl,
aibizarbyy,
a1b1_61a2_1b7,
albglaz_lbm,
albglaglbg;,
azblaglbl_zl,
azbgaglbgl,
azbia, byt
a2b15a3_1b1_41,
azbgtasby t,
azbglaglbg,
a3b5a;1b1_41,

-1
azbisasb;g,

-1
a4b2a4b15 R

aibzaz by,
a1b6a1b1‘51,
aibioa, Tbyt,
a1b14a§1b;1,
albl_slaglble,
aib;tagb; t,
albglaz‘lb4,
azboashs,
azb7asbe,
agblzaglbgl,
azbyay by,
azbglaglbz,
azbglaglblg,
asbgashs,
agbglaglblo,

-1
a4b7a4b14 R

APPENDIX A. MORE EXAMPLES

aibsaiby,,
a1b7a;1b1_01,
aibiiagbis,
aibisagbio,
arbyita; by,
albglaglbll,
arb, tashr?,
a2b4a2b1‘31,
azhgazbie,
azbizasbiz,
a2b1_41a3_1b15,
azbg tasbg t,
a3b1a3b1_61,
asbnag by,
agb;1a4b§1,

11
a4b12a4 b12,

aibgasby,

albgaglbgl,

alblgaz‘lblll,
aibiea, 'hig,
albl_olaglblz,
aibg tagbst,
arb; tah;?,
a2b5a2b1‘61,
azbloaz_lbl_ol,
agbiaazhyy’,
azbglaglbg,
azbg ta, by,
agbzallbl_l,
asbiza, byt

a3b§1a4b;1,

-1
a4b16a4b9
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Generators of I'7 31:

ag =Y (L+2i +j+k), aft=vyd—-2i —j—k),
a=v1+2i+j—k), ayt =y -2 —j+k),
az=vy(1+2i —j+k), azt =y —-2i+j—k),
aa=vy@A+2i—j—k), agt=v(L—2i+j+k),
by = ¥ (1 +2i + j + 5Kk), byt =@ -2 —j—5k),
by = (1 +2i + j — 5Kk), byt =@ —2i — j+5k),
bz =¥ (1 +2i — j+5k), byl =yl —2i+j—5k),
bs =¥ (1+2i —j —5k), byt =@ -2+ j+5k),
bs =¥ (14 2i +5j +k), bgl =yl —2i —5j -k,
be = ¥ (1+2i +5j —k), bg' =y (1 —2i —5j +k,
b7 =y (@1 +2i —5j+k), byt =y (1 —2i +5j —k),
bg = (1 +2i —5j —k), byl =yl —2i+5j+Kk),
be = (5 +2i + j + k), bgt =¥ (5—2i —j—k),
bio=v¢¥G5+2i+j—k), byt =¥ (5 -2 —j+k),
bir =¥ (5+2i — j+k), bt =v(G-2i+j -k,
bz =¥ (5 +2i —j -k, by =¥ (5 —2i + j+k),
b1z = ¥ (3+2i +3j 4 3k), b = ¥(3 —2i —3j — 3k),
bisa = ¥ (3+2i +3j — 3k), bt = ¥(3 —2i — 3j 4 3k),
bis = ¥(3+2i —3j + 3k), b = ¥ (3 — 2i +3j — 3k),

bis = ¥ (3+2i —3j —3k), bid = ¥ (3 — 2i +3j + 3k).
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A.9 Example I'7.23¢,

Example A.33.

Ra1o =

aibiasbo,
aibsazhs,
a1b9a4b5,
albl‘zlaglbll,

aibg ta by,

atbrta bzt

aghzag blo,
-1,-1
a2b12 a, b3,
azbgla4b§1,
-1
-1
a3b6a4b5 s

asbiyasby;,

ajhoa; blz,

aibeaghy,
—1,.-1

albloal b6 ,

arbyia; thy

aibg taz tbst,

a2b3a2_1b7_1,
-1
a2b8a3b5 )
“1.-1
apbi;a, by,
azbZlagb2_1»
-1
a3b2a4b1 ,
bsag b

-1

APPENDIX A.

aibsaz byt
a1b7a2‘1b§1,

-1,-1
a1b11a4 blO’

-1,-1

aib, *a; b,
azbsa; 'hia,
azhioa; by,
azbgabao.
azbz_lagb;l,
agbgaglbgl,
agbllaglbgl,

-1

MORE EXAMPLES

absazbio,
arbga; b,
a1b12a4b8,
atb;tazth;?,
aibzta; tbyt,
beas byt
20683 "Dy7
azhipagbg -,
azbgtasbyt,
1
azbl a4b4,
a3b4a;1b7_1,
1, -1
ashyyaabg,

a4b9a;1b4
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Generators of I'7 23 -

a1=v@+i+j+k), at=yR—i—j—k),

a2 =vy@Q+i+j—k), at=y2-—i-j+k,

az=yQ2+i—j+k), agt=vy@—i+]j-k,

au=vR2—i+j+k), at=yR+i—j—k),

bi=yQ2+i+3j+3Kk), byl =y @ —i—3j -3k,
b =v(Q2+i+3j —3k), byt =y @ —i—3j+3k),
b3=vQ2+i-3j -3k, b3l = v (@2 —i+3j +3Kk),
ba=v(@2+i—3j+3Kk), byt =@ —i+3j—3k),
bs = ¥ (2 + 3i + j + 3k), bel =y (@2 -3i —j—3k),
b = ¥(2+3i + j — 3K), bg' = ¥(2—3i — j +3k),
by = w2 —3i + j — 3k), byt =v@+3i —j+3K),
bg = ¥ (2 — 3i + j + 3k), bg! = w2 +3i — j — 3k,
bg = ¥ (2 + 3i + 3j + k), bgl =¥ (2—3i —3j -k,
bio = ¥ (24 3i —3j +k), byt = ¥(2—3i +3j — k),
b1 = (2 —3i —3j +k, bt = v (@2+3i +3j -k,

bz = ¥(2—3i +3j +k), by = ¥ (2+3i —3j —k).
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A.10 Example I'1317

R7.9:

k.

ajbiazbs,
aibaaghs,
8.1b78.2_1bgl,

aibgtagthg?

aibgta, byt

-1 -1
azbzaglbgl,
-1
a2b5a4b4 R
azbgaghy,
azbglagb;l,
azbzta, by,
asbia, byt
-1
a3b6a7b9 R
agbglaglbgg,
-1
a3b4 a7b2,
-1
8.4b18.7b4 R

asbgtaz thy?

—1,-1p-1
agbg "ag "b7 -,

a5b1a5_1b1_1,

aﬁbzaglbz_l,

a7bga7_lb§l,

APPENDIX A. MORE EXAMPLES

aiboazhs,

-1
a1b5a7b1 y
aibgazbe,
aibg*a; thy,

-1,-1,-1
aihg"a, “b,
albz_la7b5_1,

-1
azbzaghg -,

-1
a2b6a6b1 y
a2b§1a4b§1,
azbg tazth,t
a2b2_1a5b8,

-1
agboasbg -,
a3b7a6‘1b1‘1,
a3b§1a4bg,
asb; 'ag thot

-1
a4b4a7b2 R
a4b7_1a7b8,
a4bg1a6b6,
a5b7_1a5bg1,

-1
aghsaghy, -,

azbzazbg *,

b

b

9

azbzasbo,
a1beashas,
a1b9a5b2_1,
a1 taghzt,
1.1
a1b4 8.3 b5,
b, tagh
a10, "agb7,
azbsashy,
a2b7a7‘1bg,
asbztagh
2bg “ashs,
azbglagbgl,
azby ta; tbs,
azbsashe,
asbsasbs *,
agbtasb
3bg "agb7,
b, tazb
asb, “azba,
a4b8a6bg1,
asb=tagh
4 6 6 1,
asb, taz b,
a5b5_1a5b;1,
agbglasbgl,

a7bga7b§1
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A.1l1 Amalgam decompositions of Example 3.42

We first give the vertical decomposition of the group I of Example 3.42:
~ b *12 (s)
r=F ~ Z F7),
3 FEbD~p® (Z3" % F37)

where
F(b) (b1, b2, b3),
Z52 % F{Y = (s1,...,512, 513,514,515 | SF = ... =s5, = 1)

® _ F®

The subgroup F; of index 8 is given by

FY = (b2, by s, bababz ™, b2bsby, bib3by, bibs thoby,
b b5 thibabZ, by oy b3 b2, bab3, b3bZ, bsby b2,
bab; 'b3b2, bab; thsbsb?, baby 2babZ, by by thob?,
biby bzt bibsbibz?h),

the index 2 subgroup FS < Z312 « F{® by

F(S) (S1S2, S1S3, S13, S4S1, S5S1, SES1, S151451,

S1515S1, S7S1, S8S1, S9S1, S10S1, S11S1,
$12S1, S151351, S15, S14) -

The identification in T is

F (b) F (5)

bIlbz <—> $1S2
bIlbg <—> $1S53
babibst «— s13
b%bzbl <—> 5451
blb%bl <—> S5S1
bibstboby <—> ses1
bl_lbz_lblbzb% <—> 5151451
bl_lbz_lbglb% <—> 5151551
bgbi <—> S751

b%b% <—> SgS1
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bsb, b2
bab; tb3b?
bsby *habob?
baby 2bob?
by togthob?
bib, *bzt
bibsbibz?

SoS1
S10S1
S1151
S1251
S151381
S15

<> S14.

Recall the presentation of I given in Section 3.4:

I' = (a1, ap, az, as, by, bp, b3 | R),

where

abiazbg, aibzazby, aibzazbg,
a1b§1a4b_1, albglazb‘l, albflagb_{
-1,-1
azbiazby, azbzazhy, aghza, “hy -,

R = {

azbglagb_l, azbglaglba asbjasbq,
asbsasbs, agbglagb_l, agbflallbz
-1 -1

a4b2a4b2, a4b3a4b3, a4b1 a4b1

The isomorphism to the amalgam described above is

F?Eb) K0 (O (Z>'2<12 * Fés)) <« I' = (a1, ap, a3, as, by, by, b3 | R)
17 =r17

S1
S2
S3
Sq
S5
Se
S7

Sg

aiby
aiby
a1b3
arb; b2

-2Kn-1
a1b2 bl

-2K-1

—1,,—2

arb, tbabr?
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sg <—> agby toobg?
s10 <> aby tb;2bibzt
s11 <—> agby to, by tbibs?
s12 <> aiby b, h2b;t
s13 <—> bpbgbz?
S14 <> bibgbibz?
s15 <—> bib, b3t
Sih; " «— ag
by%s4by <— ap
b;%sghs < ag
by th1bz ts10bsb; t <— as
by «<— by
by «<— by
bs «<— bs.

We describe now the (vertical) amalgam decomposition of the subgroup I'o:

[ = F5(>

r (@
*_ @ F
F33 =F33 S ’

Wllere
5 1, 12,13, 14, r5> ’

Féq) = (01, 02, 03, 94, Qs) ,

(r) —-1 -1 -1
Fa3 = (r37Is, Iy “I5, Islals, rarals, Iy “rals, Fifarors, rirsrors,

F1rors, For2, rarars, ror;rs, ror2rgt rg eyt teg

-1.-1 -1 -1 -1 -1.-1
I’5 rl r5r3 R I’l rarirs, I’l rararqls, I’l I’4 rarirs,

Folalsiors, Forarifsiors, rarars frsrors, rors 2rars,

-1,-1,.-1.-1 -1,.-1.-1.-1 -1
I’l FS r2 I’3 rirs, rl I’3 I’l FS rirs, r2r4r2r1 y

11, -1.-1 1.1, 1 11, 1
rotrg s ot ot trarg trarars, rotrg trarg
rotre et rg ey trargrars, ro e trars, rotrorsrors,

-1 _-1.-1. -1
rar, =, rg=ryrary, rsrols) ,



246 APPENDIX A. MORE EXAMPLES

Fi = (92, au, q4 q5 ,q4 ql 95 ,q4 q3q5 ,qg ql q4 :

d3 qz q4 » O3 Q5q4 » Us. qs » Os qz qs » U5 Q4q3 g
050201405 "4, Us0201305 "4, Us0205 Ga. Oy 05 05 "0ads
a5 ta3 taaa5 t g ta; tandaas t a5 tasag tasa,
q5_1QSq4_1QSQ4_1, qs_lQ3QZQ3q4_l» QZlqz_lQ5Q1q£1q5_l,

q; 05 tas00; tas ™, 0 0y tda0a0; tag ™t a5 a3,

d; ‘a5 "a; ta3 " ds. 050201 020405 . 0 0 %5 .

d; "0 0, tas, aZagt dst20505 " 030200,

d; 950105, 5020, “dsa, %) ,

) = (OI)

-1
r; s <— Q2
-1
ry s <— 01
-1.-1
Msraifs <— Q4 (s
-1.-1.-1
r4rifs <— q, "4, Qg
-1 -1 -1
r, Tifs <— (4 QSq5
-1.-1
rirarafs <— Qs ql q4
rirarafs <— gy q2 Q4
-1 -1
rirafs <— (3 "(s0,

2 —1.-1
Falg <— (s qs

Farars <— (g qz 1q§1
rary s «— as Q4Q3
r5—1r1—2r3—1 <« Q50|2Q4Q5_1Q4
rg 'ty gt < 05020305 'da
retrrtrsrt «<— 050205 1ga
rirarrs <— 6,0, 05 0405

-1 -1,-1,-1 -1
rl rorarilg <— q4 q2 q3 q4q5
-1.-1 -1.-1 -1

ry Ty r3rirs <— Q4 "0, 7010405
-1 -1 -1
M2rarsrals <— Qg "03(g "(30,

1 -1 -1
Mararafsrals <— Qg 030, 030,
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rorary Yrsrors «— ds 1Q3Q2OI3Q4_ !
ry'r3?rars «— g, 0, "astud; tag
rotrs g s <— 0, %a; tasaia; tagt
rl—1r3—1r1—1r3—1r1r5 - q4—1q2—1q4q1q2—1q5—1
rarararyt <— 453
r1—1r3—1r5r4—1r2—1 - q4—1q2—1q1—1q3—1q5
re trytraro trarars <— Q50207 1020405
ritrs st < 0,70, %05 b
rotrs et < aptay by b
rgiry trarsrars <— qzqs
rgtry 'rars «— gs02050; "
r5 'rarsrars <— 0301030, "
rary ' <— 0, 'ds01ds

~1,-1. -1 1. -1
g Ty r3r, "Tsrols <—> Qs02q, "0s3qd, .

The isomorphism is

FO s e FE® <> T < T
5 TFO=fFY 5 0

ry <— bob;?

ry < bgby?

rz <— bibs

rg <— bibs

g <— b%

g1 «<—> bz_lbl

2 <— bglbl

g3 <—> ajaghgb,’
Ga <—> a1a, *b?

—1p—1p—1
Os <— aiaz by "by~.
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A.12 Amalgam decompositions of Example 3.46

We describe the amalgam decompositions of the group I'3 5.

r® <= (ay,...,b3| Rag) «— T'™
S4b3 <> a1 <~ a1
b182b2_1 «—> a «~— ay
by «— by «—> u;lazal
by «— bo «—> a%uz_lag
by «— b3 «—> azuglaz
S1 <«—> b1b2
S <«— a1b3b2
S3 <«—> albl_ bo
Sqg <«—> albgl
S5 <—> alblbg
alaz_lbl_l «~—— U
azalbl_l <~ U2
a; “az <~ U3
a;laylah;! <« wu
1 Yo dilq 4,
where
v, v,S
F(U) F( ) Fg(v,b)g':g(u,s) F( ) ,
h h,a h,u
r®— F( ) % (h,a)gF7(h,u) FAE ),

F7

F(U ® = (by, by, ba) ,

v,S
F"® = (s1, S2, 53, 54, S5) ,

F? = (b3, b2b2, b3b2, blbz, b_lbgbl, b_lbz, b_zbgbz, by 302, b—2b2b1>,

(v S _
F® = (a1, a2) ,
(h,u)
Fy 7 = (U1, U2, Uz, ug),
h,a
F( ) — (ala2 ,a1 a2 ,azalazal ,a1 ag, a1a, 2a1, alaz, a1a, la1a,),

h
FY = (ugusuy™®, uguyt, uzup?, us, uZ, ugus, uguz),
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~

Fév,b) s Fév,s)
bglbl <> 8382_1
bab? «—> s45,
bsb? «— sy 1,7
b1b2 <~ 51
b, tbgby «—> sss,t
bIlbg <—> S2Sg5
by %b3by <—> s3
bI3b2 <—> S7S3

by%boby «—> s2818;5 2,

(h,a) (h,u)
F? F?

2,1 -1
al_laz_z <« U4u£1
azaga0a; <> Upug
-2
a, "az <— Uus
-2 2
a1a, “a; <— Uuj
a1a§ <—> Ug1Ug
6118.2_18.18.2 <~—> UqU>2

and L
aibiazby, aihoazb; -,

Ro.3 1= albgaz_lbl, albglalb‘l,

a1b1_1a2_1b3, azbgazbz_l
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Appendix B
GAP-programs

In this appendix, we present and describe the GAP-programs ([29]), which led to the
construction of most groups in this work.

B.1 Theory and ideas

Our strategy to generate and analyze (2m, 2n)—groups I with GAP ([29]) can be
resumed as follows:
Step 1: Describe a (2m, 2n)—complex X in a way which is manageable for a

computer. We write X as a pair of integer valued (2m x 2n)—matrices (lists of lists) A
and B.

Step 2: Given “small” m, n, generate all pairs of matrices (A, B) corresponding
to a (2m, 2n)—complex. Given “large” m, n, generate randomly many pairs (A, B)
corresponding to a (2m, 2n)—complex.

Step 3: Starting from a constructed pair (A, B) describing X, provide additional
programs which compute the local groups Pék), Pv(k) (for k € N small) and a finite
presentation of I' = 7r1(X). Then apply the powerful GAP-tools for finite permutation
groups to look for examples with interesting local groups and/or use GAP-commands
like

Abelianlnvariants();

and
LowIndexSubgroupsFpGroup();

to get some information on the (hormal) subgroup structure of the infinite group I'.
Following these three steps, we have for instance immediately found an irreducible
(As, Ag)—group I with [T", I'] = I'g and I'g perfect (see Example 2.2).
We explain now each of the three steps in detail:

251
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Step 1

We want to define for given m, n € N an injective map

Ym.n : Xom2n — Mat(2m, 2n, {1, ..., 2m}) x Mat(2m, 2n, {1, ..., 2n})
X = ¢mn(X) = (A, B)

where X om 2n denotes the set of (2m, 2n)—complexes and X € Xom 2n iS given as
usual by its mn geometric squares, and where Mat(2m, 2n, {1, ..., 2m}) denotes the
set of (2m x 2n)—matrices with entries in {1, ...,2m}. Recall that each geometric
square [aba’b’] of X can be represented by four squares of the form

aba’b’, a’b’ab, a b ta bt a~th~la"lp-1t.

To define the map ¢m n, Note that at least one of these four expressions has one of the
five types (1)-(V) illustrated in Figure B.1, for suitable

Ibke{l,...,m}and j,l €{1,...,n}.

It is easy to check that each geometric square has a unique type.

(1) (1) (11) (V) V)
ak ak ak ak ak
< — > > <

by Abj Dba Abj Dby Abj ba Abj ba vb;

> e > > >
a a a a a
a; bj axb a; bj akb|_1 a; bj ak‘1b| a; bj ak_lb|_l a; bj_lakb|_l

Figure B.1: Possible types of a geometric square

We now define the map ¢m n for each possible type of geometric squares, using
the following notation for the “inverses”:

i=2m+1—i, k:=2m+1—k, j_::2n—|—1—j, l:=2n+1-1.
Type (I) (aibjaxbr) Aij ==k Bjj:=1I
A =1 By .=j_
A=k By:=]



B.1. THEORY AND IDEAS 253

Type (11) (aibjakbl‘l) Aij = k Bij =
Agi=1 Bg:i=]

=k Bj:i=]

AIZj_ =1 BIZj_ = |_

Type (1) (aibja, *hy) Ajj =k Bijj:=T
=K Bji=]

Ag =1 Bg:=]

Type (IV) (g b,-ak_lbl_l) Aij .=k Bjj =1
=k By =]

A =1 By =]

Type (V) (aibj *akb; ™) Aiji=k Bjj:=I
Agi=1 Bygi=]

A=k Bp:=]

Ag =i By =1

Thus, each geometric square of X defines exactly four entries in A and in B which
describe the corresponding four geometric edges in the link Lk(X). In case of type (I)
and (V), two choices are possible, since we have the equalities for geometric squares
[aibjakhi] = [akbiaibj]and [aibj‘lakbl‘l] = [akbl‘laibj‘l] respectively, but the given
definition of ¢m n is independent of this choice. This proves that ¢m n is well-defined.

We illustrate this definition in Table B.1 in the case of Example 2.2 given by its
nine relators

alblal‘lbl‘l, albzal‘lbgl, albgazbz_l,
1

. ~1,-1 —1p.-1 —1p—
Ras:={ aibg az; by, azbiaz~h,~, azhoa; bg

a2b3a§1b1, azbglae,bz, azbflaglbfl
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GAP-PROGRAMS

| geometric square | representative | type | A-entries

B-entries |

[aibia; *by "]

| asbia; oyt | (IV)

Air=1 Ap=1

Bi11=1 B =6

Aer =6, Aes =6

Ber =1, Bgg =6

-1

[aiboa; 'bz'1 | aibpa; bt [ (V) [ Ao=1,Ais=1] B =3, Bis =4
Aez =6, Asa =6 | Bez=2,Bgs =5
[a1bzazh, 1] | asbgazb,T | (1) | Ai3=5Axs=6| Big=2, By =4

Asp =2, Asn =1

Be2 =3, Bss =5

[albglaglbz]

‘ agbgal_lbz_l ‘ (v)

Axz =1 Aiu=3

B3z =2,Bis=5

Agp =6, Ags =4

Bar=3,Bes =4

[asbiag b, 'l | asbiaz’h,t [ (V) | A2i=3,A%=2| B =2,Bg=5
Asp =4, Ass =5 | Bsp=1,Bss =6
[aghoaz b3 '] [ ashashst [ (IV) | Azp=3,Ass=2| Bp =3 By =4
Asz =4, Ags=5| Bsz3=2,Bgyy =5
[azbgaglbl] ‘ a2b3a§1b1 ‘ (1) | Axg3=3,A3n=2 | Bx3=6,Bxu=1
Ase =4, Ann1 =5 | Bsg=3,Bsn =4
[azb; "agh] | ashpach;? | (1) | Ao =5 A =4|Bx=3Bu=5
Agz=2,As5=3 | Biz=2,Bss=4
[asb;Taz by !l |asbia, ™o [ (1) | Asi=2, A =3 | B =6,Bx=1

Agp =5 A5 =4

Bss =1, Bs1 =6

and

Hence, we get

o OINWE
N B~O O1TWEk

o BRODNLPE
WEFE WWwww

o RN WO

NDNNPNNODN

O OINPW
AW oINO B
o OCINWERE

o1 o1 O1 = 01 01
Ao~~~
o WEF OlkFk, O,

Table B.1: Definition of A and B in Example 2.2
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See Table B.2 for a more compact notation.

033(X) |1~b;y 2~b, 3~bs|4~b;’ 5~b," 6~b;?!
1~ a; 1/1 1/3 5/2 3/5 1/4 1/6
2~ ap 3/2 3/3 3/6 4/5 6/4 3/1
3~ ag 2/6 5/3 1/2 2/1 2/4 2/5
4~a;'| 5/4 6/3 2/2 5/5 5/6 5/1
5~a,t| 4/6 4/1 472 1/5 3/4 4/3
6~a;'| 6/1 2/3 6/2 6/5 4/4 6/6

Table B.2: Compact notation of A and B in Example 2.2

Note that given (A, B) € im(¢m.n), Wwe can uniquely and easily reconstruct the
(2m, 2n)-complex X = 1 ((A, B)) (this reflects the injectivity of gm n).

Remark. By construction of ¢m n, there are bijections between the following sets:

{(Aij, Bipl}i=1,....2m, j=1,...20n = {1,...,2m} x {1, ..., 2n},
{1,....2m} = {Ajj}i=1..om forany j e {1,...,2n},
{1,...,2n} = {Bjj}j=1..2n forany i e {1,...,2mj},

in particular each column of A is a permutation of {1, ..., 2m}, and each row of B is
a permutation of {1, ..., 2n}.
Step 2

The idea of Step 2 for small m, n (for example “small” could mean mn < 10) is to start
with (2m x 2n)—matrices A and B consisting of 0-entries and “fill” them recursively
with one geometric square (four non-zero entries in A and B) in each recursion step.
This is done systematically, i.e. going through all potential geometric squares S. Of
course, S has to satisfy several conditions, e.g. we want all potential new positions
in A (and B) coming from S to be free (i.e. zeroes), and all potential new pairs of
entries (Aqg, Bog) coming from S are required to be new. If the candidate S does
not satisfy these conditions, we try the next one. The conditions guarantee that at
the end a “full” (i.e. without zero entries) pair of matrices (A, B) indeed describes a
(2m, 2n)—complex X, in particular having a complete bipartite link Lk(X) as required
in the link condition.
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B.2 The main program

Our main GAP-program ([29]) looks as follows: (comments in GAP start with the
character #)

all -= function(x1, x2, yi, y2)
# generates the list

# [[x1.,y1],-.-, [x1,y2],..., [x2,y1],..., [x2,y2]]
local w, k, i, j;

w:=1[1;

k = 1;

for 1 1n [x1..x2] do
for j in [yl..y2] do

wlk]l := [i.j]:
k := k+1;
od;
od;
return w;
end;

test := function(M, N, g, r, s, t, cM, cN)
# checks candidate agbragib;?
if (s = cM+1l-q and t = cN+1-r) or
M[s]I[cN+1-r] <> O or
M[cM-g+1][t] <> O or
M[cM+1-s][cN+1-t] <> O or
# M[gl[r] <> O i1s tested iIn test2
ForAny(all(1,cM,1,cN),
v -> (IMLvL111Lv[2]]1.NLvI111LvI2]]] in
[[s.,t]l, [g,cN+1-t], [cM+1l-s,r], [cM+1-g,cN+1-r]]))
then
return false;
else
return true;
fi;
end;

part = function(x, y, z)
# we assume y <= z
# generates [[1’1] ----- [112] ----- [X_lsl] ----- [X_l,Z],

# [x,11,--., [x,y-111
local w, k, 11, 12, j;
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w:=1L1;
k := 1;
for 11 in [1..x-1] do
for 12 in [1..z] do
wlk] = [11,12];
k := k+1;

od;
return w;
end;

test2 := function(A, X, Yy, 2)
# returns true 1t (X,y) is
# the fTirst "free"™ position in A
if A[X]Ly] = 0 and
ForAll(part(x,y,z), v => A[V[111LVvI2]] <> 0)
then
return true;
else
return false;
Ti;
end;

full :-= function(A)
# returns true if matrix A contains no O
if ForAny(A, x -> 0 in x) then

return false;

else
return true;
fi;
end;
main = function(A, B)

# main program

local cA, cB, i, jJ, k, 1, AA, BB;

cA := DimensionsMat(A)[1];

cB := DimensionsMat(A)[2]; # = DimensionsMat(B)[2]



258 APPENDIX B. GAP-PROGRAMS

for 1 in [1..cA/2] do
for j in [1..cB] do
if test2(A,1,]J,cB) then
# (i,J) 1s First free position In A
for k in [1..cA] do
for 1 in [1..cB] do
if test(A,B,i1,j,k,1,cA,cB) then
# tests if abja byt is ok
AA := StructuralCopy(A);
BB := StructuralCopy(B);

AALITILO] == k;

BBLilJ1 := I;

AALK][cB-j+1] := 1;
BB[k][cB-j+1] := cB+1-1;
AA[cA+1-1][1] := cA+l-k;
BB[cA+1-i][1] := J;
AA[cA+1-k][cB+1-1] := cA+l-i;
BB[cA+1-Kk][cB+1-1] := cB+1-j;

it full(AA) then
# (AA,BB) now describes a (cA,cB)-complex
# now we can check for conditions on AA, BB,
# e.g. 1TF conditions(AA,BB) then
# Print(AA, " ', BB, "\n"); Fi;
else
main(AA, BB); # recursive step
fi;
fi;
od;
od;
fi;
od;
od;
end;

# can be applied as follows:

# for example main(NullMat(4, 6), NullMat(4, 6));

# generates now all (4,6)-complexes,

# or use main(C,D); for an embedding, where C, D describe
# any partial complex, i.e. some given geometric squares

This procedure can a priori also be applied for large integers m, n (for example if
mn > 10), but the time required to finish (that is to generate all (2m, 2n)—complexes)
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grows very rapidly with increasing m and n. One reason for this is that the filling
process needs mn recursion steps for each (2m, 2n)—complex but another reason is
that the number of different (2m, 2n)—complexes becomes very large soon. This is
illustrated in Table B.3. Observe that the number of non-isomorphic corresponding
fundamental groups is much smaller, but unknown in general, even for (4, 4)—groups.
Kimberley ([40]) has counted the number of “BM relations” for

m,me{l,D.1,2),1,3),d,4H,15),1,6),1,7), (2 2),(23)}

They coincide with those in Table B.3. The number 541 for (4, 4)-complexes also
appears in [41, Section 7].

m|n | mn # X
111 1 3
112 2 15
113] 3 105
14| 4 945
115 5 10395
16| 6 135135
117 7 2027025
18] 8 34459425
22| 4 541
213| 6 35235
214 8 3690009
2 |5]| 10 | 570847095
313 9 27712191

Table B.3: Number of (2m, 2n)—complexes generated by our programs

Therefore, to get a better “distribution” of the examples for large m and n, we
also have written a program which randomly generates many (2m, 2n)—complexes for
fixedm,n € N.

B.3 A random program

# the functions full(Q), all(), test(), part(), test2()
# are defined as before

Ma := function(m, n)
# generates (m x n)-matrix A, A[i][J] =1
local i1, j, w;
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w = NullMat(m,n);
for 1 in [1..m] do
for j in [1..n] do
whilbl == i;
od;
od;
return w;
end;

Mb := function(m, n)

APPENDIX B. GAP-PROGRAMS

# generates (m x n)-matrix A, ALi]L] = ]

local i1, j, w;

w = NullMat(m,n);

for 1 1n [1..m] do
for j in [1..n] do

whilbl := j;

od;

od;

return w;

end;

out := [ 1;

rdm := function(A, B, p)

local cA, cB, 1, jJ, k, I, AA, BB, kI, pp, z;

z = 0;
cA :-= DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
for 1 in [1..cA/2] do
for j in [1..cB] do
it test2(A,1,j,cB) then

repeat kl -= Random(p); # p:available edges in link
z = z+1; # z counts number of attempts,
# here we set the maximal number to 30, but it
# can be chosen larger or smaller i1t needed
until test(A,B,i1,j,.kI[1],.kI[2],cA,cB) or z = 30;

AA := StructuralCopy(A);

BB StructuralCopy(B);

iIT z < 30 then # test ok
AALITIL] == KI[1];
BBLilLi1 := kI[2];



B.3. A RANDOM PROGRAM 261

AATKIT1]]1[cB-j+1] :
BBIkI[1]][cB-j+1] :
AA[cA+1-i][kI[2]] := cA+1-klI[1];
BB[cA+1-i][kI[2]] = j;
AA[cA+1-kI[1]][cB+1-kI[2]] :
BB[cA+1-kI[1]]1[cB+1-kI[2]] :
pp := StructuralCopy(p);
RemoveSet(pp,kl);
RemoveSet(pp,[1,cB+1-kI[2]]);
RemoveSet(pp, [cA+1-kI[1].,1D);
RemoveSet(pp, [cA+1-i,cB+1-j]);
# removes used edges in link
it full(AA) then

out := StructuralCopy([AA,BB,cA,cB]);
else
rdm(AA, BB, pp);
fi;

fi;
fi;

od;
od;
return out;
end;

i;
cB+1-kl[2];

CA+1-1i;
cB+1-j;

slc := function(aa,bb)

local res;

repeat out := [Ma(aa,bb),Mb(aa,bb),aa,bb]; res :=
rdm(Nul IMat(aa, bb), NullMat(aa, bb), all(l1,aa,1l,bb));

until

# conditions(res[1],res[2]); whatever we want to check

Print(res[1],"\n",res[2],"\n");

end;

# e.g. slc(6,6); generates now randomly a (6,6)-complex
# satisfying additional conditions

One nice feature of both programs is that we can start with any k given geometric
squares (where 0 < k < mn) and generate all (or randomly some, respectively)
(2m, 2n)—complexes containing these k geometric squares. This was very useful in
Chapter 2, where we have embedded for instance non-residually finite examples in
virtually simple (2m, 2n)—groups.
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B.4 Computing the local groups

Step 3

We have written programs which compute the local groups Pék) and Pv(k) for k small
enough. Here are the programs for k = 1 and k = 2. The programs for k > 3 become
more complicated with increasing k, but we do not need any new ideas. Moreover, we
give the program to compute the group Ky form = 3.

PhPerm := function(j, cA, A)
# generates permutation in P, induced by bj, 1.e. p,(bj)
local v, 1i;
vi=[1;
for 1 In [1..cA] do
v[i] := cA+1-A[cA-i+1][]j];
od;
return PermList(v);
end;

Ph = function(A)
# generates P, as a permutation group
local p, j, cA, cB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
p:=1L[1;
for j in [1..cB/2] do

pli] := PhPerm(j,cA,A);
od;
return Group(p,Q);
end;

PvPerm := function(i, cA, cB, B)
# generates permutation in P, induced by aj, 1.-e. pn(a)
local w, j;
woz= [ 1;
for j in [1..cB] do
wlj] := B[cA-i+1][]i];
od;
return PermList(w);
end;
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Pv := function(B)
# generates P,
local p, 1, cA, CB;
CcA := DimensionsMat(B)[1];
cB := DimensionsMat(B)[2];
p:=1L1;
for 1 in [1..cA/2] do
p[i] := PvPerm(i,cA,cB,B);

od;

return Group(p,Q):
end;

indx = function(v, X)

# returns index of First appearance of x

# 1In vector v

local 1;

i = 1;

while v[i] <> x do
i = i+1;

od;

return 1i;

end;

s2 := function(c)
# generates points in 2-sphere
# of c-regular tree
local v, k, i1, J;
v:i=1L1;
k := 1;
for 1 1n [1..c] do
for j 1n [1..c] do
if 1+] <> c+l then
# exclude reducible paths
vkl := [i.31;
k = k+1;
fi;
od;
od;
return v;
end;

263
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vPerm2i := function(i, cA, cB, A, B)
# generates 1-th permutation iIn Rg)
local w, j;
w=[1;
for j in [1..cB*(cB-1)] do
wlJ] := indx(s2(cB), [B[cA+1-i1][s2(cB)[11I11].
; B[ALcA+1-i1[s2(cB)31[1111[s2(cB)31[211D):
od;
return PermList(w);
end;

P2v := function(A, B)
# generates R?)
local i, p, cA, cB;
cA :-= DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
p:=1L1;
for 1 in [1..cA/2] do
p[i] := vPerm2i(i, cA, cB, A, B);
od;
return Group(p,Q):
end;

hPerm2j := function(j, cA, cB, A, B)
# generates j-th permutation iIn H?)
local w, 1;
w:=L1;
for 1 in [1..cA*(cA-1)] do

wli] := indx(s2(cA), [cA+1-A[cA+1-s2(cA)[il1l11101].
CA+1-A[cA+1-s2(cA)[i]1[21]1IB[cA+1-s2(cATITL1111D:;
od;
return PermList(w);
end;

P2h := function(A, B)
# generates H?)
local j, p, cA, cB;
cA := DimensionsMat(A)[1]; cB := DimensionsMat(A)[2];
p:=1[1;
for j in [1..cB/2] do
p[d] := hPerm2j(, cA, cB, A, B);
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od;
return Group(p,Q);
end;

Khé := function(A, B)

# generates K, for m = 3

return Stabilizer(Stabilizer(Stabilizer(

Stabilizer(Stabilizer(Stabilizer(P2h(A, B),

[1, 2, 3, 4, 5], OnTuples),
[6, 7, 8, 9, 10], OnSets),
[11, 12, 13, 14, 15], OnSets),
[16, 17, 18, 19, 20], OnSets),
[21, 22, 23, 24, 25], OnSets),
[26, 27, 28, 29, 30], OnSets);

end;

B.5 Computing a presentation

A finite presentation for I" is obtained as follows (illustrated form = n = 3):

F := FreeGroup(al™, "a2", "a3", "bl", "b2", "b3");
# free group generated by a;, a», az, by, by, b3

al := F.1;
a2 = F.2;
a3 = F.3;
bl := F.4;
b2 = F.5;
b3 = F.6;

NL6a := function(i)
# bijection {1,...,2m} — Ej
local v;
if 1=1 then v = al;
elif 1=2 then v = a2;
elif i1=3 then a3;
elif 1=4 then a3™-1;
elif i=5 then v = a2™-1;
elif 1=6 then v = al™-1;
fi;
return v;
end;

Vv
Vv
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NL6b := function(j)
# bijection {1,...,2n} —> E,
local v;
if J=1 then v = bl;
elif j=2 then v := b2;
elif j=3 then b3;
elif j=4 then b37-1;
elif jJ=5 then v = b27-1;
elif J=6 then v = bl™-1;
fi;
return v;
end;

\V4 =
\V4 =

relation6 :-= function(A, B)
# generates mn relators of T
local i, j, rel, cA, cB;
cA :-= DimensionsMat(A)[1];
cB := DimensionsMat(A)[2];
rel := [ ];
for 1 1n [1..cA/2] do
for j in [1..cB] do
if not NL6a(i)*NL6b(J)*
NL6a(cA+1-ALi]1[J 1) *NL6b(cB+1-BLi]1[J]) in rel
and not NL6a(cA+1-A[1][J])*NL6b(cB+1-B[i][1DD*
NL6a(1)*NL6b(jJ) 1n rel
and not NL6a(cA+1-A[i][J]) -1*NL6b(G) -1*
NL6a(i) -1*NL6b(cB+1-B[1][J]) -1 in rel then
Add(rel ,NL6a(i)*NL6b()*
NL6a(cA+1-A[i]1[J1)*NL6b(cB+1-BLil[J1D)):
Ti;
od;
od;
return rel;
end;

G := F / relation6(A,B); # definition of T

# e.g. Abelianlnvariants(G); computes now ['@

# LowlndexSubgroupsFpGroup(G, TrivialSubgroup(G), 8);
# computes all subgroups of low Index

# (here of index < 8), only reasonable for small Index
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B.6 A normal form program

Very useful for other investigations are programs which bring a word of " in ab- and
in ba-normal form, see Proposition 1.10 (again illustrated for m = n = 3):

# F, al, a2, a3, bl, b2, b3, NL6a(), NL6b(Q)
# as 1In Appendix B.5

LN6a := function(w)

# bijection Ep — {1,...,2m},

# iInverse of NL6a

local 1;

if w=al then 1 = 1;

elif w=a2 then i1 = 2;

elif w=a3 then i1 :=
elif w=a3"-1 then 1 :

= 4;
elif w=a2™-1 then 1 := 5;
elif w=al™-1 then 1 := 6;
fi;
return 1i;
end;

LN6b := function(w)
# bijection E, — {1,...,2n},
# 1nverse of NL6b
local j;
if w=bl then j = 1;
elif w=b2 then j := 2;
elif w=b3 then j := 3;
elif w=b37-1 then j :=
elif w=b2"-1 then j = 5;
elif w=b1™-1 then j
fi;
return j;
end;

SetA6 := [al, a2, a3, a3 -1, a2 -1, al -1];
# Ep

SetB6 := [bl, b2, b3, b3~-1, b2"-1, b1~-1];
# E,
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nfab := function(A,B,w)
# brings word w in ab-normal form
local 1;
for 1 1n [1..Length(w)-1] do
1T Subword(w,i1,1) In SetB6 and
Subword(w, 1+1,1+1) in SetA6 then
return nfab(A,B,SubstitutedWord(w,i,i+1,
(NL6b(B[LN6a(Subword(w, i+1,i+1) " -1)]
[LN6b(Subword(w,i,1)"-1)]D*
NL6a(A[LN6a(Subword(w, i+1,1+1) " -1)]
[LN6b(Subword(w,i,1)"-1)]))"-1));
fi;
od;
return w;
end;

nfba := function(A,B,w)
# brings word w in ba-normal form
local 1;
for 1 1n [1..Length(w)-1] do
1T Subword(w,i1,1) In SetA6 and
Subword(w, 1+1,i1+1) in SetB6 then
return nfba(A,B,SubstitutedWord(w,i,i+1,
NL6b(B[LN6a(Subword(w,i,i1))]
[LN6b(Subword(w, 1+1,1+1))]*
NL6a(A[LN6a(Subword(w,i,i))]
[LN6b(Subword(w, i+1,1+1))])));
fi;
od;
return w;
end;

B.7 Computing Aut(X)

The following program generates all elements of Aut(X), where X is described by the
matrices A and B (again illustrated for m = n = 3).

# F, al, a2, a3, bl, b2, b3, NL6a(), NL6bQ
# as i1n Appendix B.5
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relation := function(A, B)
local i1, j, k, rel, rel2, cA, cB;
CA :

for 1 in [1..cA] do
for j in [1..cB] do
rel[cB*(i-1)+j] := NL6a(i)*NL6b()*
NL6a(cA+1-A[T][J]1)*NL6b(cB+1-B[i1J1):
od;
od;
for k in [1..cA*cB] do

rel2[k] := Subword(rel[k],2,4)*Subword(rel[k],1,1);

od;
return Union(rel,rel2);
end;

LN := function(w,kl,k2,k3,k4,k5,k6,c)
local n;
if w=al then n := ki1;
elif w=a2 then n = k2;
elif w=a3 then n = k3;
elif w=bl then n := k4;
elif w=b2 then n = Kk5;
elif w=b3 then n = k6;
elif w=b37-1 then n := c-k6;
elif w=b2"-1 then n := c-k5;
elif w=b1™-1 then n := c-k4;
elif w=a37-1 then n := c-k3;
elif w=a2”-1 then n := c-k2;
elif w=al™-1 then n := c-kl1;
fi;
return n;
end;

NL := function(z)
local n;
if z=1 then n := al;
elif z=2 then n = a2;
elif z=3 then n = a3;
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elif z=4 then n = bl;
elif z=5 then n = b2;
elif z=6 then
elif z=7 then
elif z=8 then n = b2™-1;
elif z=9 then n = bl17-1;
elif z=10 then n = a3™-1;
elif z=11 then n := a2™-1;
elif z=12 then n = al™-1;
fi;
return n;
end;

5 S5

permute := function(A,B)
local 11, 12, 13, j1, j2, 33, k, PL, L, cA, cB, c;
PL := [ 1:

L := relation(A,B);
cA := DimensionsMat(A)[1]; cB := DimensionsMat(A)[2];
C = cA + cB;

for 11l in [1..c] do
for 12 in Difference([l..c], [11l, c+1l-11]) do
for 13 in Difference([1l..c],
[i1, c+1-il1, i2, c+1-i2]) do
for j1 in Difference([1l..c],
[F1, c+1-i11, 12, c+1-12, 13, c+l-i13]) do
for j2 in Difference([l..c],
[11, c+1-i11, 12, c+l-i2,
13, c+1-i13, jl1l, c+1-j1]) do
for j3 in Difference([1l..c],
[11, c+1-i1, 12, c+1-i2, i3, c+1-i3,
J1l, c+1-j31, j2, c+1-j32]) do
for k in [1..Size(L)] do
PL[K] :=
NL(LN(Subword(L[k],1,1),11,12,13,jJ1,j2,j3,ctl))*
NL(LN(Subword(L[Kk],2,2),11,i2,13,j1,j2,j3,ctl))*
NL(LN(Subword(L[Kk],3,3),11,i2,13,j1,j2,j3,ctl))*
NL(LN(Subword(L[Kk],4,4),i1,i2,13,j1,j2,j3,ct1l));
od;
iIT Set(PL) = Set(L) then
Print(NL(i1)," ",NL(i2)," ",NL(i3)," ",
NLGL)," " NL@2), " " NLE3), " L)
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fi;
od;
od;
od;
od;

od;
od;
end;

For X as in Example 2.2, i.e. for

115311 132546
33346 3 2 36541
A 2 512 22 B — 6 32145
56 2555 |’ 4 32561
4 4 41 3 4 6 1 254 3
6 2 6 6 46 132546

we get (cf. Theorem 2.3(9))

permute(A,B);
al a2 a3 bl b2 b3
al™-1 a2™-1 a3 -1 b17-1 b3 b2

B.8 A quaternion lattice program

We illustrate the construction of the group I'p | of Chapter 3 for the smallest example
p = 3,1 =5 (Example 3.46).

psi := function(v,x0,x1,x2,x3)
return[[x0 + v*x1*E(4), v*x2 + v*x3*E(4)],
[-Vv*x2 + v*X3*E(4), X0 - v*xX1*E(4)]];

end;
# v = -1 gives the conjugate of X
# E(4) = -1

=[1;b:==L[1;
a[1l] := psi(1,1,0,1,1); # v+ j+k
a[2] := psi(1,1,0,1,-1); # y(1+j-k
a[3] := psi(-1,1,0,1,-1); # y(1—-j+k
a'[4'] -= pSi(_1!1101111)1 # 1)ﬁ(j'_.l_k)
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b[1] := psi(l,1, ): # y@A+20)
b[2] := psi(l,1, ):  # YA +2))
b[3] := psi(1,1,0,0,2); # v(1+2k
b[4] := psi1(-1,1,0,0,2); # v(1 -2k
b[5] := psi(-1,1,0,2,0); # v(1-2))
b[6] := psi(-1,1,2,0,0); # ¢¥(1-2i)

gAB := function(p,l)
local 1, jJ, k, m, A, B;
= NullMat(p+1,1+1);
B = NullMat(p+1l,1+1);
for i in [1..p+1] do
for j in [1..1+1] do
for k in [1..1+1] do
for m in [1..p+1] do
if a[i]*b[j] = b[k]*a[m] or
a[i]*b[j] = -b[k]*a[m] then

ALTI0] == m;
BLilO1 := k;
fi;
od;
od;
od;
od;
return([A,B]);
end;
A 1= gAB(3,5)[1];
B 1= gAB(3,5)[2];
gives
3324 42
A— 1 43134
142 4211
2113 23
and
516 2 3 4
B — 36 21405
4 3156 2
2 456 13



Appendix C

Some lists

C.1 Primitive permutation groups

We give a list of all primitive permutation groups G < Son, where n < 7, including
some information about the groups like its order |G| or its transitivity on {1, ..., 2n}.
A comprehensive introduction to permutation groups, including the definitions of the
groups in Table C.1, is given in [25]. See also [13] for a list of all finite primitive
permutation groups up to degree 50.

| Group G | degree 2n | transitivity(G) | order G| | G < Ap |
| S2 | 2 | 2 | 2] N |
Ay 4 2 12 Y

Sa 4 4 24 N
PSL>(5) 6 2 60 Y
PGL2(5) 6 3 120 N

Ag 6 4 360 Y

Se 6 6 720 N
AGL,(8) 8 2 56 Y
AT'L1(8) 8 2 168 Y
PSLo(7) 8 2 168 Y
PGL2(7) 8 3 336 N
ASL3(2) 8 3 1344 Y

Ag 8 6 20160 Y

Sg 8 8 40320 N

Asg 10 1 60 Y

S5 10 1 120 N
PSL>(9) 10 2 360 Y

Se 10 2 720 N
PGL2(9) 10 3 720 N
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M1o 10 3 720 Y
PIL2(9) 10 3 1440 N
A0 10 8 1814400 Y
S10 10 10 3628800 N
PSL,(11) 12 2 660 Y
PGL(11) 12 3 1320 N
M1 12 3 7920 Y
M1z 12 5 95040 Y
AL 12 10 239500800 Y
S12 12 12 479001600 N
PSL,(13) 14 2 1092 Y
PGL(13) 14 3 2184 N
A4 14 12 43589145600 Y
S1a 14 14 87178291200 N

Table C.1: Primitive permutation groups

C.2 Quasi-primitive permutation groups

See Table C.2 for all quasi-primitive, but not 2-transitive subgroups of Sp,, where
n < 8. Only two of them are not primitive. For the primitive groups, we have used the
list in [13] and their notations, in particular the symbol *:” to denote a split extension.

| Group G | degree 2n | primitive | order [G|] | G < Az |
As 10 Y 60 Y
S5 10 Y 120 N
PSL»(5) 12 N 60 Y
PSLo(7) 14 N 168 Y
24:5 16 Y 80 Y
2% Ds 16 Y 160 Y
(Ag x Ay : 2 16 Y 288 Y
(24:5): 4 16 Y 320 Y
24:32:4 16 Y 576 Y
2%:S3x S3 16 Y 576 Y
24 As 16 Y 960 Y
(Sq x Sa) : 2 16 Y 1152 Y
24 : S5 16 Y 1920 Y

Table C.2: Quasi-primitive permutation groups
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C.3 Locally 2-transitive (6, 6)—groups

We study (6, 6)—groups such that Py, P, are 2-transitive and give a complete list of the
arising 4-tuples (|Pnl, | Pyl, | Pé2)|, | Plfz) ). Without loss of generality, we may assume
that |Pn| < |P,| and that |Pr52)| < |P§2)| if |Pn| = |P,|. By Table C.1, there are only
four 2-transitive subgroups of Sg: PSL2(5), PGL2(5), Ag and Sg of order 60, 120, 360
and 720, respectively. Given P, € {Py, P,}, the maximal possible value for |P?| is
|P,|(|P,|/6)8. If this maximum is attained, the value of | P | is marked in the list with
the symbol “x” on the right hand side. Observe that in the case P, = Ag the number
|P(?] is always maximal (this is not very surprising by [16, Proposition 3.3.1]).

IPhl | 1P| PP P2
60 60 937500 937500
60 60 937500 60000000 =
60 | 120 7500 15000
60 | 120 937500 60000000
60 | 120 937500 120000000
60 | 120 937500 1920000000
60 | 120 30000000 1875000
60 | 120 30000000 60000000
60 | 120 30000000 1920000000
60 | 120 60000000 = 60000000
60 | 120 60000000 = 120000000
60 | 120 60000000 = 7680000000
60 | 360 937500 16796160000000 =
60 | 360 30000000 16796160000000 =
60 | 360 60000000 = 16796160000000
60 | 720 7500 1074954240000000
60 | 720 937500 33592320000000
60 | 720 937500 1074954240000000
60 | 720 937500 2149908480000000 =
60 | 720 1875000 1074954240000000
60 | 720 30000000 33592320000000
60 | 720 30000000 1074954240000000
60 | 720 30000000 2149908480000000 =
60 | 720 60000000 =x 33592320000000
60 | 720 60000000 = 67184640000000
60 | 720 60000000 =« | 1074954240000000
60 | 720 60000000 = | 2149908480000000 =
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120 | 120 15000 15000
120 | 120 1875000 60000000
120 | 120 60000000 60000000
120 | 120 60000000 1920000000
120 | 120 60000000 3840000000
120 | 120 1920000000 1920000000
120 | 120 1920000000 7680000000 =
120 | 120 3840000000 7680000000 =
120 | 360 1875000 16796160000000 =
120 | 360 60000000 16796160000000 =
120 | 360 120000000 16796160000000 =
120 | 360 1920000000 16796160000000 =
120 | 360 3840000000 16796160000000 =
120 | 360 7680000000 = 16796160000000 =
120 | 720 1875000 33592320000000
120 | 720 1875000 1074954240000000
120 | 720 60000000 33592320000000
120 | 720 60000000 67184640000000
120 | 720 60000000 1074954240000000
120 | 720 60000000 2149908480000000
120 | 720 120000000 33592320000000
120 | 720 120000000 1074954240000000
120 | 720 120000000 2149908480000000
120 | 720 1920000000 33592320000000
120 | 720 1920000000 67184640000000
120 | 720 1920000000 1074954240000000
120 | 720 1920000000 2149908480000000
120 | 720 3840000000 33592320000000
120 | 720 3840000000 67184640000000
120 | 720 3840000000 1074954240000000
120 | 720 3840000000 2149908480000000
120 | 720 7680000000 = 33592320000000
120 | 720 7680000000 = | 1074954240000000
120 | 720 7680000000 = | 2149908480000000 =
360 | 360 16796160000000 16796160000000
360 | 720 16796160000000 33592320000000
360 | 720 16796160000000 67184640000000
360 | 720 16796160000000 = | 1074954240000000
360 | 720 16796160000000 =« | 2149908480000000
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720 | 720 33592320000000 3359232000000
720 | 720 33592320000000 67184640000000
720 | 720 33592320000000 1074954240000000
720 | 720 33592320000000 2149908480000000
720 | 720 67184640000000 1074954240000000
720 | 720 67184640000000 2149908480000000
720 | 720 | 1074954240000000 1074954240000000
720 | 720 | 1074954240000000 2149908480000000
720 | 720 | 2149908480000000 = | 2149908480000000

Table C.3: Local groups in locally 2-transitive (6, 6)—groups

C.4 Listof (4, 4)—groups
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In the list below, we classify all (4, 4)—groups by the permutation isomorphism types
of the local groups P, and P,, and by I"@ (up to interchanging the role of P, and P,).
In total, we get 32 different types. Note that there are in fact at least 41 and at most 43
non-isomorphic (4, 4)—groups (see [41, Section 7]).

We use the following notation in Table C.4:

21: group of order 2, permutation isomorphic to ((1, 2)) < Sa,
27: group of order 2, permutation isomorphic to ((1, 2)(3, 4)),

41: group of order 4, isomorphic to Z3, permutation isomorphic to ((1, 2), (3, 4)),

4-: as above, but permutation isomorphic to ((1, 2)(3, 4), (1, 3)(2, 4)).
trans(P,) denotes the transitivity of the group P, € {Pn, P,} on the set {1, 2, 3, 4}.
“N?” means that I" is possibly irreducible.

Pn | P, | trans(Pp) | trans(P,) | reducible | 2P
1|1 0 0 Y VA
1|2 0 0 Y 73 x Zo
1|2 0 0 Y 73
1|2 0 0 Y 77 x 75
1 | Za 0 1 Y 7% x Zo
1| 4 0 0 Y 72 x 75
1|4 0 1 Y 7% x Zo
1 | Da 0 1 Y 72 x 7o
21 | 21 0 0 Y 77 x 75
21 | 25 0 0 Y 7% x Zo
21 | 25 0 0 Y 72 X T
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21 | 22 0 0 Y 7 x13

2 | 2 0 0 Y 77 x L

22 | 2o 0 0 Y Z X Lo X g
21 | Za 0 1 Y Z x 75

20 | Za4 0 1 Y 7. x Zg

2 | Zy 0 1 Y Z x 15

21 | 4 0 0 Y 7 x 3

21 42 0 1 Y 7 x Zz X Z4
22 41 0 0 Y 7 x Zz X Z4
2 | 44 0 0 Y 72

2 | 4 0 1 Y Zop x 73

21 | D4 0 1 Y 7 x 75

21 D4 0 1 Y 7 x Zz X Z4
22 A4 0 2 Y 7 x Zz

Z4 Z4 1 1 Y Z4 X Zg

Z4 41 1 0 Y 7, x Z4

41 | 4 0 0 Y 73

41 D4 0 1 Y 7 x Zz

41 | D4 0 1 Y 75 x La

Ds | A4 1 2 N? | Zp x Zg

S4 | Sa 4 4 N? | ZZ

Table C.4: Properties of (4, 4)—groups

C.5 Listof (4, 6)—groups

Similarly as in Section C.4, we give a certain classification of (4, 6)—groups, but here
the groups Py, and P, are classified only up to isomorphism (not up to permutation
isomorphism) and up to their transitivity. Notation: “36” denotes the group of order
36 permutation isomorphic to ((1, 2, 3), (1, 4, 2, 5)(3, 6)) and “72” denotes the group
of order 72 permutation isomorphic to the group ((1, 2, 3), (1, 2), (1, 4)(2,5)(3, 6)).
“Y?” means that we do not exclude the existence of a reducible example.

| Example | P | P, | trans(Py) | trans(P,) | reducible |
1 1 0 0 Y
1 Lo 0 0 Y
1 73 0 0 Y
1 Zig 0 0 Y
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Za| 75 1 0 Y
Za S 1 0 Y
Z4 Zz X Z4 1 0 Y
Za | Da 1 0 Y
Zs| 73 1 0 Y
Za | Sz x S3 1 0 Y
Z5 1 0 0 N
75 1 1 0 Y
75| I 0 0 Y
5| 7 1 0 Y
Z5| Zs 0 0 Y
75|  Za 0 0 Y
Z5| s 1 0 Y
Z5| 75 0 0 Y
75| 75 1 0 Y
Z5 S 0 0 Y, N?
Z5 S 0 1 Y
Z5 | Ze 0 1 Y
75 | 7o x Za 0 0 Y
Z5 Da 0 0 Y
Z5 As 0 1 Y
Z5 | A4 1 0 Y
75 | Z x S3 0 1 Y, N?
Z5| Sa 0 1 Y, N?
75 | Zp x Aq 0 1 Y
75 | Zy x Ay 1 0 Y
75 36 0 1 N?
236 | Z5| S3xS3 0 0 N?
75 | Zp x Sa 0 1 Y, N?
Z5 | PSL2(5) 0 2 N?
Z5 | PGL2(5) 0 3 N?
Z5 Se 0 6 N
D4 1 1 0 Y
Da| 7o 1 0 Y
Da| Zs 1 0 Y
Da| Za 1 0 Y
Ds| 73 1 0 Y
Da| S3 1 0 Y, N?
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D4 S3 1 1 Y
Da Zg 1 1 Y
D4 Zz X Z4 1 0 Y
Da Da4 1 0 Y
D4 | Z3 x Z3 1 0 N?
Da Ay 1 0 Y, N?
Da Az 1 1 Y
Da Sy 1 1 Y, N?
Ds | Zo x Ay 1 0 Y, N?
Ds | Zo x Ay 1 1 Y
Da 36 1 1 N?
D4 | S3x S3 1 0 N?
D4 Zz X S4 1 1 N?
D4 | PSL2(5) 1 2 N?
D4 | PGL,(5) 1 3 N, Y?
Da Ag 1 4 N
Da Se 1 6 N
Ay Lo 2 0 Y
As| 75 2 0 Y
Ay S3 2 0 N?
Ay D4 2 0 N?
As | Zo x S3 2 1 N?
Ay Sy 2 1 N?
Ay 36 2 1 N?
A4 33 X 83 2 0 N?
A4 Zz X S4 2 1 N?
Ay Se 2 6 N
Sy Lo 4 0 Y
Sy Zig 4 0 Y
S4 75 4 0 Y
Sa S3 4 0 N, Y?
84 Zz X Z4 4 0 Y
Sy Da4 4 0 Y, N?
S4 | Z3 x Z3 4 0 N?
Sa Sa 4 0 N?
Sa Sa 4 1 N, Y?
Sa | S3x S3 4 0 N, Y?
84 Zz X 84 4 0 N?
84 Zz X 84 4 1 N, Y?
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S4 | PSL2(5) 4 2 N, Y?
Sa 12 4 1 N?
3.46 S4 | PGL2(5) 4 3 N
S4 | PGL2(5) 4 3 Y?
S4 Ag 4 4 N
Sa Se 4 6 N

Table C.5: Properties of (4, 6)—groups

C.6 Some abelianized (Azm, Aon)—groups

We classify some (Azm, Aon)—-groups I' by their abelianization I'2 and by the size of
Prgz) and Plfz) (werestrictto2 <m <nandm+n < 8). If Prgz) is not maximal
(this can only happen if 2m = 4), then we give the number 12 - 3%/ Pé2)|. The list is
complete for (2m, 2n) = (6, 6) and (2m, 2n) = (4, 8). There are no (A, Ag)— and
(A4, As)—groups.

Example | 2m | 2n | P® max. | P{? max. | |T@0| | ab

| | 4] 8] Y | Y | 4%
4110 Y Y 4|73
4110 3 Y 4175
4110 Y Y 8 | Zo x 74
4110 3 Y 8 | 7o x 74
4110 Y Y 12 | Zp x Zsg
4110 3 Y 12 | Zo x Zsg
4110 Y Y 16 | Z5 x Za
4110 Y Y 16 | Z» x Zg
4110 3 Y 16 | Zp x Zg
4110 Y Y 24 | Zo x Z12
4110 Y Y 24 | 75 x Zg
4110 Y Y 32 | 75 x Zg
4112 Y Y 4|75
4112 3 Y 4|75
4112 Y Y 8 | Zyx Z4
4112 3 Y 8 | Zyx Z4
4112 Y Y 8|75
4112 3 Y 8|75
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6| 8 Y Y 48 | 75 x Z1z
6| 8 Y Y 60 | Zy x Z3p
6| 8 Y Y 80 | Z5 x Zxo
6|10 Y Y 4| 75

6| 10 Y Y 8 | Zo x Za
6| 10 Y Y 8|75

6|10 Y Y 12 | Zo x Zg
6|10 Y Y 16 | Zo x Zg
6|10 Y Y 16 | 72

6|10 Y Y 16 | Z5 x Za
6|10 Y Y 20 ZzXZ]_o
6|10 Y Y 24 ZzXZ]_z
6|10 Y Y 24 | 75 x Zg
6|10 Y Y 28 ZzXZ]A
6|10 Y Y 40 ZzXZgO
6|10 Y Y 40 | 75 x Zao
6] 10 Y Y 108 | Zg x Z1g
8| 8 Y Y 41175

8 8 Y Y 8 ZzXZ4
8| 8 Y Y 8|75

8| 8 Y Y 12 | Zp x Zg
8| 8 Y Y 16 | Zp x Zg
8| 8 Y Y 16 | 73

8| 8 Y Y 16 | 75 x Za
8| 8 Y Y 16 | Z3

8 8 Y Y 20 ZzXZ]_o
8 8 Y Y 24 ZzXZ]_z
8| 8 Y Y 24 | 75 x Zg
8 8 Y Y 28 ZzXZ]A

Table C.6: Abelianized (Aom, Azn)—groups



C.7. MORE EMBEDDINGS OF EXAMPLE 2.39 285

C.7 More embeddings of Example 2.39

We embed the non-residually finite (8, 6)—complex of Example 2.39 into many dif-
ferent (10, 10)—complexes X such that P, and P, are primitive permutation groups.
Let w := azal‘lagagl. In all examples I in the subsequent list, the normal subgroup
{w)r has finite index in T", in particular, by Lemma 2.42,

{whr= (] N.
N
If two rows are exactly the same, then the quotients I'/ {w)) r are non-isomorphic non-

abelian groups of the same finite order. The (A1, A10)—groups are precisely those of
Table 2.7.

| Py | P, | abelianization I'® | [T#| and [T : (w))r] |
| S6 < S10 | A1g | [2,2] | 4 |
‘ Se < S10 ‘ S10 ‘ [2, 2] ‘ 4 ‘
| PTL2(9) | Aqo | [2, 2] | 4 |

PI'L2(9) | S10 [2, 2] 4

PI'L2(9) | S10 [2, 4] 8

PI'L2(9) | S10 [2, 2, 2] 8

A1o A1o [2, 2] 4

A1o A1o [2, 4] 8

A1 A1o [2,2,2] 8

A1o A1o [2, 6] 12

A1o A1o [2, 2, 4] 16

A1o A1o [2, 8] 16

A1 A1o [2,10] 20

A1 A1 [2,12] 24

A1 A1o [2, 2, 6] 24

A1 A1o [2, 2, 8] 32

A1o A1o [2, 20] 40

A10 S10 (2, 2] 4

A10 S10 (2, 4] 8

A1 S10 (2,2,2] 8

A1o S10 [2,2,2] 8, 16

A1o S10 [2, 6] 12

A10 S10 (2, 8] 16

A10 S10 (4, 4] 16

A1o S10 [2, 2, 4] 16
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A1 S10 [2,10] 20
A1 S10 [2,12] 24
A1 S10 [2, 2, 6] 24
A1 S10 [2,14] 28
A1o S10 [2,2,8] 32
A1 S10 [2,16] 32
A1 S10 [2,20] 40
A1 S10 [2,2,10] 40
A1o S10 [2, 24] 48
S10 A1o (2, 2] 4
S10 A1o (2, 4] 8
S10 A1 [2,2,2] 8
S10 A1 [2,2,2] 8, 16
S10 A1 [2,2,2] 8, 16
S10 A1o [2, 6] 12
S10 A1 [2,2, 4] 16
S10 A1 [2, 8] 16
S10 A1 [4, 4] 16
S10 A1 [2,10] 20
S10 A1 [2,12] 24
S10 A1 [2,2, 6] 24
S10 A1 [2,14] 28
S10 A1o [2, 2, 8] 32
S10 A1 [2,18] 36
S10 A1 [6, 6] 36
S10 A1 [2,20] 40
S10 A1 [2,22] 44
S10 A1 [2, 28] 56
S10 A1 [2,32] 64
S10 S10 [2, 2] 4
S10 S10 [2, 4] 8
S10 S10 [2,2,2] 8
S10 S10 [2,2,2] 8,16
S10 S10 [2,2,2] 8,16
S10 S10 (2, 6] 12
S10 S10 [2, 8] 16
S10 S10 [2,2, 4] 16
S10 S10 [2,2, 4] 16, 32
S10 S10 [2,2,4] 16, 32
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S10 S10 [2, 2, 4] 16, 32
S10 S10 [4, 4] 16
S10 S10 [2,10] 20
S10 S10 [2,12] 24
S10 S10 [2, 2, 6] 24
S10 S10 [2, 2, 6] 24, 48
S10 S10 [2, 14] 28
S10 S10 [2, 16] 32
S10 S10 [2, 2, 8] 32
S10 S10 [2,4, 4] 32
S10 S10 [4, 8] 32
S10 S10 [2,18] 36
S10 S10 [6, 6] 36
S10 S10 [2, 20] 40
S10 S10 [2,2,10] 40
S10 S10 [2,22] 44
S10 S10 [2, 24] 48
S10 S10 [2,2,12] 48
S10 S10 [2, 26] 52
S10 S10 [2, 28] 56
S10 S10 [2, 30] 60
S10 S10 [2, 32] 64
S10 S10 [2, 36] 72
S10 S10 [2, 38] 76
S10 S10 [2, 40] 80
S10 S10 [2, 44] 88
S10 S10 [2,50] 100
S10 S10 [10, 10] 100
S10 S10 [2, 52] 104

Table C.7: Example 2.39 embedded into (10, 10)—groups

287
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Appendix D

Miscellanea

D.1 History of simple groups and free amalgams

We give in this section some history of finitely presented (or finitely generated) infinite
simple groups and amalgams of finitely generated non-abelian free groups.

Aleksandr G. Kuro$ 1944 ([42]) He asked for the existence of a finitely gener-
ated infinite simple group. (This was positively answered in [34].)

Graham Higman 1951 ([34]) He gave the first existence proof of a finitely gen-
erated infinite simple group and asked for the existence of a finitely presented
infinite simple group: “Can an infinite simple group have not only a finite set
of generators, but also a finite set of defining relations?” (This was positively
answered by Richard J. Thompson in 1965.)

Ruth Camm 1953 ([19]) She constructed uncountably many finitely generated
infinite simple groups of the form F> xg_ Fo. These groups are torsion-free,
2-generated, but not finitely presentable (by [4]).

Richard J. Thompson 1965 (in unpublished notes) He defined two finitely pre-
sented infinite simple groups C (often called T) and v (often called V). They
are not torsion-free. He also defined a third interesting group P (often called F)
which is torsion-free but not simple. For an introduction to these three groups,
see [20].

Peter M. Neumann 1973 ([56]) “At one time | had hoped that one might con-
struct a finitely presented simple group as a generalised free product of two free
groups A, B of finite rank amalgamating finitely generated subgroups H and
K. Joan Landman-Dyer and | showed quite easily that if H has infinite index in
A or K has infinite index in B then such a group G is not simple.” For a proof
that G is even SQ-universal under these conditions, see [62, Corollary 2]. For
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an alternative proof that G is not simple (again provided [A : H] or [B : K] is
infinite), see [37, Corollary 2]. Then Neumann posed the following problems
(which appeared also in the Kourovka notebook): “Let G = A xy—_k B where
A, B are non-abelian free groups of finite rank and |A : H|, |B : K| are finite.
(@) Can it happen that G is simple? (b) Is G always SQ-universal?” ((a) was
positively answered in [15]; consequently the answer to (b) is “no”.)

Graham Higman 1974 ([35]) He generalized Thompson’s group V to an infi-
nite family of finitely presented infinite simple groups.

Dragomir Z. Djokovi¢ 1981 ([26]) His finitely presented “simple” group with
bounded torsion turned out to be not simple.

Elisabeth A. Scott 1984 ([63]) She constructed another family of finitely pre-
sented infinite simple groups, related to the Higman groups.

Kenneth S. Brown 1985 ([11]) He generalized the Thompson groups T, V and
established some finiteness properties. In 1989 ([12]), he showed that Thomp-
son’s group V can be written as a (“positively curved, realizable”) triangle of
groups with finite vertex groups Ss, Sg, S7.

Meenaxi Bhattacharjee 1994 ([7]) She gave a construction of an amalgam
F3 *xF,, F3 without non-trivial finite quotients. This group is “nearly simple” in
her terminology, but it is not known whether it has proper infinite quotients, or
it is simple. More examples like this appear in [7, 8].

Geoffrey Mess (in [57, Problem 5.11 (C)] 1995) “Let X be a finite aspherical
complex. Is there an example of an X with simple fundamental group?” (His
question was positively answered in [15].)

Daniel T. Wise 1996 ([68]) He constructed a square complex without a non-
trivial finite covering and asked: “Does there exist a CSC with (non-trivial) sim-
ple 71? | guess that one does exist.” (where CSC stands for complete squared
complex; any (2m, 2n)—complex is CSC). (Again, this was positively answered
in [15].)

Marc Burger, Shahar Mozes 1997 ([15]) They constructed an infinite family
of finitely presented torsion-free simple groups which are amalgams of finitely
generated non-abelian free groups and thereby solved many open problems
mentioned above (Neumann, Mess, Wise).

Claas E. Rover 1999 ([61]) He gave a construction of finitely presented infinite
simple groups that contain Grigorchuk groups.
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D.2 Topology of Aut(77)

Throughout this section, let 7 be the ¢-regular tree and G = Aut(7;) its group of
automorphisms. We denote by X the countable vertex set of 7, endowed with the
discrete topology. Let X = {x1, X2, ...} be a fixed enumeration of X. For subsets
V,W C X and elements x, v, w € X, we define Gy,w :={g € G : g(V) € W}, the
vertex stabilizer Gy := Gyxy,(x}, the pointwise stabilizer Gy := Nycy Gx and to sim-
plify the notation we write G, w := Gpuw, Gyw = G, (w). We take the product
topology on [[,cx X = XX = {f : X - X} and let © be the relative topology for
G C X*X. Letn : [[yex X = X be the i-th projection. The product topology guar-
antees that these maps are continuous. Again, by definition of the product topology,
a subbase for @ is given by the sets G, w, wherev € V € X and W C X. Since
Guw = UyewGy, w, the family of sets G, ,,, where v, w € X, is another subbase
for @. This topology O is sometimes called topology of pointwise convergence (or
topology of simple convergence), since a sequence (gn)nen iN G convergesto g € G if
and only if (gn(x)) converges to g(x) in X for all x € X. Since X carries the discrete
topology, this means that for each x € X, there is an integer m such that gn(x) = g(x)
if n > m. Note that @ is the compact open topology, since this has as subbase the sets
Gv.w, Where V. C X is finite, W C X, and since

n
GV,W = ﬂ U Gvi,w ,

i=1lweW
where V. = {v1, ..., vn}.

Proposition D.1. (G, ©) is a locally compact, totally disconnected, second countable,
metrizable Hausdorff space. Moreover, it is a topological group, where we take the
usual composition of elements in the group G.

Proof. Hausdorff: The space XX is Hausdorff as a product of Hausdorff spaces (see
[39, Theorem I11.5]), hence also its subspace G is Hausdorff.

Second countable: This follows immediately since X is countable and the set
{Gy.w 1 v, w € X} isasubbase for O.

Metrizable: Let p be the discrete metric on X, i.e. p(v,w) := 0if v = w and
p(,w) = 1ifv # w. We defineforg,h € G

o0
d(g, h) ==Y p(@(x), h(x)).
i=1
Then d is a metric on G which induces O (see [18, Theorem 6.20]).
Locally compact: Let v, w € X. If we can show that G, ,, is compact, then any
g € G has a compact neighbourhood. Let (gn)nen be a sequence in G, ,,. By the local
finiteness of 77, the set {gn(Xj) : n € N} is finite for each i € N. Therefore, there is an
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infinite subset N1 € N such that the vertices gn, (x1) coincide for all n1 € N1. Denote
this common vertex by g(x1). Next, choose an infinite subset No € Nj, such that
On,(X2) coincide for all n, € N2 and define g(x2) := gn,(X2) (N2 € N2). Continuing
this process (i = 3,4, ...) defines an element g € G, 4. By construction, g is a
cluster point of (gn)nen. This shows that G, ,, is countably compact. But in a metric
space, the notions of countably compactness and compactness are equivalent.

Note that Gy is a profinite group (see [21, Proposition 1.3.5]). Recall that a topo-
logical group is profinite if and only if it is compact and totally disconnected.

Observe that X * is not locally compact (this follows from [39, Theorem V.19]).

Separable: A metric space is separable if and only if it has a countable base (see
[18, Corollary 7.21]).

Totally disconnected: We show that XX is totally disconnected. Assume that
K < XX is a connected subset such that kq, ko € K. Since the projections m;j are
continuous, each image 7 (K) is connected in X, i.e. a point. Thus mj (k1) = 7 (k2)
for each i and therefore k1 = ko. G is totally disconnected as a subspace of X X,

Topological group: Let U be the family of sets Gy, where V runs over finite
subsets of X. Note that Gy = N,ev G, IS open in G. We first show that

={gU:9eG,U e U}

is a base for some topology @ on G such that (G, @) (with the usual composition in
the group G) is a topological group and then show that @ = ©.

The subbase 81 = {gU : g € G, U € U} generates a topology © on G, in particular,
the family B, of finite intersections of elements in 81 is a base for o. Obviously, we
have 81 C B». If we can prove 8> C B3, then B1 is a base for O as claimed. Let

n
Bo=[aiUi (g €G,UieW
i=1

be any element in B2 and let h € B,. Then gi‘lh € Uj foreachi =1,...,nand
therefore gi‘thi = U foreachi = 1,...,n, using that U; = Gy for some finite
Vi c X. Thus,

Bg_ﬂhU. _h((n] Ui) € 81,

i=1
since N_,U; € U. Recall that the map

p:GxG—>0G
(91, 92) — 0102

is continuous if for each (g1, g2) € G x G and each open nelghbourhood U of 9102
in G there is an open neighbourhood V of (91, g2) in G x G such that ¢(V) cU.
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So let (g1,92) € G x Gand let U = UhU, (h, € G, U, € U) be an open neigh-
bourhood of g192 in G, say gig2 = hjuj € hjU; c U with Uj = Gy;. Then
95 'Ggv) 32U C Uj. It follows that

(921G gv)) (92Uj) C 9202Uj = hjujUj =hjU; c U.

Since gngz(v,-) x g2Uj is an open neighbourhood of (g1, g2) in G x G, we conclude
that ¢ is continuous.

The proof of the continuity of the map G — G, g — g1 is similar. We have to
show that for each g € G and each open neighbourhood U of g~ there is an open
neighbourhood V of g such that V1 c U:

Letg € G and let U = Uh,U, (h, € G, U, € U) be an open neighbourhood of g2,
say g~' = hjuj € hjU; c U with Uj = Gy, and define V = Gg-1y,) € U. Then
gV~1g~' c Uj and

(gV)_lcg‘luj =hjujU; = h;jy; cuU.

Since gV is an open neighbourhood of g, the map g — g~ is continuous and (G, ©)
is a topological group.
We know that {G, ,, : v, w € X} is a subbase for @ and

{gU : g € G, U =Gy, V C X finite}

is a subbase for @. In fact, @ = @, because on one hand Gyw=0G, foranyg e G
such that g(v) = w, and on the other hand

gGV = ﬂ GU?Q(”) °
veV

O

Proposition D.2. Let T be a subgroup of G and define I'y := I' N Gx. Then the
following three statements are equivalent:

i) T is discrete.
i) Iy isfinite for all x € X.
iii) Ty is finite for some x € X.

Proof. i) = ii): A discrete subgroup H of a Hausdorff topological group G is closed
in G (see [33, Theorem 5.10]). Applying this theorem, the group I" is closed in G and
'y = I' N Gy is closed in Gy, hence compact (since Gy is compact). But I'y is also
discrete (being a subgroup of T), thus finite.
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il) = iii): This is obvious.

i) = i): Write 'y = {y1, ..., yn}. Forany y; € I'y \ {1} there is some (large)
integer m; such that 3 ¢ I' N Ggx.m). Let m be the maximum of the m;’s, then
' N Ggx,m = {1}. Since Ggx,m) isopen in G, {1} is open in I', and I' is discrete
({y} = {yH1}isopeninT). O

Remark. By Proposition D.2, the full group G is not discrete if £ > 3, in particular
{g} is not open in G. However, {g} is closed in G, since

{g} =G\ U Gxi. X\{g(xi)) -
ieN
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