
ON DIRECT PRODUCT SUBGROUPS OF SO3(R)

DIEGO RATTAGGI

Abstract. Let G1 × G2 be a subgroup of SO3(R) such that the two factors

G1 and G2 are non-trivial groups. We show that if G1 × G2 is not abelian,

then one factor is the (abelian) group of order 2, and the other factor is non-
abelian and contains an element of order 2. There exist finite and infinite such

non-abelian subgroups.

Let F2 be the free group of rank 2. It is well-known that the group SO3(R) has
subgroups isomorphic to F2, e.g.〈 1 0 0

0 −3/5 −4/5
0 4/5 −3/5

 ,

 −3/5 0 4/5
0 1 0

−4/5 0 −3/5

〉
SO3(R)

∼= F2,

and subgroups isomorphic to Z× Z, like〈 1 0 0
0 −3/5 −4/5
0 4/5 −3/5

 ,

 1 0 0
0 −15/17 −8/17
0 8/17 −15/17

〉
SO3(R)

∼= Z× Z.

However, SO3(R) has no subgroups isomorphic to Z×F2. More precisely, if G1×G2

is a non-abelian subgroup of SO3(R) such that G1, G2 are non-trivial, then G1, G2

both contain an element of order 2, and moreover G1 or G2 is abelian. We will give
an elementary proof of these results (Proposition 7 and Proposition 14) using the
Hamilton quaternion algebra H(R). Additionally, we will show in Proposition 16
that any non-trivial element in the abelian factor has order 2 and in Theorem 18
that in fact the abelian factor is the group of order 2.

Recall that elements x ∈ H(R) are of the form x = x0 + x1i+ x2j + x3k, where
x0, x1, x2, x3 ∈ R, and multiplication in H(R) is induced by the rules i2 = j2 = k2 =
−1 and ij = −ji = k. The norm of x is by definition |x|2 = x2

0+x
2
1+x

2
2+x

2
3 ∈ R. We

say that x, y ∈ H(R) are perpendicular (denoted by x ⊥ y), if x1y1+x2y2+x3y3 = 0
(i.e. if (x1, x2, x3)T , (y1, y2, y3)T are perpendicular as vectors in R3). There is a
surjective homomorphism ϑ from the multiplicative group H(R) \ {0} to SO3(R)
defined by

x 7→ 1
|x|2

 x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x2

0 − x2
1 + x2

2 − x2
3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

 .

It is easy to check that

ker(ϑ) = Z(H(R) \ {0}) = {x ∈ H(R) \ {0} : x = x0}
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which we will identify with R \ {0}. Note that if x ∈ H(R) \R, then the axis of the
rotation ϑ(x) is the line through (0, 0, 0)T and (x1, x2, x3)T in R3. Next, we prove
three basic lemmas about (anti-)commutation of quaternions.

Lemma 1. Let x, y ∈ H(R) \ {0}. Then xy = −yx, if and only if x0 = y0 = 0 and
x ⊥ y.

Proof. Only using quaternion multiplication, we get xy = −yx if and only if the
following four equations hold:

x1y1 + x2y2 + x3y3 = x0y0

x0y1 + x1y0 = 0
x0y2 + x2y0 = 0
x0y3 + x3y0 = 0.

Thus if x0 = y0 = 0 and x ⊥ y, then clearly xy = −yx.
To prove the converse, suppose that xy = −yx and (by contradiction) x0 6= 0.

Then from the four equations, we have x0y0 − x1y1 − x2y2 − x3y3 = 0 and

y1 =
−x1y0
x0

, y2 =
−x2y0
x0

, y3 =
−x3y0
x0

.

It follows that

x0y0 +
x2

1y0
x0

+
x2

2y0
x0

+
x2

3y0
x0

= 0

and therefore y0|x|2 = 0. Since |x|2 ≥ x2
0 > 0, we get y0 = 0 which implies y1 = 0,

y2 = 0 and y3 = 0, hence the contradiction y = 0, and we conclude x0 = 0. The
four original equations become x1y1 + x2y2 + x3y3 = 0 (i.e. x ⊥ y as required) and
x1y0 = 0, x2y0 = 0, x3y0 = 0, which implies y0 = 0 (using x 6= 0) and we are
done. �

Lemma 2. Two quaternions x, y ∈ H(R) commute, if and only if (x1, x2, x3)T and
(y1, y2, y3)T are linearly dependent over R.

Proof. This follows from the computation

xy − yx = 2(x2y3 − x3y2)i+ 2(x3y1 − x1y3)j + 2(x1y2 − x2y1)k

= 2

∣∣∣∣∣∣
i x1 y1
j x2 y2
k x3 y3

∣∣∣∣∣∣ .
�

Lemma 3. Let x, y, z ∈ H(R)\R. If xy = yx and xz = zx, then yz = zy. In other
words, the group H(R) \ {0} is commutative transitive on non-central elements.

Proof. By assumption we havex1

x2

x3

 ,

y1y2
y3

 ,

z1z2
z3

 6=

0
0
0

 .

The statement follows now directly from Lemma 2. �

To describe the structure of direct product subgroups of SO3(R), we give some
general definitions.
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Definition 4. We call a direct product G1×G2 non-trivial, if both G1 and G2 are
non-trivial groups.

Definition 5. We say that the group G satisfies property
(P1), if G is abelian.
(P2), if G is CSA, i.e. if all its maximal abelian subgroups are malnormal (in other

words, if for any maximal abelian subgroup H < G and any g ∈ G \H the
intersection of gHg−1 with H is trivial).

(P3), if G is commutative transitive, i.e. if xy = yx, xz = zx always implies
yz = zy (provided x, y, z ∈ G \ {1}).

(P4), if any non-trivial direct product subgroup G1 × G2 < G is abelian (equi-
valently, if in any non-trivial direct product subgroup G1 × G2 < G both
factors G1, G2 are abelian).

(P5), if any non-trivial direct product subgroup G1 × G2 < G is abelian, or
exactly one factor is the abelian group of order 2 and the other factor is a
non-abelian group containing an element of order 2.

(P6), if any non-trivial direct product subgroupG1×G2 < G is abelian, or exactly
one factor is abelian such that the non-abelian factor contains an element
of order 2 and any non-trivial element in the abelian factor has order 2.

(P7), if any non-trivial direct product subgroup G1 ×G2 < G is abelian or both
factors G1, G2 contain an element of order 2.

(P8), if any torsion-free non-trivial direct product subgroup G1 × G2 < G is
abelian.

(P9), if G contains no subgroup Z× F2.
(P10), if G contains no subgroup F2 × F2.
(R3), if G is commutative transitive on non-central elements, i.e. if xy = yx,

xz = zx always implies yz = zy (provided x, y, z ∈ G \ ZG).
(R4), if any non-trivial direct product subgroup G1 ×G2 < G is abelian, or one

factor is non-abelian and the other factor is contained in the center of G.
(R6), if in any non-trivial direct product subgroup G1 × G2 < G at least one

factor is abelian.

Remark 6. The arrows in the following diagram stand for implications. For ex-
ample “(P1) −→ (P2)” means “if a group G satisfies property (P1), then G satisfies
property (P2)”. These implications follow directly from the given definitions, except
maybe (P2) −→ (P3) which is also easy to prove, see [1, Proposition 7].

(P2) // (P3) //

��

(P4) //

��

(P5) // (P6) //

��

(P7) // (P8)

��
(P1)

OO

(R3) // (R4) // (R6) // (P10) (P9)oo

We will show in Proposition 7 that SO3(R) satisfies property (P7), and in Propo-
sition 14 that SO3(R) satisfies property (R6), using the map ϑ and our lemmas on
quaternions. These results will be refined in Proposition 16 and Theorem 18 to
prove that SO3(R) satisfies property (P6) and (P5).

For a group with trivial center, e.g. for SO3(R), properties (P4) and (R4) are
equivalent. In Observation 13, we illustrate by two examples that SO3(R) does not
satisfy property (P4) (and hence does not satisfy property (R4)). As a preparation,
Observation 11 shows that SO3(R) does not satisfy property (P3).
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Proposition 7. The group SO3(R) satisfies property (P7).

Proof. Let G1×G2 be a non-trivial direct product subgroup of SO3(R) and suppose
that G1 or G2 does not contain an element of order 2. We have to prove that G1×G2

is abelian. Let E be the identity matrix in SO3(R), and take any A ∈ G1 \ {E},
B,C ∈ G2 \ {E}. Then AB = BA and AC = CA. Take any x, y, z ∈ H(R) \ R
such that ϑ(x) = A, ϑ(y) = B and ϑ(z) = C. We have ϑ(x)ϑ(y) = ϑ(y)ϑ(x), hence
xyx−1y−1 ∈ ker(ϑ), i.e. xy = λyx for some λ ∈ R \ {0}. Taking the norm, and
using the rule |xy|2 = |x|2|y|2, we see that λ ∈ {−1, 1}, in other words xy = yx or
xy = −yx. Similarly, AC = CA implies that xz = zx or xz = −zx.

In the case xy = −yx, we get x0 = y0 = 0 by Lemma 1. But then x2, y2 ∈ R\{0}
and A2 = ϑ(x2) = E, B2 = ϑ(y2) = E, hence both G1 and G2 contain an element
of order 2, a contradiction to our assumption. In the same way, if xz = −zx, then
we get the contradiction A2 = C2 = E.

Hence we always have xy = yx and xz = zx. Using Lemma 3, we get yz = zy
and therefore BC = CB. This shows that G2 is abelian. Similarly, taking two
matrices in G1 \{E} and one matrix in G2 \{E}, one shows that G1 is abelian. �

Corollary 8. The group SO3(R) contains no subgroup Z × F2 and no subgroup
F2 × F2.

Proof. Property (P7) implies property (P9) and (P10). �

Remark 9. A group is called coherent if every finitely generated subgroup is finitely
presented. Any group containing a subgroup F2 × F2 is incoherent. Therefore the
non-existence of subgroups F2×F2 is a necessary condition for coherence, although
it is not a sufficient condition since there are for example incoherent (hyperbolic)
groups (using [2]) not containing Z × F2 subgroups. It is a question of Serre ([3,
p.734]) whether GL3(Q) is coherent.

Question 10. Is SO3(R) coherent?

Using the idea of the proof of Proposition 7, we see that any subgroup of SO3(R)
which does not contain elements of order 2 (in particular any torsion-free subgroup
of SO3(R)) is commutative transitive. However SO3(R) itself is not commutative
transitive:

Observation 11. The group SO3(R) does not satisfy property (P3).

This observation will directly follow from Observation 13, but we give a short
alternative proof here.

Proof. Take

A :=

 1 0 0
0 −1 0
0 0 −1

 , B :=

 1 0 0
0 0 −1
0 1 0

 , C :=

 −1 0 0
0 1 0
0 0 −1

 ,

then AB = BA and AC = CA, but BC 6= CB.
Note that A = ϑ(i), B = ϑ(1 + i), C = ϑ(j) and i(i + 1) = (i + 1)i, ij = −ji,

(i+ 1)j 6= ±j(i+ 1). �

Corollary 12. There is a group G which is commutative transitive on non-central
elements, but such that G/Z(G) is not commutative transitive on non-central ele-
ments (and therefore such that G/Z(G) is not commutative transitive).
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Proof. Take G = H(R) \ {0} such that G/ZG ∼= SO3(R) and note that Z(SO3(R))
is the trivial group. �

The matrices A, B, C from the proof of Observation 11 generate a non-abelian
subgroup 〈A,B,C〉 of SO3(R). However, this group cannot be used to prove that
SO3(R) does not satisfy property (P4), since A = B2 and 〈A,B,C〉 = 〈B,C〉 is
the dihedral group of order 8 which is not decomposable as a non-trivial direct
product. Nevertheless, there are non-abelian non-trivial direct product subgroups
of SO3(R).

Observation 13. The group SO3(R) does not satisfy property (P4).

Proof. We give two examples of a non-abelian non-trivial direct product subgroup
of SO3(R), at first an infinite example.

Let A = ϑ(i), C = ϑ(j) as in the proof of Observation 11 and let

B̃ := ϑ(1 + 2i) =

 1 0 0
0 −3/5 −4/5
0 4/5 −3/5

 .

We claim that 〈A, B̃, C〉 is a non-abelian non-trivial direct product subgroup of
SO3(R).

First we want to show by contradiction that A /∈ 〈B̃, C〉. Since CB̃ = B̃−1C

and CB̃−1 = B̃C, any word in the letters B̃, B̃−1, C = C−1 can be brought to the
form B̃nC or B̃n for some n ∈ Z. If we suppose that A ∈ 〈B̃, C〉, then, looking at
the upper left entry (which is 1 in A and B̃, but −1 in C), we see that A cannot
be written as B̃nC and therefore A = B̃n for some n ∈ Z \ {0}. But since A has
order 2, we get B̃2n = E, which contradicts the fact that B̃ has infinite order.

Since 〈A〉 has only two elements and A /∈ 〈B̃, C〉, we get 〈A〉 ∩ 〈B̃, C〉 = {E}.
Moreover, it is easy to check that A commutes with B̃ and with C. Therefore
〈A, B̃, C〉 < SO3(R) is a direct product of the group 〈A〉 of order 2 and the (infinite)
non-abelian (solvable) group 〈B̃, C〉.

As a finite example we can take the dihedral group of order 12, generated for
example by the two matrices 1 0 0

0 1/2 −
√

3/2
0

√
3/2 1/2

 and

 −1 0 0
0 1 0
0 0 −1

 .

This group is isomorphic to a direct product of the (non-abelian) dihedral group of
order 6 (which is isomorphic to the symmetric group S3) and the group of order 2.

�

Proposition 14. The group SO3(R) satisfies property (R6).

Proof. Suppose by contradiction that G1 × G2 is a non-trivial direct subgroup of
SO3(R) such that G1 and G2 are non-abelian. First take A,B ∈ G1 \{E} such that
AB 6= BA and C,D ∈ G2\{E} such that CD 6= DC. Now take x, y, z, w ∈ H(R)\R
such that ϑ(x) = A, ϑ(y) = B, ϑ(z) = C, ϑ(w) = D. Then we have xy 6= ±yx,
zw 6= ±wz and (by the same argument as in the proof of Proposition 7) xz = ±zx,
xw = ±wx, yz = ±zy, yw = ±wy.

Suppose that xz = zx. If xw = wx then we get by Lemma 3 the contradiction
zw = wz, hence xw = −wx. But then by Lemma 1, w0 = 0 and x ⊥ w. Since
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(x1, x2, x3)T and (z1, z2, z3)T are linearly dependent by Lemma 2, we conclude
z ⊥ w. Since wz 6= −zw, we have z0 6= 0 by Lemma 1, hence yz = zy again by
Lemma 1, and xy = yx by Lemma 3, a contradiction.

We have shown that xz = −zx. Similarly, it follows that xw = −wx, yz = −zy
and yw = −wy. Lemma 1 implies x ⊥ z and x ⊥ w. Since zw 6= wz, z and w are
linearly independent by Lemma 2 and span the plane perpendicular to x. We also
have y ⊥ z and y ⊥ w by Lemma 1, hence x and y are linearly dependent and we
get the contradiction xy = yx by Lemma 2. �

Lemma 15. Let A ∈ SO3(R) be a rotation of order at least 3. Then the centralizer
of A in SO3(R) consists of all rotations about the axis of A.

Proof. Without loss of generality, we may assume that A is a rotation of order at
least 3 about the x-axis, hence

A =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 ,

such that sinφ 6= 0. Suppose that the matrix

B =

 b1 b2 b3
b4 b5 b6
b7 b8 b9

 ∈ SO3(R)

commutes with A. Then AB = BA gives the conditions

b9 sinφ = b5 sinφ
−b8 sinφ = b6 sinφ

and

b2(1− cosφ) = b3 sinφ

−b3(1− cosφ) = b2 sinφ

−b4(1− cosφ) = b7 sinφ

b7(1− cosφ) = b4 sinφ.

The first two equations imply b5 = b9 and b6 = −b8. The third and fourth equation
imply

b2 =
−b3(1− cosφ)

sinφ
and

−b3(1− cosφ)2

sinφ
= b3 sinφ,

hence
−b3(1− 2 cosφ) = b3(sin2 φ+ cos2 φ) = b3.

If b3 6= 0 then 1 − 2 cosφ = −1, hence cosφ = 1 and we get the contradiction
sinφ = 0. Thus b3 = 0 and b2 = 0. Similarly, the fifth and sixth equation lead to
b4 = b7 = 0, hence

B =

 b1 0 0
0 b5 −b8
0 b8 b5


We exclude the case b1 = −1 computing the determinant of B, and conclude

B =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ


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for some ψ. �

Proposition 16. The group SO3(R) satisfies property (P6).

Proof. Let G1×G2 be a subgroup of SO3(R) such that G2 is non-abelian and G1 is
abelian and non-trivial. Using Proposition 7 and Proposition 14, it remains to prove
that any non-trivial element of G1 has order 2. Therefore suppose that A ∈ G1\{E}
has order at least 3. Then by Lemma 15, any element in G2 is a rotation about the
axis of A, which contradicts our assumption that G2 is non-abelian. �

Lemma 17. The two matrices −1 0 0
0 cosφ sinφ
0 sinφ − cosφ

 ,

 −1 0 0
0 cosψ sinψ
0 sinψ − cosψ

 ∈ SO3(R)

commute, if and only if
φ

2
− ψ

2
∈ {k · π

2
: k ∈ Z}.

In particular, these two 180◦-rotations commute, if and only if their axes (which lie
in the yz-plane) are identical or perpendicular.

Proof. Matrix multiplication gives the condition sinφ · cosψ = cosφ · sinψ, hence

0 = sinφ · cosψ − cosφ · sinψ = sin(φ− ψ)

and
φ− ψ ∈ {k · π : k ∈ Z}.

�

Theorem 18. The group SO3(R) satisfies property (P5).

Proof. Let G1×G2 be a subgroup of SO3(R) such that G2 is non-abelian and G1 is
abelian and non-trivial. Applying Proposition 16, it remains to show that G1 has
order 2. Let A ∈ G1 \ {E}. Without loss of generality we may assume that A is a
rotation about the x-axis. It has order 2 by Proposition 16, hence

A =

 1 0 0
0 −1 0
0 0 −1

 .

Any element in G1 \ {E} has order 2 and commutes with A. An easy computation
shows that if an element in SO3(R) commutes with A, then it has either the form 1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ

 or

 −1 0 0
0 cosφ sinφ
0 sinφ − cosφ

 ,

i.e. it is either a rotation about the x-axis, or a rotation about an axis in the yz-plane
by an angle of 180◦. The only element of order 2 of the first form is A itself. Hence
if G1 \ {E,A} is not empty, then it contains only elements of the second form.
Since G1 is abelian, G1 \ {E,A} contains by Lemma 17 at most two elements,
and G1 has therefore at most 4 elements. However, we know by Proposition 7
that also G2 contains an element of order 2 commuting with A, hence G1 has less
than 4 elements. Since A ∈ G1 has order 2, we conclude that G1 has exactly 2
elements. �
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Remark 19. All statements in this article remain true if we replace R by Q. The
only construction where we have used irrational numbers was in the second part of
Observation 13.
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